The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kadavý, J.; Adamec, Z.; Uherková, B.; Kneifl, M.; Knott, R.; Kučera, A.; Friedl, M.; Dařenová, E.; Skládanka, J.; Drápela, K. Growth Response of Sessile Oak and European Hornbeam to Traditional Coppice-with-Standards Management. Forests 2019, 10, 515. [Google Scholar] [CrossRef] [Green Version]
- Rehschuh, S.; Fuchs, M.; Tejedor, J.; Schäfler-Schmid, A.; Magh, R.-K.; Burzlaff, T.; Rennenberg, H.; Dannenmann, M. Admixing Fir to European Beech Forests Improves the Soil Greenhouse Gas Balance. Forests 2019, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Yang, S.; Huang, X.; Tong, J. Dynamic Decomposition of Factors Influencing the Export Growth of China’s Wood Forest Products. Sustainability 2018, 10, 2780. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Harrison, R.; Yi, Z.-F.; Goodale, E.; Zhao, M.-X.; Xu, J.-C. Changing Perceptions of Forest Value and Attitudes toward Management of a Recently Established Nature Reserve: A Case Study in Southwest China. Forests 2015, 6, 3136–3164. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, P.; Stainback, G.A.; Dwivedi, P. Economic Impact of Net Carbon Payments and Bioenergy Production in Fertilized and Non-Fertilized Loblolly Pine Plantations. Forests 2015, 6, 3045–3059. [Google Scholar] [CrossRef] [Green Version]
- Chudý, M.; Reschenhofer, E. Macroeconomic Forecasting with Factor-Augmented Adjusted Band Regression. Econometrics 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W.J.; Newbold, P. Spurious regressions in econometrics. J. Econom. 1974, 2, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yuan, T.; Zhang, X.; Li, S. A Decade Trend of Total Factor Productivity of Key State-Owned Forestry Enterprises in China. Forests 2016, 7, 97. [Google Scholar] [CrossRef]
- Toth, D.; Maitah, M.; Maitah, K. Development and Forecast of Employment in Forestry in the Czech Republic. Sustainability 2019, 11, 6901. [Google Scholar] [CrossRef] [Green Version]
- ČSÚ. Lesnictví. (Online). 2019. Available online: https://www.czso.cz/csu/czso/indexy-cen-v-lesnictvi-surove-drivi-3-ctvrtleti-2019 (accessed on 1 January 2020).
- Liu, J.; Wu, F. Forest Carbon Sequestration Subsidy and Carbon Tax as Part of China’s Forestry Policies. Forests 2017, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Dwivedi, P.; McKay, S.K.; Radcliffe, D. Assessing the Potential Impact of Rising Production of Industrial Wood Pellets on Streamflow in the Presence of Projected Changes in Land Use and Climate: A Case Study from the Oconee River Basin in Georgia, United States. Water 2019, 11, 142. [Google Scholar] [CrossRef] [Green Version]
- Štícha, V.; Sharma, R.; Vacek, Z.; Vacek, S.; Nuhlíček, O. Timber and Branch Volume Prediction: Effects of Stand and Site Characteristics on Dendromass and Timber-To-Branch Volume Ratio of Norway Spruce in Managed Forests. Forests 2019, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- She, J.; Chung, W.; Han, H. Economic and Environmental Optimization of the Forest Supply Chain for Timber and Bioenergy Production from Beetle-Killed Forests in Northern Colorado. Forests 2019, 10, 689. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.; Koch, F. Bark Beetle Epidemics, Life Satisfaction, and Economic Well-Being. Forests 2019, 10, 696. [Google Scholar] [CrossRef] [Green Version]
- Susaeta, A.; Lal, P. Impacts of Climate Change and Bioenergy Markets on the Profitability of Slash Pine Pulpwood Production in the Southeastern United States. Forests 2018, 9, 656. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, C.; Peterson, C. Woody Species Composition, Diversity, and Recovery Six Years after Wind Disturbance and Salvage Logging of a Southern Appalachian Forest. Forests 2019, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Dvouletý, O.; Blažková, I. The Impact of Public Grants on Firm-Level Productivity: Findings from the Czech Food Industry. Sustainability 2019, 11, 552. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Mohren, G.M.J.; Del Río, M.; Schelhaas, M.-J.; Bouwman, M.; Sterck, F.J. Species Mixing Effects on Forest Productivity: A Case Study at Stand-, Species- and Tree-Level in the Netherlands. Forests 2018, 9, 713. [Google Scholar] [CrossRef] [Green Version]
- Kapilakanchana, M.; McCarl, B.A. The Effect of Technological Progress, Demand, and Energy Policy on Agricultural and Bioenergy Markets. Atmosphere 2020, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Amaral, M.; Lima, A.; Higuchi, F.; dos Santos, J.; Higuchi, N. Dynamics of Tropical Forest Twenty-Five Years after Experimental Logging in Central Amazon Mature Forest. Forests 2019, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- da Rocha Júnior, R.L.; dos Santos Silva, F.D.; Lisboa Costa, R.; Barros Gomes, H.; Herdies, D.L.; Rodrigues da Silva, V.P.; Candido Xavier, A. Analysis of the Space–Temporal Trends of Wet Conditions in the Different Rainy Seasons of Brazilian Northeast by Quantile Regression and Bootstrap Test. Geosciences 2019, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Russo, D.; Marziliano, P.A.; Macrì, G.; Zimbalatti, G.; Tognetti, R.; Lombardi, F. Tree Growth and Wood Quality in Pure Vs. Mixed-Species Stands of European Beech and Calabrian Pine in Mediterranean Mountain Forests. Forests 2020, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Pirker, J.; Mosnier, A.; Nana, T.; Dees, M.; Momo, A.; Muys, B.; Kraxner, F.; Siwe, R. Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country. Forests 2019, 10, 1095. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T. Carbon forestry is surprising. For. Ecosyst. 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Hönig, V.; Prochazka, P.; Obergruber, M.; Smutka, L.; Kučerová, V. Economic and Technological Analysis of Commercial LNG Production in the EU. Energies 2019, 12, 1565. [Google Scholar] [CrossRef] [Green Version]
- Kilham, P.; Hartebrodt, C.; Kändler, G. Generating Tree-Level Harvest Predictions from Forest Inventories with Random Forests. Forests 2019, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Ning, Y.; Liu, Z.; Ning, Z.; Zhang, H. Measuring Eco-Efficiency of State-Owned Forestry Enterprises in Northeast China. Forests 2018, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Ochuodho, T.; Alavalapati, J.; Lal, P.; Agyeman, D.; Wolde, B.; Burli, P. Potential Economic Impacts of Allocating More Land for Bioenergy Biomass Production in Virginia. Forests 2019, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Park, Y. Monitoring, Assessment and Management of Forest Insect Pests and Diseases. Forests 2019, 10, 865. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, D.W.; Khanal, P.N.; Straka, T.J.; Hagan, D.L. Influence of Forestry Practices Cost on Financial Performance of Forestry Investments. Resources 2019, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Lundholm, A.; Corrigan, E.; Nieuwenhuis, M. Implementing Climate Change and Associated Future Timber Price Trends in a Decision Support System Designed for Irish Forest Management and Applied to Ireland’s Western Peatland Forests. Forests 2019, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Q.; Wu, S.; Yan, Y.; Niu, Y.; Yang, F.; Xie, C. Monitoring land surface thermal environments under the background of landscape patterns in arid regions: A case study in Aksu river basin. Sci. Total Environ. 2020, 710, 136336. [Google Scholar] [CrossRef] [PubMed]
- Banaś, J.; Kożuch, A. The Application of Time Series Decomposition for the Identification and Analysis of Fluctuations in Timber Supply and Price: A Case Study from Poland. Forests 2019, 10, 990. [Google Scholar] [CrossRef] [Green Version]
- Mozgeris, G.; Brukas, V.; Pivoriūnas, N.; Činga, G.; Makrickienė, E.; Byčenkienė, S.; Marozas, V.; Mikalajūnas, M.; Dudoitis, V.; Ulevičius, V.; et al. Spatial Pattern of Climate Change Effects on Lithuanian Forestry. Forests 2019, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Maitah, M.; Procházka, P.; Smutka, L.; Maitah, K.; Honig, V. Analysis of the Impact of Ethanol Production on Agricultural Product Prices in Brazil. Sugar Tech. 2019, 21, 773–779. [Google Scholar] [CrossRef]
- Gebeltová, Z.; Malec, K.; Maitah, M.; Smutka, L.; Appiah-Kubi, S.N.K.; Maitah, K.; Sahatqija, J.; Sirohi, J. The Impact of Crop Mix on Decreasing Soil Price and Soil Degradation: A Case Study of Selected Regions in Czechia (2002–2019). Sustainability 2020, 12, 444. [Google Scholar] [CrossRef] [Green Version]
X − Mx | Y − My | (X − Mx)2 | (X − Mx).(Y − My) |
---|---|---|---|
−6250.9 | 521.5 | 39,073,750.81 | −3,259,844.35 |
−5889.9 | 502.5 | 34,690,922.01 | −2,959,674.75 |
−6472.9 | 481.5 | 41,898,434.41 | −3,116,701.35 |
−5461.9 | 321.5 | 29,832,351.61 | −1,756,000.85 |
−5182.9 | 309.5 | 26,862,452.41 | −1,604,107.55 |
−1556.9 | −231.5 | 2,423,937.61 | 360,422.35 |
−310.9 | −297.5 | 96,658.81 | 92,492.75 |
2033.1 | −300.5 | 4,133,495.61 | −610,946.55 |
13,303.1 | −448.5 | 176,972,469.61 | −5966440.35 |
15,790.1 | −858.5 | 249,327,258.01 | −13,555,800.85 |
SS: 605,311,730.9 | SP: −32,376,601.5 |
Sum of X | 97,099 |
Sum of Y | 32,985 |
Mean X | 9709.9 |
Mean Y | 3298.5 |
Sum of squares (SSX) | 605,311,730.9 |
Sum of products (SP) | −32,376,601.5 |
Regression equation | ŷ = bX + a |
Calculation of parameter a | |
Calculation of parameter b | |
Regression equation | ŷ = −0.05349X + 3817.85812 |
Correlation coefficient—equation | |
Correlation coefficient—calculation result | |
The value of the correlation coefficient (R) is −0.9025 |
Incidental Mining 2010–2020 | Thousand m3 (Xi) | Price of Spruce Wood in EUR (Yi) |
---|---|---|
2010 | 3459 | 151 |
2011 | 3820 | 150 |
2012 | 3237 | 150 |
2013 | 4248 | 144 |
2014 | 4527 | 143 |
2015 | 8153 | 112 |
2016 | 9399 | 119 |
2017 | 11,743 | 119 |
2018 | 23,013 | 113 |
2019 | 25,500 | 107 |
2020 | 35,000 The Estimate | 77 The Calculation result |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toth, D.; Maitah, M.; Maitah, K.; Jarolínová, V. The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry. Forests 2020, 11, 283. https://doi.org/10.3390/f11030283
Toth D, Maitah M, Maitah K, Jarolínová V. The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry. Forests. 2020; 11(3):283. https://doi.org/10.3390/f11030283
Chicago/Turabian StyleToth, Daniel, Mansoor Maitah, Kamil Maitah, and Veronika Jarolínová. 2020. "The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry" Forests 11, no. 3: 283. https://doi.org/10.3390/f11030283
APA StyleToth, D., Maitah, M., Maitah, K., & Jarolínová, V. (2020). The Impacts of Calamity Logging on the Development of Spruce Wood Prices in Czech Forestry. Forests, 11(3), 283. https://doi.org/10.3390/f11030283