Intra-Annual Variation in Soil C, N and Nutrients Pools after Prescribed Fire in a Mississippi Longleaf Pine (Pinus palustris Mill.) Plantation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Fire Effects on Soil Nutrients and pH
3.2. Retention of C, N and Nutrients Released by Combustion
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brockway, D.G.; Lewis, C.E. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. For. Ecol. Manag. 1997, 96, 167–183. [Google Scholar] [CrossRef]
- Van Lear, D.H.; Carroll, W.D.; Kapeluck, P.R.; Johnson, R. History and restoration of the longleaf pine-grassland ecosystem: Implications for species at risk. For. Ecol. Manag. 2005, 211, 150–165. [Google Scholar] [CrossRef]
- Burns, R.M.; Honkala, B.H. Silvics of North. America: 1. Conifers. In Agriculture Handbook 654; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 2, 877p. [Google Scholar]
- Harrington, T.B.; Edwards, M.B. Structure of mixed pine and hardwood stands 12 years after various methods and intensities of site preparation in the Georgia Piedmont. Can. J. For. Res. 1996, 26, 1490–1500. [Google Scholar] [CrossRef]
- Carter, M.C.; Foster, C.D. Prescribed burning and productivity in southern pine forests: A review. For. Ecol. Manag. 2004, 191, 93–109. [Google Scholar] [CrossRef]
- Binkley, D.; Richter, D.; David, M.B.; Caldwell, B. Soil chemistry in a loblolly/longleaf pine forest with interval burning. Ecol. Appl. 1992, 2, 157–164. [Google Scholar] [CrossRef]
- Liechty, H.O.; Hooper, J.J. Long-term effect of periodic fire on nutrient pools and soil chemistry in loblolly-shortleaf pine stands managed with single-tree selection. For. Ecol. Manag. 2016, 380, 252–260. [Google Scholar] [CrossRef]
- Lavoie, M.; Starr, G.; Mack, M.C.; Martin, T.A.; Gholz, H.L. Effects of a Prescribed Fire on Understory Vegetation, Carbon Pools, and Soil Nutrients in a Longleaf Pine-Slash Pine Forest in Florida. Nat. Areas J. 2010, 30, 82–94. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 2011, 21, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, P.K.; Woods, P.V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Can. J. For. Res. 1985, 15, 657–664. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, P.K.; Woods, P.V. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. For. Res. 1985, 15, 132–140. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kogel-Knabner, I. Stabilization of soil organic matter isolated via oxidative degradation. Org. Geochem. 2005, 36, 1567–1575. [Google Scholar] [CrossRef]
- Ball, P.N.; MacKenzie, M.D.; DeLuca, T.H.; Holben, W.E. Wildfire and Charcoal Enhance Nitrification and Ammonium-Oxidizing Bacterial Abundance in Dry Montane Forest Soils. J. Environ. Qual. 2010, 39, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurth, V.J.; MacKenzie, M.D.; DeLuca, T.H. Estimating charcoal content in forest mineral soils. Geoderma 2006, 137, 135–139. [Google Scholar] [CrossRef]
- Butnor, J.R.; Johnsen, K.H.; Sanchez, F.G.; Nelson, C.D. Impacts of pine species, stump removal, cultivation, and fertilization on soil properties half a century after planting. Can. J. For. Res. 2012, 42, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Schmidtling, R.C. Intensive culture increases growth without affecting wood quality of young southern pines. Can. J. For. Res. 1973, 3, 565–573. [Google Scholar] [CrossRef]
- Johnsen, K.H.; Butnor, J.R.; Kush, J.S.; Schmidtling, R.C.; Nelson, C.D. Hurricane Katrina Winds Damaged Longleaf Pine Less than Loblolly Pine. South. J. Appl. For. 2009, 33, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, G. Hydrometer method improved for making particle size analyses of soil. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Soil and Plant Analysis Council, Inc. Handbook on Reference Methods for Soil Analysis; Soil and Plant Analysis Council, Inc.: Saint Lucie, FL, USA, 1992. [Google Scholar]
- Butnor, J.R.; Samuelson, L.J.; Johnsen, K.H.; Anderson, P.H.; González Benecke, C.A.; Boot, C.; Cotrufo, M.F.; Heckman, K.A.; Jackson, J.A.; Stokes, T.A.; et al. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. For. Ecol. Manag. 2017, 390, 15–26. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute Inc. SAS/STAT 13.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Näthe, K.; Levia, D.F.; Tischer, A.; Michalzik, B. Low-intensity surface fire effects on carbon and nitrogen cycling in soil and soil solution of a Scots pine forest in central Germany. CATENA 2018, 162, 360–375. [Google Scholar] [CrossRef]
- Schafer, J.L.; Mack, M.C. Short-term effects of fire on soil and plant nutrients in palmetto flatwoods. Plant Soil 2010, 334, 433–447. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Bååth, E.; Arnebrant, K. Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biol. Biochem. 1994, 26, 995–1001. [Google Scholar] [CrossRef]
- Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive priming of black carbon and glucose mineralisation. Org. Geochem. 2004, 35, 823–830. [Google Scholar] [CrossRef]
- Ficken, C.D.; Wright, J.P. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna. Biogeosciences 2017, 14, 241–255. [Google Scholar] [CrossRef]
- Guenet, B.; Juarez, S.; Bardoux, G.; Abbadie, L.; Chenu, C. Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biol. Biochem. 2012, 52, 43–48. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kleber, M.; Kogel-Knabner, I. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 2003, 34, 1591–1600. [Google Scholar] [CrossRef]
- Lajtha, K.; Townsend, K.L.; Kramer, M.G.; Swanston, C.; Bowden, R.D.; Nadelhoffer, K.J.B. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry 2014, 119, 341–360. [Google Scholar] [CrossRef]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Chang. 2015, 5, 588–595. [Google Scholar] [CrossRef]
- Bell, R.L.; Binkley, D. Soil nitrogen mineralization and immobilization in response to periodic prescribed fire in a loblolly pine plantation. Can. J. For. Res. 1989, 19, 816–820. [Google Scholar] [CrossRef] [Green Version]
- Richter, D.D.; Ralston, C.W.; Harms, W.R. Prescribed Fire: Effects on Water Quality and Forest Nutrient Cycling. Science 1982, 215, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Schoch, P.; Binkley, D. Prescribed burning increased nitrogen availability in a mature loblolly pine stand. For. Ecol. Manag. 1986, 14, 13–22. [Google Scholar] [CrossRef]
- DeBano, L.F. The effect of fire on soil properties. In Proceedings of Management and Productivity of Western-Montane Forest Soils; Boise, ID, General Technical Report INT-280; U.S. Department of Agriculture, Forest Service, Intermountain: Ogden, UT, USA, 1991; pp. 151–156. [Google Scholar]
- DeBell, D.S.; Ralston, C.W. Release of Nitrogen by Burning Light Forest Fuels. Soil Sci. Soc. Am. J. 1970, 34, 936–938. [Google Scholar] [CrossRef]
- Hosking, J.S. The ignition at low temperatures of the organic matter in soils. J. Agric. Sci. 1938, 28, 393–400. [Google Scholar] [CrossRef]
- Fox, T.R.; Allen, H.L.; Albaugh, T.J.; Rubilar, R.; Carlson, C.A. Tree nutrition and forest fertilization of pine plantations in the southern United States. South. J. Appl. For. 2007, 31, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Fox, T.R. Sustained productivity in intensively managed forest plantations. For. Ecol. Manag. 2000, 138, 187–202. [Google Scholar] [CrossRef]
- Tierney, J.A.; Hedin, L.O.; Wurzburger, N. Nitrogen fixation does not balance fire-induced nitrogen losses in longleaf pine savannas. Ecology 2019, 100, 15. [Google Scholar] [CrossRef]
- Wells, C.G.; Craig, J.R.; Kane, M.B.; Allen, H.L. Foliar and Soil Tests for the Prediction of Phosphorus Response in Loblolly Pine. Soil Sci. Soc. Am. J. 1986, 50, 1330–1335. [Google Scholar] [CrossRef]
- Coates, T.A.; Hagan, D.L.; Aust, W.M.; Johnson, A.; Keen, J.C.; Chow, A.T.; Dozier, J.H. Mineral Soil Chemical Properties as Influenced by Long-Term Use of Prescribed Fire with Differing Frequencies in a Southeastern Coastal Plain Pine Forest. Forests 2018, 9, 14. [Google Scholar] [CrossRef] [Green Version]
Pool | Pre-Burn (kg ha−1) | Post-Burn (kg ha−1) | Change (%) |
---|---|---|---|
Total mass | 16,413 ± 1481 | 5051 ± 845 | −69 |
C | 6402 ± 688 | 2426.9 ± 427 | −62 |
N | 91.1 ± 10.8 | 33.9 ± 6.0 | −63 |
CR | 210.0 ± 20.0 | 100 ± 20.0 | −48 |
Ca | 49.9 ± 5.4 | 5.8 ± 0.9 | −95 |
Cu | 0.18 ± 0.09 | 0.01 ± 0.0002 | −94 |
Fe | 35.1 ± 3.9 | 0.2 ± 0.03 | −99 |
K | 7.5 ± 1.2 | 0.75 ± 0.14 | −90 |
Mg | 6.6 ± 0.7 | 1.5 ± 0.3 | −77 |
Mn | 4.5 ± 0.7 | 0.3 ± 0.05 | −93 |
Na | 0.81 ± 0.08 | 0.14 ± 0.03 | −83 |
P | 3.2 ± 0.5 | 0.14 ± 0.03 | −95 |
Pool | Month | Soil 0–5 cm (kg ha−1) | % | Soil 5–10 cm (kg ha−1) | % | Combined (kg ha−1) | % |
---|---|---|---|---|---|---|---|
C | 3 | 1035.8 | 25 | − | − | 1035.8 | 25 |
N | 3 | 55.1 | 93 | − | − | 55.1 | 93 |
CR | − | − | − | − | − | − | |
Ca | 1 | 21.2 | 48 | 17.7 | 40 | 38.9 | 88 |
Cu | 1 | − | − | 0.02 | 12 | 0.02 | 12 |
Fe | n.s. | − | − | − | − | − | |
K | 1 | 3.2 | 47 | 3.3 | 49 | 6.5 | 96 |
Mg | 3 | 5.2 | 101 | − | − | 5.2 | 101 |
Mn | 1 | 1.7 | 40 | 0.5 | 12 | 2.2 | 52 |
Na | n.s | − | n.s | − | n.s | − | |
P | 3 | 1.47 | 48 | - | − | 1.47 | 48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butnor, J.R.; Johnsen, K.H.; Maier, C.A.; Nelson, C.D. Intra-Annual Variation in Soil C, N and Nutrients Pools after Prescribed Fire in a Mississippi Longleaf Pine (Pinus palustris Mill.) Plantation. Forests 2020, 11, 181. https://doi.org/10.3390/f11020181
Butnor JR, Johnsen KH, Maier CA, Nelson CD. Intra-Annual Variation in Soil C, N and Nutrients Pools after Prescribed Fire in a Mississippi Longleaf Pine (Pinus palustris Mill.) Plantation. Forests. 2020; 11(2):181. https://doi.org/10.3390/f11020181
Chicago/Turabian StyleButnor, John R., Kurt H. Johnsen, Christopher A. Maier, and C. Dana Nelson. 2020. "Intra-Annual Variation in Soil C, N and Nutrients Pools after Prescribed Fire in a Mississippi Longleaf Pine (Pinus palustris Mill.) Plantation" Forests 11, no. 2: 181. https://doi.org/10.3390/f11020181
APA StyleButnor, J. R., Johnsen, K. H., Maier, C. A., & Nelson, C. D. (2020). Intra-Annual Variation in Soil C, N and Nutrients Pools after Prescribed Fire in a Mississippi Longleaf Pine (Pinus palustris Mill.) Plantation. Forests, 11(2), 181. https://doi.org/10.3390/f11020181