Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe
Abstract
:1. Introduction
2. Method
3. Strengths
3.1. Adaptability
3.1.1. High Genetic Variability and Phenotypical Plasticity
3.1.2. Wide Range of Climate and Sites
3.2. Rapid Growth and High Productivity
3.3. Pioneer Species Improving Forest Resilience and Biodiversity
3.3.1. Restoration of Wood Production after Disturbance
3.3.2. Improvement in Soil Functioning
3.3.3. Direct and Indirect Contributions to Biodiversity
3.4. Interesting Wood Characteristics
3.5. Recreational Value
4. Weaknesses
4.1. Short Lifespan
4.2. Low Durability of Wood
4.3. Growth Affected by Intraspecific Competition
4.4. Pest Damages
4.5. Aero-allergenic Tree
5. Opportunities
5.1. An Increasing Place for Birch in Global Change
5.1.1. Climate Change and Forest Resilience
5.1.2. Societal Changes
5.2. Production of Valuable Birch Timber
5.3. Birch Products Valuation
5.3.1. Opportunities to Use more Birch
5.3.2. A Place for Birch Development in the Hardwood Sector in Western Europe
5.3.3. Availability and Demand of Birch Wood
6. Threats
6.1. Strong Early Height Growth as a Risk for Silviculture
6.2. Dramatic Pest Outbreaks
6.3. Demand for Birch Wood for Industrial Uses
6.4. Information for Landowners and Forest Managers
7. Discussion
8. Conclusions and Perspectives
- To define silvicultural guidelines for birch that are adapted to Western Europe, taking account the life traits of the species (light-demanding species, abundant natural regeneration, rapid early growth, short lifespan, high risk of decay) to supply valuable wood raw materials, NWFP, and biodiversity benefits to the market.
- To develop birch wood processing and corresponding markets for all log dimensions and qualities and provide product and environmental standards for sorting, grading, and valuation methods that better define the potential uses of birch wood for construction industries and building developers and designers.
- To inform, on the one hand, forest owners and managers about the existing potential to produce and sell high-quality logs when adequate forest management is applied, and on the other hand, sawmills, wood panel industries, and other involved processing enterprises (in building products, furniture, and interior products), as well as construction industries, building developers, designers, architects, and the customers (BtoB, BtoC) about the opportunities of birch-based raw materials, along with the potential products and end-uses.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Global Forest Resource Assessment 2015 of the FAO. Country Reports. Available online: http://www.fao.org/forest-resources-assessment/en/ (accessed on 19 February 2020).
- Piedallu, C.; Perez, V.; Gegout, J.-C.; Lebourgeois, F.; Bertrand, R. Impact potentiel du changement climatique sur la distribution de l’Epicéa, du Sapin, du Hêtre et du Chêne sessile en France. Rev. For. Fr. 2009, 61, 567–593. (In French) [Google Scholar] [CrossRef] [Green Version]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Brang, P.; Spathelf, P.; Larsen, J.B.; Bauhus, J.; Boncına, A.; Chauvin, C.; Drössler, L.; Garcıa-Güemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, L.K. What is close-to-nature silviculture in a changing world? Forestry 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Denman, S.; Brown, N.; Kirk, S.; Jeger, M.; Webber, J. A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe. Forestry 2014, 87, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Latte, N.; Lebourgeois, F.; Claessens, H. Growth partitioning within beech trees (Fagus sylvatica L.) varies in response to summer heat waves and related droughts. Trees 2016, 30, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Claessens, H.; Claessens, L.; Longrée, C.; Nivelle, L.; Tahir, B.; Lisein, J.; Lecomte, H. Près de 20 ans après sa grave crise sanitaire, où en est la hêtraie ardennaise ? For. Nat. 2017, 142, 30–36. (In French) [Google Scholar]
- Hemery, G.E.; Clark, J.R.; Aldinger, E.; Claessens, H.; Malvolti, M.E.; O’Connor, E.; Raftoyannis, Y.; Savill, P.S.; Brus, R. Growing scattered broadleaved tree species in Europe in a changing climate: A review of risks and opportunities. Forestry 2010, 83, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Duncker, P.S.; Raulund-Rasmussen, K.; Gundersen, P.; Katzensteiner, K.; De Jong, J.; Ravn, H.P.; Smith, M.; Eckmüllner, O.; Spiecker, H. How forest management affects ecosystem services, including timber production and economic return: Synergies and trade-offs. Ecol. Soc. 2012, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Felton, A.; Gustafsson, L.; Roberge, J.-M.; Ranius, T.; Hjältén, J.; Rudolphi, J.; Lindbladh, M.; Weslien, J.; Rist, L.; Brunet, J.; et al. How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biol. Conserv. 2016, 194, 11–20. [Google Scholar] [CrossRef]
- Randin, C.F.; Engler, R.; Normand, S.; Zappa, M.; Zimmermann, N.E.; Pearman, P.B.; Vittoz, P.; Thuillier, W.; Guisan, A. Climate change and plant distribution: Local models predict high-elevation persistence. Glob. Chang. Biol. 2009, 15, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- De Jaegere, T.; Hein, S.; Claessens, H. A Review of the Characteristics of Small-Leaved Lime (Tilia cordata Mill.) and Their Implications for Silviculture in a Changing Climate. Forests 2016, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmit, A. The Broadeaf Citizen—Broadening the innovatice use of European hardwoods. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; pp. 14–15. [Google Scholar]
- Dubois, H.; Latte, N.; Lecomte, H.; Claessens, H. Le bouleau, une essence qui s’impose. Description de la ressource dans son aire de distribution. For. Nat. 2016, 140, 44–58. (In French) [Google Scholar]
- Moore, P.D. Next in succession. Nature 1979, 282, 361–362. [Google Scholar] [CrossRef]
- Mauer, O.; Palatova, E. The role of root system in silver birch (Betula pendula Roth) dieback in the air-polluted area of Krušné hory Mts. J. For. Sci. 2003, 49, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Boruvka, V.; Zeidler, A.; Holecek, T.; Dudík, R. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood. Forests 2018, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Niemistö, P.; Viherä-Aarnio, A.; Velling, P.; Heräjärvi, H.; Verkasalo, E. Koivun Kasvatus ja Käyttö. [Silviculture and Use of Birch]; Finnish Forest Research Institute and Metsäkustannus Ltd.: Metsäntutkimuslaitos ja Metsäkustannus, Finland, 2008; p. 254. (In Finnish) [Google Scholar]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Kucera, B. Björkevirkets mekaniske, teknologikse og fysiske egenskaper. Norges Landbrugsvidenskaplige Forskningsråd. Sluttrapport 1984, 500, 20. (In Norwegian) [Google Scholar]
- Ekström, H. Lövvirke—Tillgångar och Industriell Användning; Summary: Hardwood—Supplies and industrial utilization; Swedish University of Agriculture Sciences, Department of Forest Products: Uppsala, Sweden, 1987; Volume 197, p. 123. (In Swedish) [Google Scholar]
- Verkasalo, E. Hieskoivun laatu vaneripuuna. Abstract: Quality of White Birch (Betula pubescens Ehrh.) for Veneer and Plywood. Dissertation for D.For. in wood science and forest products. Department of Logging and Utilization of Forest Resources, University of Helsinki, Finland. Finn. For. Res. Inst. Res. Pap. 1997, 632, 483. (In Finnish) [Google Scholar]
- Luostarinen, K.; Verkasalo, E. Birch as Sawn Timber and in Mechanical Further Processing in Finland. A Literature Study. Silva Fenn. Monogr. 2000, 1, 40. [Google Scholar]
- Heräjärvi, H. Properties of birch (Betula pendula, B. pubescens) for sawmilling and further processing in Finland. Finn. For. Res. Inst. Res. Pap. 2002, 871, 52. [Google Scholar]
- Verkasalo, E.; Heräjärvi, H. Potential of European birch species for product development of veneer and plywood—Recovery, grades and mechanical properties and future market requirements. In Proceedings of the 2nd International Scientific Conference on Hardwood Processing, Paris, France, 28–29 September 2009; Rouger, F., Goueffon, M., Eds.; FCBA: Paris, France, 2009; p. 11. [Google Scholar]
- Woxblom, L.; Nylinder, M. Industrial utilization of hardwood in Sweden. Ecol. Bull. 2010, 53, 43–50. [Google Scholar]
- Weihrich, H. The TOWS matrix—A tool for situation analysis. Long Range Plan. 1982, 15, 54–66. [Google Scholar] [CrossRef]
- Koski, V.; Rousi, M. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. Forestry 2005, 78, 187–198. [Google Scholar] [CrossRef]
- Atkinson, M.D. Betula pendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. J. Ecol. 1992, 80, 837–870. [Google Scholar] [CrossRef]
- Ranta, H.; Hokkanen, T.; Linkosalo, T.; Laukkanen, L.; Bondestam, K.; Oksanen, A. Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. For. Ecol. Manag. 2008, 255, 643–650. [Google Scholar] [CrossRef]
- Viherä-Aarnio, A. Effects of seed origin latitude on the timing of height growth cessation and field performance of silver birch. Diss. For. 2009, 87, 47. [Google Scholar] [CrossRef]
- Possen, B.J.H.M.; Oksanen, E.; Rousi, M.; Ruhanen, H.; Ahonen, V.; Tervahauta, A.; Heinonen, J.; Heiskanen, J.; Kärenlampi, S.; Vapaavuori, E. Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. For. Ecol. Manag. 2011, 262, 1387–1399. [Google Scholar] [CrossRef]
- Possen, B.J.H.M.; Rousi, M.; Silfver, T.; Anttonen, M.J.; Ruotsalainen, S.; Oksanen, E.; Vapaavuori, E. Within-stand variation in silver birch (Betula pendula Roth) phenology. Trees 2014, 12. [Google Scholar] [CrossRef]
- Kasurinen, A.; Koikkalainen, K.; Anttonen, M.J.; Possen, B.; Oksanen, E.; Rousi, M.; Vapaavuori, E.; Holopainen, T. Root morphology, mycorrhizal roots and extramatrical mycelium growth in silver birch (Betula pendula Roth) genotypes exposed to experimental warming and soil moisture manipulations. Plant Soil 2016, 407, 341–353. [Google Scholar] [CrossRef]
- Aspelmeier, S.; Leuschner, C. Genotypic variation in drought response of silver birch (Betula pendula): Leaf water status and carbon gain. Tree Physiol. 2004, 24, 517–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araminienė, V.; Varnagirytė-Kabašinskienė, I. Research on birch species in Lithuania: A review study. Res. Rural Dev. 2014, 2, 50–56. [Google Scholar]
- Rosenvald, K.; Tullus, A.; Ostonen, I.; Uri, V.; Kupper, P.; Aosaar, J.; Varik, M.; Sõber, J.; Niglas, A.; Hansen, R.; et al. The effect of elevated air humidity on young silver birch and hybrid aspen biomass allocation and accumulation—Acclimation mechanisms and capacity. For. Ecol. Manag. 2014, 330, 252–260. [Google Scholar] [CrossRef]
- Rousi, M.; Possen, B.J.H.M.; Hagqvist, R.; Thomas, B.R. From the Arctic Circle to the Canadian prairies—A case study of silver birch acclimation capacity. Silva Fenn. 2012, 46, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Ellenberg, H. Vegetation Mitteleuropas Mit Den Alpen in Ökologischer, Dynamischer Und Historischer Sicht; Stark veränd. u. verb. Aufl.; Stuttgart: Ulmer, Germany, 1996; p. 1095. (In German) [Google Scholar]
- Noirfalise, A. Forêts et Stations Forestières en Belgique; Les Presses Agronomiques: Gembloux, Belgium, 1984; p. 235. (In French) [Google Scholar]
- Perala, D.A.; Alm, A.A. Reproductive ecology of birch: A review. For. Ecol. Manag. 1990, 32, 1–38. [Google Scholar] [CrossRef]
- Pääkkonen, E.; Vahala, J.; Pohjola, M.; Holopainen, T.; Kärenlampi, L. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ. 1998, 21, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Ascoli, D.; Bovio, G. Tree encroachment dynamics in heathlands of Northwest Italy: The fire regime hypothesis. iForest 2010, 3, 137–143. [Google Scholar] [CrossRef]
- Rosenvald, K.; Ostonen, I.; Truu, M.; Truu, J.; Uri, V.; Vares, A.; Lohmus, K. Fine-root rhizosphere and morphological adaptations to site conditions in interaction with tree mineral nutrition in young silver birch (Betula pendula Roth.) stands. Eur. J. For. Res. 2011, 130, 1055–1066. [Google Scholar] [CrossRef]
- Frauendorfer, R. Forstliche Hilfstafeln Schriftenreihe der Forstlichen Bundes-Versuchsans-Talt Mariabrunn Band II; Kommissionsverlag der Österreichischen Staatsdruckerei: Wien, Austria, 1954; p. 168. (In German) [Google Scholar]
- Eriksson, H.; Johansson, U.; Kiviste, A. A site-index model for pure and mixed stands of Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 1997, 12, 149–156. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Grandas-Arias, J.A.; Álvarez-González, J.G.; Gadow, K.V. Site quality curves for birch stands in north-western Spain. Silva Fenn. 2006, 40, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Hein, S.; Winterhalter, D.; Wilhelm, G.J.; Kohnle, U. Wertholzproduktion mit der Sandbirke (Betula pendula Roth): Waldbauliche Moglichkeiten und Grenzen. Allg. For. Jagdztg. 2009, 180, 206–219. (In German) [Google Scholar]
- Lemaire, J. Contribution à l’étude de la sylviculture du Betula pendula Roth. La sylviculture du Betulla pendula Roth au Bois de Lauzelle (Louvain-la-Neuve). Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998; 175p. (In French). [Google Scholar]
- Prévosto, B.; Coquillard, P.; Gueugnot, J. Growth models of silver birch (Betula pendula Roth.) on two volcanic mountains in the French Massif Central. Plant Ecol. 1999, 144, 231–242. [Google Scholar] [CrossRef]
- Gomez-Garcıa, E.; Crecente-Campo, F.; Tobin, B.; Hawkins, M.; Nieuwenhuis, M.; Dieguez-Aranda, U. A dynamic volume and biomass growth model system for even-aged downy birch stands in south-western Europe. Forestry 2014, 87, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lõhmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Vares, A.; Tullus, H. Growth development and plant–soil relations in midterm silver birch (Betula pendula Roth) plantations on previous agricultural lands in hemiboreal Estonia. Eur. J. For. Res. 2015, 134, 653–667. [Google Scholar] [CrossRef]
- Cameron, A.D. Managing birch woodlands for the production of quality timber. Forestry 1996, 69, 357–371. [Google Scholar] [CrossRef]
- Rytter, L.; Werner, M. Influence of early thinning in broadleaved stands on development of remaining stems. Scand. J. For. Res. 2007, 22, 198–210. [Google Scholar] [CrossRef]
- Prévosto, B.; Curt, T. Dimensional relationships of naturally established European beech trees beneath Scots pine and Silver birch canopy. For. Ecol. Manag. 2004, 194, 335–348. [Google Scholar] [CrossRef]
- Rosa, J.; Gauberville, C. Que deviennent les parcelles non reconstituées plus de 10 ans après une tempête? RDV Tech. 2004, 3, 4–6. (In French) [Google Scholar]
- Bormann, B.T.; Darbyshire, R.L.; Homann, P.S.; Morrissette, B.A.; Little, S.N. Managing early succession for biodiversity and long-term productivity of conifer forests in southwestern Oregon. For. Ecol. Manag. 2015, 340, 114–125. [Google Scholar] [CrossRef]
- Swanson, M.E.; Franklin, J.F.; Beschta, R.L.; Crisafulli, C.M.; DellaSala, D.A.; Hutto, R.L.; Lindenmayer, D.B.; Swanson, F.J. The forgotten stage of forest succession: Early-successional ecosystems on forest sites. Front. Ecol. Environ. 2011, 9, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Patterson, G. The Value of Birch in Upland Forests for Wildlife Conservation; Forestry Commission Bulletin No. 109; HMSO: London, UK, 1993; p. 34.
- Kanerva, S.; Smolander, A. Microbial activities in forest floor layers under silver birch, Norway spruce and Scots pine. Soil Biol. Biochem. 2007, 39, 1459–1467. [Google Scholar] [CrossRef]
- Saetre, P. Decomposition, microbial community structure, and earthworm effects along a birch-spruce soil gradient. Ecology 1998, 79, 834–846. [Google Scholar] [CrossRef]
- Priha, O.; Grayston, S.J.; Hiukka, R.; Pennanen, T.; Smolander, A. Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol. Fertil. Soils 2001, 33, 17–24. [Google Scholar] [CrossRef]
- Hansson, K.; Froberg, M.; Helmisaari, H.-S.; Kleja, D.B.; Olsson, B.A.; Olsson, M.; Persson, T. Carbon and nitrogen pools and fluxes above and below ground in spruce, pine and birch stands in southern Sweden. For. Ecol. Manag. 2013, 309, 28–35. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Campbell, C.D.; Chapman, S.J.; Osler, G.H.R.; Vanbergen, A.J.; Ross, L.C.; Cameron, C.M.; Cole, L. The cascading effects of birch on heather moorland: A test for the top-down control of an ecosystem engineer. J. Ecol. 2007, 95, 540–554. [Google Scholar] [CrossRef]
- Brandtberg, P.-O.; Lundkvist, H.; Bengtsson, J. Changes in forest-floor chemistry caused by a birch admixture in Norway spruce stands. For. Ecol. Manag. 2000, 130, 253–264. [Google Scholar] [CrossRef]
- Mohr, D.; Simon, M.; Topp, W. Stand composition affects soil quality in oak stands on reclaimed and natural sites. Geoderma 2005, 129, 45–53. [Google Scholar] [CrossRef]
- Hansson, K.; Olsson, B.A.; Olsson, M.; Johansson, U.; Kleja, D.B. Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. For. Ecol. Manag. 2011, 262, 522–530. [Google Scholar] [CrossRef]
- Schua, K.; Wende, S.; Wagner, S.; Feger, K.-H. Soil Chemical and Microbial Properties in a Mixed Stand of Spruce and Birch in the Ore Mountains (Germany)—A Case Study. Forests 2015, 6, 1949–1965. [Google Scholar] [CrossRef] [Green Version]
- De Schrijver, A.; Nachtergale, L.; Staelens, J.; Luyssaert, S.; De Keersmaeker, L. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ. Pollut. 2004, 131, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Emmer, I.M.; Fanta, J.; Kobus, A.T.; Kooijman, A.; Sevink, J. Reversing borealization as a means to restore biodiversity in Central-European mountain forests—An example from the Krkonose Mountains, Czech Republic. Biodivers. Conserv. 1998, 7, 229–247. [Google Scholar] [CrossRef]
- Dmuchowski, W.; Gozdowski, D.; Bragoszewska, P.; Baczewska, A.H.; Suwara, I. Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecol. Eng. 2014, 71, 32–35. [Google Scholar] [CrossRef]
- Branquart, E.; Liégeois, S. Normes de Gestion pour Favoriser la Biodiversité Dans les Bois Soumis au Régime Forestier (Complément à la Circulaire n°2619); Ministère de la Région Wallonne—Direction Générale des Ressources Naturelles et de l’Environnement: Jambes, Belgium, 2005; p. 84. [Google Scholar]
- Kennedy, C.E.J.; Southwood, T.R.E. The Number of Species of Insects Associated with British Trees: A Re-Analysis. J. Anim. Ecol. 1984, 53, 455–478. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Leather, S.R.; Watt, A.D. Changing management in Scottish birch woodlands: A potential threat to local invertebrate biodiversity. Bull. Entomol. Res. 2003, 93, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Kreyer, D.; Zerbe, S. Short-Lived Tree Species and Their Role as Indicators for Plant Diversity in the Restoration of Natural Forests. Restor. Ecol. 2006, 14, 137–147. [Google Scholar] [CrossRef]
- Felton, A.; Andersson, E.; Ventorp, D.; Lindbladh, M. A comparison of avian diversity in spruce monocultures and spruce–birch polycultures in southern Sweden. Silva Fenn. 2011, 45, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Ellis, T.M.; Betts, M.G. Bird abundance and diversity across a hardwood gradient within early seral plantation forest. For. Ecol. Manag. 2011, 261, 1372–1381. [Google Scholar] [CrossRef]
- Ellis, T.M.; Kroll, A.J.; Betts, M.G. Early seral hardwood vegetation increases adult and fledgling bird abundance in Douglas-fir plantations of the Oregon Coast Range, USA. Can. J. For. Res. 2012, 42, 918–933. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, O.R.; Jiménez, M.C. Estrategia reproductiva del abedul frente a los indendios forestales en galicia (Birch reproductive strategy against forest fires in Galicia). Cuad. Soc. Esp. Cien. For. 2003, 15, 171–176. (In Spanish) [Google Scholar] [CrossRef]
- De Schrijver, A.; Geudens, G.; Wuyts, K.; Staelens, J.; Gielis, L.; Verheyen, K. Nutrient cycling in two continuous cover scenarios for forest conversion of pine plantations on sandy soil. I. Nutrient cycling via aboveground tree biomass. Can. J. For. Res. 2009, 39, 441–452. [Google Scholar] [CrossRef]
- Burgess, M.D.; Bellamy, P.E.; Gillings, S.; Noble, D.G.; Grice, P.V.; Conway, G.J. The impact of changing habitat availability on population trends of woodland birds associated with early successional plantation woodland. Bird Study 2015, 62, 39–55. [Google Scholar] [CrossRef]
- Lehnert, L.W.; Bassler, C.; Brandl, R.; Burton, P.J.; Muller, J. Conservation value of forests attacked by bark beetles: Highest number of indicator species is found in early successional stages. J. Nat. Conserv. 2013, 21, 97–104. [Google Scholar] [CrossRef]
- Cameron, A.D.; Dunham, R.A.; Petty, J.A. The effects of heavy thinning on stem quality and timber properties of silver birch (Betula pendula Roth). Forestry 1995, 68, 275–285. [Google Scholar] [CrossRef]
- Heiskanen, V. Raudus-ja hieskoivun laatu eri kasvupaikoilla. Summary: Quality of the common birch and the white birch on different sites. Commun. Inst. For. Fenn. 1957, 48, 1–99. [Google Scholar]
- Hakkila, P.; Verkasalo, E. Structure and properties of wood and woody biomass. In Forest Resources and Sustainable Management; Kellomäki, S., Ed.; Paper Engineers’ Association: Helsinki, Finland, 2009; pp. 133–215. [Google Scholar]
- Hytönen, J.; Saramäki, J.; Niemistö, P. Growth, stem quality and nutritional status of Betula pendula and Betula pubescens in pure stands and mixtures. Scand. J. For. Res. 2014, 29, 1–11. [Google Scholar] [CrossRef]
- Roitto, M.; Siwale, W.; Tanner, J.; Ilvesniemi, H.; Julkunen-Tiitto, R.; Verkasalo, E. Characterization of Extractives in Tree Biomass and By-products of Plywood and Saw Mills from Finnish Birch in Different Climatic Regions for Value-added Chemical Products. In Proceedings of the 5th International Scientific Conference on Hardwood Processing, Québec City, QC, Canada, 15–17 September 2015; Achim, A., Blanchet, P., Schmitt, U., Bouffard, J.-F., Eds.; International academy of wood science: Québec City, QC, Canada, 2015; pp. 174–181. [Google Scholar]
- Hassegawa, M.; Stevanovic, T.; Achim, A. Relationship between ethanolic extractives of yellow birch and tree characteristics. Ind. Crops Prod. 2016, 94, 1–8. [Google Scholar] [CrossRef]
- Wagenführ, R.; Scheiber, C. Holzatlas. Mit 890 zum Teil mehrfarbigen Bildern; VEB Fachbuchverlag: Leipzig, Germany, 1985; p. 720. (In German) [Google Scholar]
- Boedts, M. Effet du Traitement Thermique sur les Propriétés Physico-Mécaniques et la Durabilité du Bois de Bouleau. Master’s Thesis, Université de Liège Gembloux Agro-Bio Tech, Gembloux, Belgium, 2016; p. 74. (In French). [Google Scholar]
- Felton, A.; Lindbladh, M.; Brunet, J.; Fritz, Ö. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. For. Ecol. Manag. 2010, 260, 939–947. [Google Scholar] [CrossRef]
- Colson, V. La Fonction Récréative Des Massifs Forestiers Wallons: Analyses et Évaluation Dans le Cadre D’une Politique Forestière Intégrée. Unpublished Ph.D. Thesis, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium, 2009; p. 277. (In French). [Google Scholar]
- Verkasalo, E. Koivupuutavaran vikaantuminen pitkittyneessä metsävarastoinnissa ja sen vaikutus viilun saantoon, laatuun ja arvoon. Summary: Deterioration of Birch Timber during Prolonged Storage in the Forest and Its Effect on the Yield, Quality and Value of Rotary-Cut Veneer. Folia For. 1993, 806, 31. (In French) [Google Scholar]
- Gobakken, T. Models for Assessing Timber Grade Distribution and Economic Value of Standing Birch Trees. Scand. J. For. Res. 2000, 15, 570–578. [Google Scholar] [CrossRef]
- Verkasalo, E.; Heräjärvi, H.; Möttönen, V.; Haapala, A.; Brännström, H.; Vanhanen, H.; Miina, J. Current and future products as the basis for value chains of birch in Finland. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; pp. 81–96. [Google Scholar]
- Niemistö, P.; Kilpeläinen, H.; Heräjärvi, H. Effect of pruning season and tool on knot occlusion and stem discolouration in Betula pendula—Situation five years after pruning. Silva Fenn. 2019, 53, 29. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, M.; Van Acker, J.; Verheyen, K. Exploring life growth patterns in birch (Betula pendula). Scand. J. For. Res. 2016, 31, 7. [Google Scholar] [CrossRef]
- Santamour, F.S., Jr.; Greene, A. European hornet damage to ash and birch trees. J. Arboric. 1986, 12, 273–279. [Google Scholar]
- Klingeman, B.; Olivier, J.; Frank, H. Who’s doin’ all that chewin’? The European Hornet. Tenn. Green Times 2001, 2, 34–36. [Google Scholar]
- Kula, E. The seasonal population dynamics of moth larvae feeding in birch stands of the Krusne Hory Mountains (The Czech Republic) from 1986–2004. Ekologia (Bratislava) 2008, 27, 119–129. [Google Scholar]
- Ylioja, T.; Roininen, H.; Heinonen, J.; Rousi, M. Susceptibility of Betula pendula clones to Phytobia betulae, a dipteran miner of birch stems. Can. J. For. Res. 2000, 30, 1824–1829. [Google Scholar] [CrossRef]
- Panula, E.Y.; Fekedulegn, D.B.; Green, B.J.; Ranta, H. Analysis of Airborne Betula Pollen in Finland; a 31-Year Perspective. Int. J. Environ. Res. Public Health 2009, 6, 1706–1723. [Google Scholar] [CrossRef] [Green Version]
- Lavaud, F.; Fore, M.; Fontaine, J.-F.; Pérotin, J.M.; de Blay, F. Allergie au pollen de bouleau (Birch pollen allergy). Rev. Mal. Respir. 2014, 31, 150–161. (In French) [Google Scholar] [CrossRef]
- Müller-Germann, I.; Vogel, B.; Vogel, H.; Pauling, A.; Fröhlich-Nowoisky, J.; Pöschl, U.; Després, V.R. Quantitative DNA Analyses for Airborne Birch Pollen. PLoS ONE 2015, 10, e0140949. [Google Scholar] [CrossRef] [Green Version]
- Hao, G.-D.; Zheng, Y.; Wang, Z.; Kong, X.; Song, Z.; Lai, X.; Spangfort, M.D. High correlation of specific IgE sensitization between birch pollen, soy and apple allergens indicates pollen-food allergy syndrome among birch pollen allergic patients in northern China. J Zhejiang Univ. Sci. B (Biomed. Biotechnol.) 2016, 17, 399–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skjøth, C.A.; Sommerw, J.; Stachz, A.; Smithz, M.; Brandt, J. The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin. Exp. Allergy 2007, 37, 1204–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beggs, P.J. Impacts of climate change on aeroallergens: Past and future. Clin. Exp. Allergy 2004, 34, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Frei, T.; Gassner, E. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int. J. Biometeorol. 2008, 52, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Thibaudon, M.; Monnier, S. Les pollens de bouleau: Indicateur santé du changement climatique. Rev. Française Allergol. 2015, 55, 228. (In French) [Google Scholar] [CrossRef]
- Reyes, O.; Casal, M.; Trabaud, L. The influence of population, fire and time of dissemination on the germination of Betula pendula seeds. Plant Ecol. 1997, 133, 201–208. [Google Scholar] [CrossRef]
- Dzwonko, Z.; Loster, S.; Gawronski, S. Impact of fire severity on soil properties and the development of tree and shrub species in a Scots pine moist forest site in southern Poland. For. Ecol. Manag. 2015, 342, 56–63. [Google Scholar] [CrossRef]
- Curt, T.; Prévosto, B. Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands. Plant Soil 2003, 255, 265–279. [Google Scholar] [CrossRef]
- Blossfeld, O.; Koroll, U.; Mette, H.-J.; Wonka, R.; Giefing, D. Untersuchungen zur Qualität und Verwendung der Holzart Birke. Holztechnologie 1981, 22, 77–79. (In German) [Google Scholar]
- Günzl, L.; Krames, U.; Krenn, K.; Hruschka, A.; Neugebauer, A. Beurteilung der Eigenschaften von Birken österreichischer Herkunft; Bericht 1984/85; Österreichisches Holzforschungs Institut Wien: Wien, Austria, 1986. (In German) [Google Scholar]
- Günzl, L. Hat die Birke Zukunft? Österreichische Forstztg. 1989, 11, 45–47. (In German) [Google Scholar]
- Pommerening, A.; Murphy, S.T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 2004, 77, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Stark, H.; Nothdurft, A.; Bauhus, J. Allometries for Widely Spaced Populus ssp. and Betula ssp. in Nurse Crop Systems. Forests 2013, 4, 1003–1031. [Google Scholar] [CrossRef]
- Liziniewicz, M. The Development of Beech in Monoculture and Mixtures. Master’s Thesis, Swedish University of Agricultural Science, Alnarp, Sweden, 2009; p. 47. [Google Scholar]
- Dudelis, J. Development of Stratified Spruce-Birch Stands in Latvia. Master’s Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2013; p. 42. [Google Scholar]
- Tullus, A.; Lukason, O.; Vares, A.; Padari, A.; Lutter, R.; Tullus, T.; Karoles, K.; Tullus, H. Economics of Hybrid Aspen (Populus tremula L.×P. tremuloides Michx.) and Silver Birch (Betula pendula Roth.) Plantations on Abandoned Agricultural Lands in Estonia. Balt. For. 2012, 18, 288–298. [Google Scholar]
- Stark, H.; Nothdurft, A.; Block, J.; Bauhus, J. Forest restoration with Betula ssp. and Populus ssp. nurse crops increases productivity and soil fertility. For. Ecol. Manag. 2015, 339, 57–70. [Google Scholar] [CrossRef]
- Price, J.S.; Heathwaite, A.L.; Baird, A.J. Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetl. Ecol. Manag. 2003, 11, 65–83. [Google Scholar] [CrossRef]
- Rock, J.; Puettmann, K.J.; Gockel, H.A.; Schulte, A. Spatial aspects of the influence of silver birch (Betula pendula L.) on growth and quality of young oaks (Quercus spp.) in central Germany. Forestry 2004, 77, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Kuehne, C.; Kohnle, U.; Brang, P.; Ehring, A.; Geisel, J.; Leder, B.; Muth, M.; Petersen, R.; Peter, J.; et al. Growth and quality of young oaks (Quercus robur and Quercus petraea) grown in cluster plantings in central Europe: A weighted meta-analysis. For. Ecol. Manag. 2012, 283, 106–118. [Google Scholar] [CrossRef]
- Damien, M.; Jactel, H.; Meredieu, C.; Régolini, M.; van Halder, I.; Castagneyrol, B. Pest damage in mixed forests: Disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. For. Ecol. Manag. 2016, 378, 103–110. [Google Scholar] [CrossRef]
- Castagneyrol, B.; Giffard, B.; Péré, C.; Jactel, H. Plant apparency, an overlooked driver of associational resistance to insect herbivory. J. Ecol. 2013, 101, 418–429. [Google Scholar] [CrossRef]
- Castagneyrol, B.; Régolini, M.; Jactel, H. Tree species composition rather than diversity triggers associational resistance to the pine processionary moth. Basic Appl. Ecol. 2014, 15, 516–523. [Google Scholar] [CrossRef]
- Jactel, H.; Barbaro, L.; Battisti, A.; Bosc, A.; Branco, M.; Brockerhoff, E.; Castagneyrol, B.; Dulaurent, A.-M.; Hodar, J.A.; Jacquet, J.-S.; et al. Insect—Tree Interactions in Thaumetopoea pityocampa. In Processionary Moths and Climate Change: An Update; Roques, A., Ed.; Springer: Dordrecht, The Netherland, 2015; pp. 265–310. [Google Scholar]
- Reimoser, F.; Gossow, H. Impact of ungulates on forest vegetation and its dependence on the silvicultural system. For. Ecol. Manag. 1996, 88, 107–119. [Google Scholar] [CrossRef]
- Härkönen, S.; Pulkkinen, A.; Heräjärvi, H. Wood quality of birch (betula spp.) trees damaged by moose. ALCES 2009, 45, 67–72. [Google Scholar]
- Lehaire, F.; Ligot, G.; Morelle, K.; Lejeune, P. Les indicateurs de la pression du cerf élaphe sur la végétation du sous-bois en forêt feuillue tempérée (synthèse bibliographique). Biotechnol. Agron. Soc. Environ. 2014, 18, 262–272. [Google Scholar]
- Kund, M.; Vares, A.; Sims, A.; Tullus, H.; Uri, V. Early growth and development of silver birch (Betula pendula Roth.) plantations on abandoned agricultural land. Eur. J. For. Res. 2010, 129, 679–688. [Google Scholar] [CrossRef]
- Tullus, T.; Tullus, A.; Roosaluste, E.; Kaasik, A.; Lutter, R.; Tullus, H. Understorey vegetation in young naturally regenerated and planted birch (Betula spp.) stands on abandoned agricultural land. New For. 2013, 44, 591–611. [Google Scholar] [CrossRef]
- Zasada, M.; Bijak, S.; Bronisz, K.; Bronisz, A.; Gawęda, T. Biomass dynamics in young silver birch stands on post-argicultural lands in central Poland. Drewno 2014, 57, 29–39. [Google Scholar] [CrossRef]
- Latte, N.; Perin, J.; Lejeune, P. Evolution récente des surface forestières et de la régénération des coupes rases en Wallonie. For. Nat. 2016, 141, 46–51. (in French). [Google Scholar]
- Karlsson, M.; Nilsson, N.; Örlander, G. Natural Regeneration in Clear-cuts: Effects of Scarification, Slash Removal and Clear-cut Age. Scand. J. For. Res. 2002, 17, 131–138. [Google Scholar] [CrossRef]
- Fahlvik, N.; Agestam, E.; Nilsson, U.; Nyström, K. Simulating the influence of initial stand structure on the development of young mixtures of Norway spruce and birch. For. Ecol. Manag. 2005, 213, 297–311. [Google Scholar] [CrossRef]
- Pulsford, S.A.; Lindenmayer, D.B.; Driscoll, D.A. A succession of theories: Purging redundancy from disturbance theory. Biol. Rev. Camb. Philos. 2014, 91, 55. [Google Scholar] [CrossRef]
- Kint, V.; Geudens, G.; Mohren, G.M.J.; Lust, N. Silvicultural interpretation of natural vegetation dynamics in ageing Scots pine stands for their conversion into mixed broadleaved stands. For. Ecol. Manag. 2006, 223, 363–370. [Google Scholar] [CrossRef]
- Hemery, G.E. Forest management and silvicultural responses to projected climate change impacts on European broadleaved trees and forests. Int. For. Rev. 2008, 10, 591–606. [Google Scholar] [CrossRef]
- Harmer, R.; Morgan, G.; Beauchamp, K. Restocking with broadleaved species during the conversion of Tsuga heterophylla plantations to native woodland using natural regeneration. Eur. J. For. Res. 2011, 130, 161–171. [Google Scholar] [CrossRef]
- Wilhelm, G.J.; Rieger, H. Naturnahe Waldwirtschaft—Mit der QD-Strategie: Eine Strategie für Den Qualitätsgeleiteten und Schonenden Gebrauch des Waldes Unter Achtung der Gesamten Lebewelt; Eugen Ulme KG: Stuttgart, Germany, 2013; p. 207. (In German) [Google Scholar]
- Malcolm, D.C.; Worrell, R. Potential for the improvement of silver birch (Betula pendula Roth.) in Scotland. Forestry 2001, 75, 439–453. [Google Scholar] [CrossRef]
- Renou-Wilson, F.; Pöllänen, M.; Byrne, K.; Wilson, D.; Farrell, E.P. The potential of birch afforestation as an after-use option for industrial cutaway peatlands. Suo 2010, 61, 59–76. [Google Scholar]
- Schrör, H. Erzeugung, Absatz und Verwendung von Birkenholz in Nordrhein-Westfalen. Master’s Thesis, Universität Göttingen, Institut für Forstbenutzung, Göttingen, Germany, 1987. (In German). [Google Scholar]
- Sachsse, H. Holzqualität von Birken. Strukturelle und physikalisch-mekanische Eigenschaften von Birkenhölzern. Holz Roh-Und Werkst. 1989, 47, 27–30. [Google Scholar] [CrossRef]
- Ehrhart, T.; Brandner, R.; Schickhofer, G.; Frangi, A. Rolling Shear Properties of some European Timber Species with Focus on Cross Laminated Timber (CLT): Test Configuration and Parameter Study. In Proceedings of the 2nd Meeting of the International Network on Timber Engineering Research, Šibenik, Croatia, 24–27 August 2015; Görlacher, R., Ed.; Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen: Karlsruhe, Germany, 2015; pp. 61–76. [Google Scholar]
- Jeitler, G.; Augustin, M.; Schickhofer, G. Mechanical properties of glued laminated TIMBER and cross laminated TIMBER produced with the wood species birch. In Proceedings of the World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016; Eberhardsteiner, J., Winter, W., Fadai, A., Pöll, M., Eds.; TU Verlag: Wien, Austria, 2016; p. 8. [Google Scholar]
- Nurmi, J. Heating values of mature trees. Acta For. Fenn. 1997, 256, 28. [Google Scholar] [CrossRef] [Green Version]
- Viikari, L.; Alén, R. Biochemical and chemical conversion of forest biomass. In Biorefining of Forest Resources; Alén, R., Ed.; Paper Engineers’ Association: Helsinki, Finland, 2011; pp. 225–261. [Google Scholar]
- Ahmad, W.; Kuitunen, S.; Borrega, M.; Alopaeus, V. Physicochemical Modelling for Hot Water Extraction of Birch Wood. Ind. Eng. Chem. Res. 2016, 55, 11062–11073. [Google Scholar] [CrossRef]
- Möttönen, V.; Bütün, Y.; Heräjärvi, H.; Antikainen, J.; Marttila, J. Physical properties and dimensional stability after combined compression and thermal modification of birch and aspen lumber. In Proceedings of the 5th International Scientific Conference on Hardwood Processing, Québec City, QC, Canada, 15–17 September 2015; Achim, A., Blanchet, P., Schmitt, U., Bouffard, J.-F., Eds.; International academy of wood science: Québec City, QC, Canada, 2015; pp. 147–154. [Google Scholar]
- Möttönen, V.; Boren, H.; Heräjärvi, H. Puun Ominaisuuksien Modifiointi: Menetelmät ja Tutkimuksen Tila; Natural resources and bioeconomy studies 11/2018; Natural Resources Institute Finland (Luke): Helsinki, Finland, 2018; p. 57. (In Finnish) [Google Scholar]
- Boruvka, V.; Dudík, R.; Zeidler, A.; Holecek, T. Influence of Site Conditions and Quality of Birch Wood on Its properties and Utilization after Heat Treatment. Part I—Elastic and Strength Properties, Relationship to Water and Dimensional Stability. Forests 2019, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Dubois, H.; Layon, J.; Claessens, H. Curiosité: Le «curly birch». Une figuration ondée, rare et recherchée du bois de bouleau. For. Nat. 2017, 145, 12–15. (In French) [Google Scholar]
- Wiedenbeck, J.; Wiemann, M.; Alderman, D.; Baumgras, J.; Luppold, W. Defining Hardwood Veneer Log Quality Attributes; USDA Forest Service: Newtown, CT, USA, 2004.
- Bilek, B.; Wawer, J.; Szwerc, W.; Słowik, K.; Sosnowski, S. Birch sap concentrate as a potential modern food product. Econtechmod Int. Q. J. Econ. Technol. 2018, 7, 5–9. [Google Scholar]
- Vanhanen, H.; Peltola, R.; Ahtikoski, A.; Pappinen, A. Cultivation of Pakuri (Inonotus obliquus)—Potential for new income source for forest owners. In Proceedings of the The Book of Abstracts of the 10th International Mycological Congress (IMC10), Thailand, Bangkok, 10 October 2013; IMC 10 Organizing Committee, Ed.; National Center for Genetic Engineering and Biotechnology: Bangkok, Thailand, 2014; p. 418. [Google Scholar]
- Hiltunen, E.; Pakkanen, T.T.; Alvila, L. Phenolic extractives from wood of birch (Betula pendula). Holzforschung 2004, 58, 326–329. [Google Scholar] [CrossRef]
- Rizhikovs, J.; Zandersons, J.; Dobele, G.; Paze, A. Isolation of triterpene-rich extracts from outer birch bark by hot water and alkaline pre-treatment or the appropriate choice of solvents. Ind. Crops Prod. 2015, 76, 209–214. [Google Scholar] [CrossRef]
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Medicinal plants of the genus Betula—Traditional uses and a phytochemical–pharmacological review. J. Ethnopharmacol. 2015, 159, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Mantau, U.; Saal, U.; Prins, K.; Steierer, F.; Lindner, M. EUwood—Real potential for changes in growth and use of EU forests; Final report, June 2010; EUwood: Hamburg, Germany, 2010; p. 160. [Google Scholar]
- Teischinger, A. From Forest to Wood Production—A selection of challenges and opportunities for innovative hardwood utilization. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; p. 13. [Google Scholar]
- Richter, A. Perspectives de Valorisation de la Ressource de bois D’œuvre Feuillus en France; Direction générale des politiques agricole, agroalimentaire et des territoires—DGPAAT/FCBA: Paris, France, 2011; p. 83. (In French) [Google Scholar]
- Verkasalo, E.; Toppinen, A.; Arponen, J.; Heräjärvi, H. Perspectives of wood resources, industry competitiveness and wood product markets for birch industries in the Baltic Sea area. In Proceedings of the International Scientific Conference on Hardwood Processing, Quebec City, QC, Canada, 24–26 September 2007; Blanchet, P., Ed.; FPInnovations-Forintek Division: Quebec City, QC, Canada, 2007; pp. 29–35. [Google Scholar]
- Kumar, A.; Verkasalo, E. Current status and future implications of Finnish wood-based panel industries. In Proceedings of the 14th Annual Meeting of the Northern European Network for Wood Science and Engineering, Tallinn, Estonia, 2–3 October 2018; Kallakas, H., Ed.; Tallinn University of Technology: Tallinn, Estonia, 2018; pp. 123–126. [Google Scholar]
- Berthold, D.; Meinlschmidt, P.; Ritter, N. Hardwood processing in Germany—Challenges and opportunities for the wood based panel industry. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; pp. 97–108. [Google Scholar]
- Bollmus, S.; Gellerich, A.; Schlotzhauer, P.; Behr, G.; Militz, H. Hardwood research at the Georg-August University of Goettingen. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; pp. 116–122. [Google Scholar]
- Caurla, S.; Delacote, P.; Lecocq, F.; Barthès, J.; Barkaoui, A. Combining an inter-sectoral carbon tax with sectoral mitigation policies: Impacts on the French forest sector. J. For. Econ. 2013, 19, 450–461. [Google Scholar] [CrossRef]
- Wilhelms, F.; Bollmus, S.; Schlotzhauer, P.; Militz, H. Drying of low quality birch timber—Quality, time and energy consumption. In Proceedings of the 6th International Scientific Conference on Hardwood Processing, Lahti, Finland, 25–28 September 2017; Möttönen, V., Heinonen, E., Eds.; Natural Resources Institute Finland: Helsinki, Finland, 2017; pp. 345–353. [Google Scholar]
- Trubins, R. Introduction of GIS into IKEA’s Wood Sourcing System. Aspects of Forest Resource Data Availability and System Functionality. Master’s Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2009; p. 56. [Google Scholar]
- Kilpeläinen, H.; Lindblad, J.; Heräjärvi, H.; Verkasalo, E. Saw log recovery and stem quality of birch from thinnings in southern Finland. Silva Fenn. 2011, 45, 267–282. [Google Scholar] [CrossRef] [Green Version]
- Välkky, E.; Jutila, L.; Karjalainen, T.; Karvinen, S.; Gerasimov, Y.; Leinonen, T. Russian Forest Policy and its Impact in Russia and Finland. In Impact of Changes in Forest and Economic Policy and the Business Preconditions in Russia and Finland; Välkky, E., Viitanen, J., Ollonqvist, P., Eds.; Working Papers of the Finnish Forest Research Institute: Vantaa, Finland, 2011; Volume 218, pp. 8–50. [Google Scholar]
- Liziniewicz, M.; Andrzejczyk, T.; Drozdowski, S. The effect of birch removal on growth and quality of pedunculate oak in a 21-year-old mixed stand established by row planting. For. Ecol. Manag. 2016, 364, 165–172. [Google Scholar] [CrossRef]
- Kaitaniemi, P.; Lintunen, A. Neighbor identity and competition influence tree growth in Scots pine, Siberian larch, and silver birch. Ann. For. Sci. 2010, 67, 604–610. [Google Scholar] [CrossRef] [Green Version]
- De Silva, H.; Green, S.; Woodward, S. Incidence and severity of dieback in birch plantings associated with Anisogramma virgultorum and Marssonina betulae in Scotland. Plant Pathol. 2008, 57, 272–279. [Google Scholar] [CrossRef]
- Green, S.; MacAskill, G.A. Pathogenicity of Marssonina betulae and other fungi on birch. Plant Pathol. 2007, 56, 242–250. [Google Scholar] [CrossRef]
- Kozlov, M.V. Losses of birch foliage due to insect herbivory along geographical gradients in Europe: A climate-driven pattern? Clim. Chang. 2008, 87, 107–117. [Google Scholar] [CrossRef]
- McLaughlin, J. Pathological effects and management implications. In Proceedings of the Ecology and Management of White Birch Workshop, Wawa, ON, Canada, 21–22 September 1999; Chen, H., Luke, A., Bidwell, W., Eds.; Queen’s Printer for Ontario: Wawa, ON, Canada, 2000; pp. 19–20. [Google Scholar]
- Rumbou, A.; Candresse, T.; Marais, A.; Theil, S.; Langer, J.; Jalkanen, R.; Büttner, C. A novel badnavirus discovered from Betula sp. affected by birch leaf-roll disease. PLoS ONE 2018, 13, e0193888. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, M.; Langer, J.; Gröhner, J.; Zinnert, L.; Bandte, M.; von Bargen, S.; Schreiner, M.; Jäckel, B.; Büttner, C. Viruserkrankungen im urbanen Grün—Eine Studie an Birken im Berliner Bezirk Steglitz-Zehlendorf. Jahrb. Baumpflege 2017, 21, 327–332. (In German) [Google Scholar]
- Von Bargen, S.; Arndt, N.; Grubits, E.; Büttner, C.; Jalkanen, R. Cherry Leaf Roll Virus in birch—An old problem or an emerging virus in Finland? In Proceedings of the 3rd International Symposium on Plant Protection and Plant Health in Europe, Berlin, Germany, 14–16 May 2009; Feldmann, F., Alford, D.V., Furk, C., Eds.; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2009; pp. 242–250. [Google Scholar]
- Muilenburg, V.L.; Herms, D.A. A Review of Bronze Birch Borer (Coleoptera: Buprestidae) Life History, Ecology, and Management. Environ. Entomol. 2012, 41, 1372–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Beech | Pedunculate (Sessile) Oak | Birch | Norway Spruce | ||
---|---|---|---|---|---|
Wood density at 12%–15% MC | 720 (540–910) | 690 (430–960) | 650 (510–830); **654 (± 40) | 470 (330–680) | kg m−3 |
Porosity | 55 | 57 | 59 | 71 | % |
Volumetric shrinkage | 17.9 (14.0–21.0) | 12.2–15.0 | 13.7–14.2; **18.0 | 11.6–12.0 | % |
Volumetric shrinkage per 1% moisture content | 0.46–0.60 | 0.45 | 0.23 | 0.39-0.40 | % %−1 |
Flexural strength (MOR) | 123 (74–210) | 88 (74–105) (110 (78–117)) | 147 (76–155); *114; **100 (± 13) | 78 (49–136) | MPa |
Resilience | 10.0 (3.0–19.0) | 6.0 (1.0–16.0) | 10.0 (4.5–13.0); **4.4 | 4.6 (1.0–11.0) | J cm−2 |
Stiffness (MOE) | 16.0 (10.0–18.0) | 11.7 (10.0–13.2) (13.0 (9.2–13.5)) | 14.5–16.5; *14.5; **15.0 (± 2.2) | 11.0 (7.3–21.4) | GPa |
STRENGTHS | WEAKNESSES | |
• Adaptable species: - with high genetic variability and phenotypic plasticity and a short generation time; - performing in a wide range of climates and soils; - resistant to climatic stresses and damages. | • Short lifespan and poor resistance against micro-organisms, therefore: - silvicultural operations have to avoid wounds; - rotation must be max. 60–70 years because of stem discoloration and root rot risks; - birch wood products cannot be used outdoors without specific treatment (durability class 5); - birch logs do not tolerate long storage in the forest or in sawmill log yards because of fungal discoloration, checks, and insect damage. | |
• Productive species: mean stand volume increment: - 5–10 m3 ha−1 a−1 at 50 years. | ||
• Improving forest resilience and biodiversity: - regenerating naturally and abundantly in forest gaps, restoring wood production potential of the forest; - improving soil functioning (porosity, water infiltration, fertility, soil fauna, and microorganism activities, etc.); - creating favorable conditions for the natural arrival and development of other tree species; - supporting a high diversity of flora and fauna species by its set of associated specific species, by the light conditions of its understory, and through the early-succession stage it forms. | ||
• Stem diameter growth is strongly and durably affected by intraspecific competition since an early age. | ||
• Some pests affect birch: - European hornet may cause forks; - Phytobia betulae causes black irregular-shaped configurations within the core wood. | ||
• Interesting visual and technical wood properties for a large variety of uses and NWFP. | • Major aero-allergenic tree. | |
• Aesthetic and scenic aspect in landscapes. | ||
OPPORTUNITIES | THREATS | |
• Increasing position in the context of global change: - invading areas where agricultural activity has ceased or after windfall, in plantations of other tree species, non-replanted clear-cut, areas where dieback of other species occurs; - being one of the most resistant species to game overpopulation-associated damage; - very suitable species for interesting tree mixtures, to shelter other tree species as a nurse crop and with specific properties to protect certain tree species against some pests; - favored by Western European forestry policies to move from monocultural plantations to more close-to-nature forests including native species. | • Due to its rapid and early growth, birch may cause negative impacts on growth and quality of other tree species in tree mixtures; | |
• Accidental introduction of Agrilus anxius or other pests or diseases might be catastrophic for birch. | ||
• Birch processing, products, and market are unfamiliar aspects outside Finland, the Baltic countries, and Russia. It may be difficult to convince - forest owners about profitable management and markets for birch; - forest industries and construction business about the potential, availability, and competitiveness of the products; | ||
• High-value birch logs can be produced within 40–50 years. | ||
• Timber and NWFP have numerous uses as shown by long experience in Northern Europe and Baltic countries. | ||
• Too little education of professionals and forest owners on birch management. | ||
• Novel product opportunities and growing demand of wood-based products in the European building sector. | ||
• Absence of CE-standards, EPDs, sorting, grading, and valuation methods and rules for birch wood products to be used in mills and at timber terminals. | ||
• Upcoming softwood shortage may encourage industry to use the hardwood resource, and birch especially thanks to its straight stem, short rotation, harvest, transport, and partly processing similar to softwoods, etc. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubois, H.; Verkasalo, E.; Claessens, H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe. Forests 2020, 11, 336. https://doi.org/10.3390/f11030336
Dubois H, Verkasalo E, Claessens H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe. Forests. 2020; 11(3):336. https://doi.org/10.3390/f11030336
Chicago/Turabian StyleDubois, Héloïse, Erkki Verkasalo, and Hugues Claessens. 2020. "Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe" Forests 11, no. 3: 336. https://doi.org/10.3390/f11030336
APA StyleDubois, H., Verkasalo, E., & Claessens, H. (2020). Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for Forestry and Forest-Based Industry Sector within the Changing Climatic and Socio-Economic Context of Western Europe. Forests, 11(3), 336. https://doi.org/10.3390/f11030336