Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Design
2.3. Vegetation and Litter Biomass
2.4. Soil Sampling
2.5. Carbon and Nitrogen Content Analysis and Stock Calculation
2.6. Environmental Factors
2.7. Statistical Analysis
3. Results
3.1. Carbon and Nitrogen Stocks of the Larch Forest
3.1.1. Vegetation Layer
3.1.2. Litter Layer
3.1.3. Soil Layer
3.1.4. Ecosystem
3.2. Effects of the Environmental Factors on the Ecosystem Carbon and Nitrogen Stocks of the Larch Forest
4. Discussion
4.1. Ecosystem Carbon and Nitrogen Stocks in Different Types of Larch Forest
4.1.1. Vegetation Layer
4.1.2. Litter Layer
4.1.3. Soil Layer
4.1.4. Ecosystem
4.2. Effect of Environmental Factors on Larch Forest Carbon and Nitrogen Stocks
4.3. Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Layer | Component | RL | LL | SLL | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Biomass (Mg·ha−1) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | Biomass (Mg·ha−1) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | Biomass (Mg·ha−1) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | ||
Trees | Foliage | 2.69 ± 0.44 Da | 562.80 ± 11.40 Aa | 14.11 ±1.64 Aa | 2.49 ± 0.61 Da | 554.71 ± 15.85 Aa | 14.40 ± 1.82 Aa | 2.45 ± 0.39 a | 558.49 ± 15.07 Aa | 13.54 ± 2.13 Aa |
Branches | 7.49 ± 1.45 Ca | 486.03 ± 12.47 BCa | 7.32 ± 0.87 Ba | 6.80 ± 1.96 Ca | 491.09 ± 14.81 Ca | 7.05 ± 0.94 Ba | 6.84 ± 1.32 Ca | 489.16 ± 11.32 Ba | 7.16 ± 1.00 Ba | |
Stems | 62.79 ± 14.83 Aa | 470.60 ± 9.64 Ca | 1.39 ± 0.19 Ca | 55.94 ± 19.41 Aa | 466.47 ± 12.09 Ba | 1.46 ± 0.21 Ca | 57.73 ± 13.71 Aa | 464.08 ± 11.08 Ca | 1.38 ± 0.22 Ca | |
Roofs | 24.50 ± 5.85 Ba | 496.39 ± 18.16 Ba | 2.10 ± 0.30 Ca | 21.81 ± 7.63 Ba | 511.35 ± 19.77 Ba | 2.11 ± 0.31 Ca | 22.53 ± 5.40 Ba | 508.43 ± 20.11 Ba | 2.25 ± 0.28 Ca | |
Subtotal | 97.47 ± 22.55 a | 87.03 ± 29.61 a | 89.55 ± 20.82 a | |||||||
Shrubs | Foliage | 0.94 ± 0.14 Ca | 445.05 ± 28.54 Ab | 15.05 ± 1.13 Aa | 0.77 ± 0.12 Cb | 595.54 ± 43.81 Aa | 14.65 ± 1.12 Aa | 0.44 ± 0.09 Cc | 549.21 ± 27.79 Aa | 12.01 ± 0.69 Ab |
Stems | 3.75 ± 0.66 Ba | 418.79 ± 23.40 ABa | 6.12 ± 0.32 Bb | 1.82 ± 0.43 Bb | 537.09 ± 29.24 Ba | 7.52 ± 0.83 Ca | 1.12 ± 0.27 Bc | 504.82 ± 40.00 Ba | 7.34 ± 0.41 Ca | |
Roofs | 7.07 ± 1.37 Aa | 400.62 ± 24.11 Ba | 6.27 ± 0.67 Bc | 3.35 ± 0.60 Ab | 514.68 ± 49.93 Ca | 9.95 ± 0.96 Ba | 1.71 ± 0.31 Ac | 474.57 ± 25.41 Ca | 8.43 ± 0.67 Bb | |
Subtotal | 12.30 ± 2.11 a | 5.63 ± 1.11 b | 3.07 ± 0.61 c | |||||||
Herbs | Aboveground | 0.33 ± 0.08 Ac | 416.61 ± 16.30 Ab | 11.67 ± 0.92 Aa | 0.51 ± 0.13 Ab | 434.80 ± 24.82 Aab | 10.33 ± 1.07 Ab | 1.02 ± 0.13 Aa | 452.87 ± 27.54 Aa | 11.43 ± 0.46 Aab |
Belowground | 0.18 ± 0.04 Bb | 411.96 ± 33.58 Aa | 10.24 ± 0.94 Ba | 0.25 ± 0.06 Ba | 428.05 ± 23.51 Aa | 9.66 ± 0.46 a | 0.11 ± 0.01 Bc | 428.52 ± 28.05 Aa | 9.88 ± 0.67 Ba | |
Subtotal | 0.53 ± 0.11 c | 0.70 ± 0.18 b | 1.12 ± 0.17 a | |||||||
Total | 110.3 ± 24.77 a | 93.36 ± 31.52 a | 93.74 ± 20.66 a |
Component | RL | LL | SLL | ||||||
---|---|---|---|---|---|---|---|---|---|
Biomass (Mg·ha−1) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | Biomass (Mg·ha−1) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | Biomass (Mg·ha−1) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | |
Under-decomposed | 1.94 ± 0.44 Bb | 509.38 ± 29.22 Aa | 14.70 ± 1.64 Aa | 2.17 ± 0.31 Bb | 468.74 ± 45.32 Aa | 13.44 ± 1.31 Bab | 2.90 ± 0.69 Ba | 486.91 ± 43.39 Aa | 12.49 ± 1.53 Ab |
Semi-decomposed | 3.27 ± 0.56 Ab | 469.67 ± 21.93 Ba | 15.12 ± 0.69 Ab | 3.27 ± 0.55 Ab | 463.43 ± 25.96 Aa | 17.41 ± 0.88 Aa | 4.16 ± 0.46 Aa | 464.84 ± 24.57 Aa | 14.19 ± 0.69 Ab |
Total | 5.38 ± 1.00 b | 5.27 ± 0.85 b | 6.97 ± 1.08 a |
Layer | RL | LL | SLL | ||||||
---|---|---|---|---|---|---|---|---|---|
Bulk Density (g·cm−3) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | Bulk Density (g·cm−3) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | Bulk Density (g·cm−3) | Carbon Content (g·kg−1) | Nitrogen Content (g·kg−1) | |
0–10 cm | 0.72 ± 0.03 Cc | 66.74 ± 2.37 Ac | 3.86 ± 0.53 Ac | 0.86 ± 0.07 Db | 85.86 ± 9.74 Ab | 4.89 ± 0.92 Ab | 1.34 ±0.11 Ca | 97.71 ± 14.62 Aa | 6.76 ± 0.85 Aa |
10–20 cm | 1.58 ± 0.10 Bb | 14.65 ± 1.54 Bc | 1.41 ± 0.28 Bb | 1.45 ± 0.10 Cc | 20.06 ± 4.49 Bb | 1.81 ± 0.47 Bb | 1.72 ± 0.07 BCa | 27.75 ± 3.61 Ba | 3.62 ± 0.61 Ba |
20–30 cm | 1.62 ± 0.12 Bb | 8.31 ± 1.36 BCc | 0.96 ± 0.19 Cc | 1.83 ± 0.14 ABa | 12.23 ± 2.95 Cb | 1.51 ± 0.34 Bb | 1.78 ± 0.12 ABab | 16.72 ± 1.71 Ca | 2.22 ± 0.32 Ca |
30–40 cm | 1.66 ± 0.12 Bb | 7.37 ± 0.48 Ca | 0.78 ± 0.13 CDa | 1.85 ± 0.12 ABa | 7.01 ± 0.37 CDa | 0.81 ± 0.12 Ca | 1.71 ± 0.12 BCab | 8.24 ± 1.50 CDa | 0.92 ± 0.22 Da |
40–50 cm | 1.82 ± 0.09 Aa | 4.84 ± 0.53 Cb | 0.65 ± 0.17 CDb | 1.87 ± 0.11 Ab | 4.74 ± 0.41 Db | 0.78 ± 0.19 Cab | 1.63 ± 0.10 BCb | 9.68 ± 0.36 CDa | 0.99 ± 0.16 Da |
50–60 cm | 1.89 ± 0.16 Aa | 2.89 ± 0.38 Cb | 0.60 ± 0.10 CDb | 1.79 ± 0.10 ABab | 3.07 ± 0.38 Db | 0.59 ± 0.22 Cb | 1.68 ± 0.16 BCb | 8.27 ± 0.52 CDa | 1.06 ± 0.12 Da |
60–70 cm | 1.88 ± 0.09 Aa | 3.11 ± 0.25 Cb | 0.50 ± 0.07 CDb | 1.74 ± 0.08 ABb | 3.43 ± 0.43 Db | 0.74 ± 0.20 Ca | 1.84 ± 0.10 ABab | 7.95 ± 0.69 CDa | 0.90 ± 0.11 Da |
70–80 cm | 1.83 ± 0.12 Aa | 2.39 ± 0.42 Cc | 0.46 ± 0.10 CDb | 1.74 ± 0.10 ABa | 3.35 ± 0.39 Db | 0.93 ± 0.13 Ca | 1.78 ± 0.12 BCa | 7.99 ± 0.84 CDa | 0.90 ± 0.18 Da |
80–90 cm | 1.65 ± 0.09 Ba | 2.90 ± 0.31 Cc | 0.51 ± 0.07 Db | 1.70 ± 0.09 Ba | 3.99 ± 0.41 Db | 0.82 ± 0.19 Ca | 1.68 ± 0.08 ABa | 6.98 ± 0.16 Da | 0.94 ± 0.14 Da |
90–100 cm | 1.61 ± 0.16 Ba | 2.52 ± 0.40 Cc | 0.63 ± 0.13 Ea | 1.72 ± 0.05 Ba | 3.82 ± 0.12 Db | 0.72 ± 0.13 Ca | 1.76 ± 0.11 Aa | 5.91 ± 0.16 Da | 0.74 ± 0.07 Da |
Mean | 1.55 ± 0.04 b | 16.59 ± 2.07 c | 1.29 ± 0.08 c | 1.58 ± 0.06 ab | 21.22 ± 1.44 b | 1.68 ± 0.15 b | 1.66 ± 0.10 a | 26.81 ± 2.65 a | 2.35 ± 0.12 a |
References
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.W.; Turner, J. Nitrogen budgets of forest ecosystems: A review. For. Ecol. Manag. 2014, 318, 370–379. [Google Scholar] [CrossRef]
- Ķēniņa, L.; Jaunslaviete, I.; Liepa, L.; Zute, D.; Jansons, Ā. Carbon pools in old-growth Scots Pine stands in Hemiboreal Latvia. Forests 2019, 10, 911. [Google Scholar] [CrossRef] [Green Version]
- Sponseller, R.A.; Gundale, M.J.; Futter, M.; Ring, E.; Nordin, A.; Nasholm, T.; Laudon, H. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. Ambio 2016, 45 Suppl 2, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Ahmad, A.; Akhtar, K.; Teng, M.J.; Zeng, W.S.; Yan, Z.G.; Zhou, Z.X. Patterns of biomass, carbon, and soil properties in masson pine (Pinus massoniana Lamb) plantations with different stand ages and management practices. Forests 2019, 10, 645. [Google Scholar] [CrossRef] [Green Version]
- Mitchard, E.T.A.; Feldpausch, T.R.; Brienen, R.J.W.; Lopez-Gonzalez, G.; Monteagudo, A.; Baker, T.R.; Lewis, S.L. Markedly divergent estimates of amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 2014, 23, 935–946. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Jackson, R.B.; Pacala, S.W.; McGuire, A.D.; Piao, S.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 33, 988–993. [Google Scholar] [CrossRef] [Green Version]
- He, Y.K.; Qin, L.; Li, Z.Y.; Liang, X.Y.; Shao, M.X.; Tan, L. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manag. 2013, 295, 193–198. [Google Scholar] [CrossRef]
- Baddeley, J.A.; Edwards, A.C.; Watson, C.A. Changes in soil C and N stocks and C:N stoichiometry 21 years after land use change on an arable mineral topsoil. Geoderma 2017, 303, 19–26. [Google Scholar] [CrossRef]
- Lutter, R.; Kõlli, R.; Tullus, A.; Tullus, H. Ecosystem carbon stocks of estonian premature and mature managed forests: Effects of site conditions and overstorey tree species. Eur. J. For. Res. 2018, 138, 125–142. [Google Scholar] [CrossRef]
- Chen, D.M.; Zhang, C.L.; Wu, J.P.; Zhou, L.X.; Lin, Y.B.; Fu, S.L. Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in south China. Agric. For. Meteorol. 2011, 151, 1214–1225. [Google Scholar] [CrossRef]
- Wei, X.R.; Wang, X.; Ma, T.N.; Huang, L.Q.; Pu, Q.; Hao, M.D.; Zhang, X.C. Distribution and mineralization of organic carbon and nitrogen in forest soils of the southern Tibetan Plateau. Catena 2017, 156, 298–304. [Google Scholar] [CrossRef]
- Liu, S.; Luo, D.; Liu, Q.L.; Zhang, L.; Yang, H.G.; Shi, Z.M. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan. Acta Ecol. Sin. 2017, 37, 1074–1083. [Google Scholar]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Högberg, P.; Näsholm, T.; Franklin, O.; Högberg, M.N. Tamm review: On the nature of the nitrogen limitation to plant growth in fennoscandian boreal forests. For. Ecol. Manag. 2017, 403, 161–185. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.K.; Gower, S.T.; Wang, Y.H.; Zhao, H.X.; Yan, P.; Bond-Lamberty, B.P. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Glob. Chang. Biol. 2001, 7, 719–730. [Google Scholar] [CrossRef]
- Govwe, S.T.; Krankina, O.; Olson, R.J.; Apps, M.; Linder, S.; Wang, C. Net primary production and carbon allocation patterns of boreal forest ecosysterm. Ecol. Appl. 2001, 11, 1395–1411. [Google Scholar]
- Ciais, P.; Canadell, J.G.; Luyssaert, S.; Chevallier, F.; Shvidenko, A.; Poussi, Z.; Jonas, M.; Peylin, P.; King, A.W.; Schulze, E.-D.; et al. Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting? Curr. Opin. Environ. Sustain. 2010, 2, 225–230. [Google Scholar] [CrossRef]
- Cremer, M.; Kern, N.V.; Prietzel, J. Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. For. Ecol. Manag. 2016, 367, 30–40. [Google Scholar] [CrossRef]
- Hansson, K.; Fröberg, M.; Helmisaari, H.S.; Kleja, D.B.; Olsson, B.A.; Olsson, M.; Persson, T. Carbon and nitrogen pools and fluxes above and below ground in spruce, pine and birch stands in southern Sweden. For. Ecol. Manag. 2013, 309, 28–35. [Google Scholar] [CrossRef]
- Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For. Ecol. Manag. 2008, 255, 35–48. [Google Scholar] [CrossRef]
- Blaško, R.; Forsmark, B.; Gundale, M.; Lundmark, T.; Nordin, A. Impacts of tree species identity and species mixing on ecosystem carbon and nitrogen stocks in a boreal forest. For. Ecol. Manag. 2020, 458. [Google Scholar] [CrossRef]
- Pan, P.; Zhao, F.; Ning, J.K.; Zhang, L.; Ouyang, X.Z.; Zang, H. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations. PLoS ONE 2018, 13, e0191952. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.W.; Jia, Q.Q.; Liu, Q.J.; Zhou, G.; Wang, H.M.; Yu, J. Aboveground biomass allocation and additive allometric models for natural Larix gmelinii in the western Daxing’anling Mountains, northeastern China. Forests 2019, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.F.; Yao, Y.L.; Liang, H.; Song, L.Q.; Sheng, H.C.; Cai, T.J.; Gao, D.W. Emissions of nitrous oxide from continuous permafrost region in the Daxing’an Mountains, Northeast China. Atmos. Environ. 2019, 198, 34–45. [Google Scholar] [CrossRef]
- Kajimoto, T.; Matsuura, Y.; Sofronov, M.A.; Volokitina, Y.A.; Mori, S.; Osawa, A.; Abaimov, P.A. Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiol. 1999, 19, 815–822. [Google Scholar] [CrossRef]
- Luo, J.C. Research of site classification in Xilinji forestry bureau. J. Beijing For. Univ. 1990, 12, 10–32. [Google Scholar]
- Gong, Z.T.; Zhao, Q.G.; Zeng, Z.S.; Lin, P.; Wang, R.C. Chinese soil classification. Soils. 1987, 5, 168–169. [Google Scholar]
- Yang, L.B.; Sui, X.; Wei, D.; Cui, F.X.; Zhu, D.Y.; Ni, H.W. Fungal diversity in the brown coniferous forest soils of Daxing’anling Mountains, Northeast China. Chin. J. Appl. Ecol. 2019, 30, 3411–3418. [Google Scholar]
- Yang, L.P.; Qin, Y.; Zhang, C.H.; Feng, X.Y.; Yang, L. Impact of climate change on phenology of Larix gmelinii in the Daxing’an Mountains, Northeast China. Arid Zone Res. 2016, 5, 577–583. [Google Scholar]
- Mu, C.C.; Lu, H.C.; Wang, B.; Bao, X.; Cui, W. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii–Carex schmidtii forested wetlands in Daxing’anling, Northeast China. For. Ecol. Manag. 2013, 293, 140–148. [Google Scholar] [CrossRef]
- Peng, W.; Dong, L.H.; Li, F.R. Carbon storage of forest vegetation and allocation for main forest types in the east of Daxing’an Mountains based on additive biomass model. Acta Ecol. Sin. 2016, 27, 3749–3758. [Google Scholar]
- Hu, H.Q.; Luo, B.Z.; Wei, S.J.; Wei, S.W.; Wen, Z.M.; Sun, L.; Luo, S.S.; Wang, L.M.; Ma, H.B. Estimating biological carbon storage of five typical forest types in the Daxing’anling Mountains, Heilingjiang, China. Acta Ecol. Sin. 2015, 35, 5745–5760. [Google Scholar]
- Yang, B.; Zhang, W.H.; Lu, Y.L.; Zhang, W.W.; Wang, Y.A. Carbon storage dynamics of secondary forest succession in the central Loess Plateau of China. Forests 2019, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Luo, Y.Q. Carbon: nitrogen stoichiometry in forest ecosystems during stand development. Global Ecol. Biogeogr. 2011, 20, 354–361. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Carbon and organic matter. In Methods of Soil Analysis-Part 2: Chemical and Microbiological Properties; Page, A.L., Mille, R.H., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 561–579. [Google Scholar]
- David, B. The computation of equivalent potential temperature. Mon. Wea. Rev 1980, 108, 1046–1053. [Google Scholar]
- Wardle, D.A.; Hörnberg, G.; Zackrisson, O.; Kalela-Brundin, M.; Coomes, D.A. Long-term effects of wildfire on ecosystem properties across an Island area gradient. Sci. Total Environ. 2003, 300, 972–975. [Google Scholar] [CrossRef]
- Creamer, C.A.; Menezes, A.B.D.; Krull, E.S.; Sanderman, J.; Newton-Walters, R.; Farrell, M. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol. Biochem. 2015, 80, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Manuel, D.B.; Pablo, G.P.; Milla, R.; Gallardo, A.; Maestre, F.T. Soil characteristics determine soil carbon and nitrogen availability during leaf litter decomposition regardless of litter quality. Soil Biol. Biochem. 2015, 81, 134–142. [Google Scholar]
- Sun, Y.F.; Zhang, Y.Q.; Feng, W.; Qin, S.G.; Liu, Z.; Bai, Y.X.; Yan, R.; Fa, K.Y. Effects of xeric shrubs on soil microbial communities in a desert in northern China. Plant Soil 2017, 414, 281–294. [Google Scholar] [CrossRef]
- Mihoč, M.A.K.; Giménez-Benavides, L.; Pescador, D.S.; Sánchez, A.M.; Cavieres, L.A.; Escudero, A. Soil under nurse plants is always better than outside: A survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 2016, 408. [Google Scholar] [CrossRef]
- Gurlevik, N.; Kelting, D.L.; Allen, H.L. Nitrogen mineralization following vegetation control and fertilization in a 14-year-old loblolly pine plantation. Soil Sci. Soc. Am. J. 2004, 68, 272–281. [Google Scholar] [CrossRef]
- Ciarkowska, K.; Miechówka, A. The role of bilberry and alpine lady-fern in soil formation within the carpathian subalpine spruce forest stands. Geoderma 2017, 305, 162–172. [Google Scholar] [CrossRef]
- Špulák, O.; Souček, J.; Dušek, D. Quality of organic and upper mineral horizons of mature mountain beech stands with respect to herb layer species. J. For. Sci. 2016, 62. [Google Scholar] [CrossRef] [Green Version]
- Ping, P.; Fang, Z.; Ouyang, X.Z.; Zhang, Y.; Ning, J.K.; Guo, R. Characteristics of soil carbon and nitrogen and relationship with litter quality under different understory vegetation in Pinus massoniana plantations. Acta Ecol. Sin. 2018, 38, 3988–3997. [Google Scholar]
- Miao, R.H.; Ma, J.; Liu, Y.Z.; Liu, Y.C.; Yang, Z.L.; Guo, M.X. Variability of aboveground litter inputs alters soil carbon and nitrogen in a coniferous–broadleaf mixed forest of central China. Forests 2019, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.Y.; Wu, S.T.; Zhang, L.B. Fine root biomass dynamics and carbon storage along a successional gradient in Changbai Mountains, China. Forestry 2010, 83, 379–387. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar] [CrossRef]
- Prieto, I.; Stokes, A.; Roumet, C. Root functional parameters predict fine root decomposability at the community level. J. Ecol. 2016, 104, 725–733. [Google Scholar] [CrossRef]
- Koven, C.D.; Hugelius, G.; Lawrence, D.M.; Wieder, W.R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 2017, 7, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.L.; Shao, M.G.; Wei, X.R.; Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in northern Loess Plateau of China. Geoderma 2010, 155, 31–35. [Google Scholar] [CrossRef]
- Hussain, S.; Sharma, V.; Arya, V.M.; Sharma, K.R.; Rao, C.S. Total organic and inorganic carbon in soils under different land use/land cover systems in the foothill himalayas. Catena 2019, 182, 104104. [Google Scholar] [CrossRef]
- Wang, W.J.; Qiu, L.; Zu, Y.G.; Su, D.X.; An, J.; Wang, H.Y.; Zheng, G.Y.; Sun, W.; Chen, X.Q. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Glob. Chang. Biol. 2011, 17, 2657–2676. [Google Scholar]
- Yao, Y.F.; Shao, M.G.; Fu, X.L.; Wang, X.; Wei, X.R. Effects of shrubs on soil nutrients and enzymatic activities over a 0–100 cm soil profile in the desert-loess transition zone. Catena 2019, 174, 362–370. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.F.A.; Wilson, B.R. Factors controlling soil organic carbon stocks with depth in Eastern Australia. Soil Sci. Soc. Am. J. 2016, 79, 1741. [Google Scholar] [CrossRef] [Green Version]
- Finér, L.; Mannerkoski, H.; Piirainen, S.; Starr, M. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. For. Ecol. Manag. 2003, 174, 51–63. [Google Scholar] [CrossRef]
- Liu, C.G.; Pang, J.P.; Jepsen, M.R.; Lü, X.T.; Tang, J.W. Carbon stocks across a fifty year chronosequence of rubber plantations in tropical China. Forests 2017, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Kang, F.F.; Cheng, X.Q.; Han, H.R.; Ji, W.J. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 2016, 163, 176–184. [Google Scholar] [CrossRef]
- Yang, Y.H.; Li, P.; Ding, J.Z.; Zhao, X.; Ma, W.H.; Ji, C.J.; Fang, J.Y. Increased topsoil carbon stock across China’s forests. Glob. Chang. Biol. 2014, 20, 2687–2696. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Sci. Total Environ. 2010, 329, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.B.; Sun, Z.G.; Liu, J.; Ouyang, Z.; Wu, L.H. Simulating greenhouse gas emissions and stocks of carbon and nitrogen in soil from a long-term no-till system in the North China Plain. Soil Tillage Res. 2018, 178, 32–40. [Google Scholar] [CrossRef]
- Li, Y.Y.; Dong, S.K.; Wen, L.; Wang, X.X.; Wu, Y. Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai-Tibetan Plateau. Geoderma 2014, 213, 178–184. [Google Scholar] [CrossRef]
- Hardwicka, S.R.; Toumia, R.; Pfeiferb, M.; Turnerc, E.C.; Nilusd, R.; Ewersb, R.M. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 2015, 201, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finzi, A.C.; Breemen, N.V.; Canham, C. Canopy tree-soil interactions within temperate forests: Species effects on soil carbon and nitrogen. Ecol. Appl. 1998, 8, 440–446. [Google Scholar]
- Alexander, H.D.; Mack, M.C. A canopy shift in interior Alaskan boreal forests: Consequences for above- and belowground carbon and nitrogen pools during post-fire succession. Ecosystems 2016, 19, 98–114. [Google Scholar] [CrossRef]
Forest Type | RL | LL | SLL |
---|---|---|---|
Stand age | 75–90 | 75–90 | 75–90 |
Elevation (m) | 324 | 326 | 332 |
Slope/° | 3 | 4 | 2 |
Stand density (trees·ha−1) | 1266 ± 126 | 1300 ± 100 | 1117 ± 126 |
Mean tree Height(m) | 17.23 ± 1.54 | 16.78 ± 1.94 | 17.47 ± 1.60 |
Mean DBH (cm) | 13.78 ± 2.12 | 13.14 ± 2.61 | 14.06 ± 2.23 |
Forest Type | Understory Species Composition | Mean Height (cm) | Coverage (%) |
---|---|---|---|
RL | Rhododendron dauricum L. | 157.56 ± 13.03 | 80 |
Vaccinium uliginosum L. | 32.32 ± 5.14 | 30 | |
Ledum palustre L. | 43.23 ± 6.36 | 20 | |
Vaccinium vitis-idaea L. | 18.29 ± 3.22 | 10 | |
LL | Ledum palustre L. | 56.10 ± 8.55 | 70 |
Vaccinium uliginosum L. | 28.97 ± 4.32 | 20 | |
Pyrola incarnate H. Andr. | 13.24 ± 3.84 | 40 | |
Vaccinium vitis-idaea L. | 17.52 ± 2.01 | 50 | |
Fragaria orientalis Losinsk. | 13.45 ± 4.50 | 10 | |
SLL | Sphagnum palustre L. | 1.56 ± 0.33 | 60 |
Bryum L. | 0.62± 0.15 | 40 | |
Ledum palustre L. | 48.58 ± 5.97 | 70 | |
Vaccinium macrocarpon L. | 21.02 ± 5.41 | 20 | |
Vaccinium uliginosum L. | 35.74 ± 4.11 | 50 | |
Pyrola incarnata H. Andr. | 14.08 ± 2.36 | 10 | |
Vaccinium vitis-idaea L. | 15.43 ± 2.71 | 30 | |
Fragaria orientalis Losinsk. | 12.17 ± 1.58 | 5 |
Components | Regression Equation | R2 |
---|---|---|
Root | WG = exp (−3.8091) ×D (2.5955) | 0.82 |
Stem | WS = exp (−2.8231) ×D (2.5784) | 0.95 |
Branch | WB = exp (−4.0360) ×D (2.2300) | 0.78 |
Foliage | WL = exp (−4.3762) ×D (1.9638) | 0.80 |
Whole tree | W = WG + WS +WB + WL | 0.96 |
Component | Carbon Stock (Mg·ha−1) | Nitrogen Stock (kg·ha−1) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
Tree Layer | ||||||
Foliage | 1.51 ± 0.24 Da | 1.38 ± 0.32 Da | 1.37 ± 0.24 Da | 37.98 ± 6.53 Ca | 35.57 ± 7.94 Ca | 32.91 ± 5.11 Ca |
Branches | 3.64 ± 0.70 Ca | 3.33 ± 0.92 Ca | 3.34 ± 0.64 Ca | 54.52 ± 10.09 Ba | 47.09 ± 8.87 Ba | 48.74 ± 9.67 Ba |
Stems | 29.61 ± 7.28 Aa | 26.02 ± 8.86 Aa | 26.86 ± 6.78 Aa | 86.27 ± 17.56 Aa | 80.00 ± 20.63 Aa | 79.00 ± 18.27 Aa |
Roots | 12.15 ± 2.86 Ba | 11.09 ± 3.49 Ba | 11.40 ± 2.57 Ba | 51.33 ± 12.36 Ba | 44.36 ± 8.40 Ba | 50.50 ± 12.13 Ba |
Subtotal | 46.91 ± 9.86 a | 41.81 ± 12.13 a | 42.97 ± 9.15 a | 230.09 ± 42.04 a | 207.02 ± 43.44 a | 211.16 ± 41.52 a |
Shrub Layer | ||||||
Foliage | 0.42 ± 0.07Ca | 0.46 ± 0.07 Ca | 0.24 ± 0.04 Cb | 14.01 ± 1.68 Ca | 11.15 ± 1.44 Bb | 5.28 ± 1.28 Cc |
Stems | 1.58 ± 0.36Ba | 0.97 ± 0.22 Bb | 0.56 ± 0.11 Bc | 23.01 ± 4.74 Ba | 13.70 ± 3.70 Bb | 8.23 ± 2.13 Bc |
Roots | 2.83 ± 0.52Aa | 1.75 ± 0.46 Ab | 0.81 ± 0.13 Ac | 43.61 ± 4.14 Aa | 33.82 ± 9.06 Ab | 14.36 ± 2.71 Ac |
Subtotal | 4.82 ± 0.88a | 3.18 ± 0.73 b | 1.60 ± 0.25 c | 80.63 ± 8.96 a | 58.66 ± 13.06 b | 27.87 ± 5.73 c |
Herb Layer | ||||||
Aboveground | 0.14 ± 0.03 Ac | 0.22 ± 0.06 Ab | 0.44 ± 0.10 Aa | 3.82 ± 0.78 Ab | 5.29 ± 1.57 Ab | 14.74 ± 2.61 Aa |
Belowground | 0.07 ± 0.02 Bb | 0.11 ± 0.03 Ba | 0.05 ± 0.01 Bc | 1.84 ± 0.38 Ba | 2.43 ± 0.66 Ba | 1.10 ± 0.14 Bb |
Subtotal | 0.21 ± 0.05 c | 0.33 ± 0.08 b | 0.49 ± 0.08 a | 5.66 ± 1.12 c | 7.72 ± 2.19 b | 15.84 ± 2.65 a |
Total | 51.94 ± 10.79 a | 45.32 ± 12.94 a | 45.06 ± 9.43 a | 316.38 ± 52.12 a | 273.40 ± 58.69 a | 258.87 ± 50.59 a |
Component | Carbon Proportion (%) | Nitrogen Proportion (%) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
Tree Layer | ||||||
Foliage | 3.22 | 3.30 | 3.19 | 16.51 | 17.18 | 15.59 |
Branches | 7.76 | 7.95 | 7.77 | 23.70 | 22.75 | 23.08 |
Stems | 63.12 | 62.23 | 62.51 | 37.49 | 38.64 | 37.41 |
Roots | 25.90 | 26.52 | 26.53 | 22.30 | 21.43 | 23.92 |
Subtotal | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Shrub Layer | ||||||
Foliage | 8.71 | 14.47 | 14.90 | 17.38 | 19.00 | 18.95 |
Stems | 32.78 | 30.50 | 34.78 | 28.54 | 23.35 | 29.53 |
Roots | 58.51 | 55.03 | 50.32 | 54.08 | 57.65 | 51.52 |
Subtotal | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Herb Layer | ||||||
Aboveground | 66.67 | 66.67 | 89.80 | 67.49 | 68.52 | 93.06 |
Belowground | 33.33 | 33.33 | 10.20 | 32.51 | 31.48 | 6.94 |
Subtotal | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Component | Carbon Stock (Mg·ha−1) | Nitrogen Stock (kg·ha−1) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
Under-decomposed | 0.98 ± 0.23 Bb | 1.02 ± 0.19 Bb | 1.41 ± 0.29 Ba | 28.53 ± 7.90 Ba | 29.15 ± 5.02 Ba | 35.92 ± 7.27 Ba |
Semi-decomposed | 1.54 ± 0.33 Ab | 1.52 ± 0.29 Ab | 1.92 ± 0.13 Aa | 49.66 ± 10.42 Aa | 56.86 ± 8.81 Aa | 59.04 ± 8.08 Aa |
Total | 2.53 ± 0.56 b | 2.54 ± 0.48 b | 3.33 ± 0.41 a | 78.19 ± 17.97 a | 86.01 ± 13.24 a | 94.96 ± 14.00 a |
Component | Carbon Proportion (%) | Nitrogen Proportion (%) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
Under-decomposed | 38.74 | 40.16 | 42.34 | 36.49 | 33.89 | 37.83 |
Semi-decomposed | 61.26 | 59.84 | 57.66 | 63.51 | 66.11 | 62.17 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Layer (cm) | Carbon Stock (Mg·ha−1) | Nitrogen Stock (Mg·ha−1) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
0–10 | 38.54 ± 5.93 Ac | 52.54 ± 7.07 Ab | 94.99 ± 11.87 Aa | 2.19 ± 0.28 Ac | 3.06 ± 0.43 Ab | 7.04 ± 0.78 Aa |
10–20 | 17.09 ± 1.92 Bb | 20.82 ± 2.99 Bb | 39.92 ± 5.83 Ba | 1.44 ± 0.22 Bb | 1.91 ± 0.49 Bb | 5.16 ± 0.63 Ba |
20–30 | 10.05 ± 1.31 Cc | 15.07 ± 2.89 Cb | 24.34 ± 3.78 Ca | 0.93 ± 0.18 Cc | 1.85 ± 0.23 Bb | 3.20 ± 0.38 Ca |
30–40 | 7.91 ± 0.80 Db | 9.57 ± 2.15 Db | 12.03 ± 1.81 Da | 0.73 ± 0.15 CDb | 1.11 ± 0.25 Ca | 1.33 ± 0.20 Da |
40–50 | 5.26 ± 0.55 Eb | 4.80 ± 0.50 Eb | 13.09 ± 2.32 Da | 0.69 ± 0.12 CDb | 0.91 ± 0.24 Cb | 1.35 ± 0.33 Da |
50–60 | 4.43 ± 0.71 Eb | 4.98 ± 0.73 Eb | 12.61 ± 1.22 Da | 0.84 ± 0.19 CDb | 0.94 ± 0.27 Cb | 1.63 ± 0.25 Da |
60–70 | 4.38 ± 0.54 Eb | 4.83 ± 0.35 Eb | 11.89 ± 1.78 Da | 0.63 ± 0.14 Dc | 1.03 ± 0.18 Cb | 1.34 ± 0.19 Da |
70–80 | 3.80 ± 0.50 Eb | 4.76 ± 0.16 Eb | 12.14 ± 1.79 Da | 0.67 ± 0.12 CDb | 1.46 ± 0.23 Ba | 1.36 ± 0.29 Da |
80–90 | 4.05 ± 0.40 Ec | 5.74 ± 0.65 Eb | 10.01 ± 0.99 Da | 0.70 ± 0.07 CDb | 1.18 ± 0.25 Ca | 1.36 ± 0.26 Da |
90–100 | 3.95 ± 0.41 Ec | 5.56 ± 0.71 Eb | 8.61 ± 1.20 Da | 0.78 ± 0.12CDb | 1.03 ± 0.15 Ca | 1.08 ± 0.20 Da |
Total | 99.46 ± 10.28 c | 128.66 ± 11.56 b | 239.63 ± 27.64 a | 9.61 ± 0.85 c | 14.49 ± 1.33 b | 24.84 ± 2.64 a |
Layer (cm) | Carbon Proportion (%) | Nitrogen Proportion (%) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
0–10 | 38.75 | 40.83 | 39.64 | 22.81 | 21.13 | 28.33 |
10–20 | 17.18 | 16.18 | 16.66 | 15.00 | 13.19 | 20.76 |
20–30 | 10.10 | 11.71 | 10.16 | 9.69 | 12.78 | 12.88 |
30–40 | 7.95 | 7.44 | 5.02 | 7.60 | 7.67 | 5.35 |
40–50 | 5.29 | 3.73 | 5.46 | 7.19 | 6.28 | 5.43 |
50–60 | 4.45 | 3.87 | 5.26 | 8.75 | 6.49 | 6.56 |
60–70 | 4.40 | 3.75 | 4.96 | 6.56 | 7.11 | 5.39 |
70–80 | 3.82 | 3.70 | 5.07 | 6.98 | 10.08 | 5.47 |
80–90 | 4.08 | 4.46 | 4.18 | 7.29 | 8.15 | 5.47 |
90–100 | 3.98 | 4.32 | 3.59 | 8.13 | 7.11 | 4.35 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Component | Carbon Stock (Mg·ha−1) | Nitrogen Stock (Mg·ha−1) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
Vegetation | 51.94 ± 10.79 Ba | 45.32 ± 12.94 Ba | 45.06 ± 9.43 Ba | 0.32 ± 0.05 Ba | 0.27 ± 0.06 Ba | 0.26 ± 0.05 Ba |
Litter | 2.53 ± 0.56 Cb | 2.54 ± 0.48 Cb | 3.33 ± 0.41 Ca | 0.08 ± 0.02 Ca | 0.09 ± 0.01 Ca | 0.09 ± 0.01 Ca |
Soil | 99.46 ± 10.28 Ac | 128.66 ± 11.56 Ab | 239.63 ± 27.64 Aa | 9.61 ± 0.85 Ac | 14.49 ± 1.33 Ab | 24.84 ± 2.64 Aa |
Total | 153.93 ± 10.11 c | 176.52 ± 15.88 b | 288.01 ± 16.25 a | 10.00 ± 0.92 c | 14.85 ± 1.40 b | 25.19 ± 2.70 a |
Component | Carbon Proportion (%) | Nitrogen Proportion (%) | ||||
---|---|---|---|---|---|---|
RL | LL | SLL | RL | LL | SLL | |
Vegetation | 33.74 | 25.67 | 15.64 | 3.20 | 1.82 | 1.03 |
Litter | 1.64 | 1.44 | 1.16 | 0.80 | 0.61 | 0.36 |
Soil | 64.61 | 72.89 | 83.20 | 96.00 | 97.58 | 98.61 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Forest Types | LAI (m2m−2) | Air Temperature (°C) | Relative Humidity (%) | VPD (kPa) | Soil Temperature (°C) | SWC (%) |
---|---|---|---|---|---|---|
RL | 1.85 ± 0.07 a | 25.95 ± 0.13 a | 60.49 ± 0.58 c | 1.32 ± 0.02 a | 9.77 ± 0.10 a | 9.87 ± 1.80 c |
LL | 1.87 ± 0.05 a | 23.25 ± 0.16 b | 65.77 ± 1.53 b | 0.98 ± 0.05 b | 8.56 ± 0.23 b | 16.04 ± 1.25 b |
SLL | 1.60 ± 0.02 b | 21.56 ± 0.69 c | 70.90 ± 1.85 a | 0.75 ± 0.06 c | 7.96 ± 0.15 c | 24.80 ± 1.69 a |
Environment Factors | Nitrogen Stock | LAI | Air Temperature | Relative Humidity | VPD | Soil Temperature | SWC |
---|---|---|---|---|---|---|---|
Carbon stock | 0.89 ** | −0.86 ** | −0.85 ** | 0.88 ** | −0.87 ** | −0.79 ** | 0.91 ** |
Nitrogen stock | 1 | −0.70 ** | −0.84 ** | 0.85 ** | −0.86 ** | −0.85 ** | 0.87 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, R.; Man, X.; Duan, B. Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China. Forests 2020, 11, 305. https://doi.org/10.3390/f11030305
Xiao R, Man X, Duan B. Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China. Forests. 2020; 11(3):305. https://doi.org/10.3390/f11030305
Chicago/Turabian StyleXiao, Ruihan, Xiuling Man, and Beixing Duan. 2020. "Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China" Forests 11, no. 3: 305. https://doi.org/10.3390/f11030305
APA StyleXiao, R., Man, X., & Duan, B. (2020). Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China. Forests, 11(3), 305. https://doi.org/10.3390/f11030305