Simulating Araucaria angustifolia (Bertol.) Kuntze Timber Stocks With Liocourt’s Law in a Natural Forest in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection and Preparation
2.3. Data Analysis
2.3.1. Balanced Frequency Distribution
2.3.2. Volume, Volume Increments, and Cutting Rate
2.3.3. Cutting Cycle
2.3.4. Wood Assortments
2.3.5. Statistical Analysis
3. Results
3.1. Diametric Structure of the Forest
3.2. Forest Management Scenarios Based on Liocourt’s Law
3.3. Classification of Wood Assortment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Griess, V.C.; Acevedo, R.; Härtl, F.; Staupendahl, K.; Knoke, T. Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For. Ecol. Manag. 2012, 267, 284–296. [Google Scholar] [CrossRef]
- Del Río, M.; Pretzsch, H.; Ruiz-Peinado, R.; Ampoorter, E.; Annighöfer, P.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Drössler, L.; et al. Species interactions increase the temporal stability of community productivity in Pinus sylvestris-Fagus sylvatica mixtures across Europe. J. Ecol. 2017, 105, 1032–1043. [Google Scholar] [CrossRef] [Green Version]
- Condés, S.; Sterba, H.; Aguirre, A.; Bielak, K.; Bravo-Oviedo, A.; Coll, L.; Pach, M.; Pretzsch, H.; Vallet, P.; del Río, M. Estimation and Uncertainty of the Mixing Effects on Scots Pine—European Beech Productivity from National Forest Inventories Data. Forests 2018, 9, 518. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; et al. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretzsch, H.; Steckel, M.; Heym, M.; Biber, P.; Ammer, C.; Ehbrecht, M.; Bielak, K.; Bravo, F.; Ordóñez, C.; Collet, C.; et al. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. EJAFR 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Riofrío, J.; del Río, M.; Maguire, D.A.; Bravo, F. Species Mixing Effects on Height–Diameter and Basal Area Increment Models for Scots Pine and Maritime Pine. Forests 2019, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Souza, D.R.; Souza, A.L.; Silva, M.L.; Rodrigues, F.L. Optimum economic cutting cycle in a Terra Firme Dense Ombrophylous Forest under sustained management, eastern Amazon. R. Árvore 2004, 28, 681–689, (Article in Portuguese with English abstract). [Google Scholar] [CrossRef]
- Hess, A.F.; Minatti, M.; Costa, E.A.; Schorr, L.P.B.; Rosa, G.T.; Souza, I.A.; Borsoi, G.A.; Liesenberg, V.; Stepka, T.F.; Abatti, R. Height-to-diameter ratios with temporal and dendro/morphometric variables for Brazilian pine in south Brazil. J. For. Res. 2020, 27. [Google Scholar] [CrossRef]
- Vanclay, J.K. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests; CAB International: Copenhagem, Denmark, 1994; p. 312. [Google Scholar]
- Walters, B.B. Ecological effects of small-scale cutting of Philippine mangrove forests. For. Ecol. Manag. 2005, 206, 331–348. [Google Scholar] [CrossRef]
- Wang, G.; Liu, F. The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management. For. Ecol. Manag. 2011, 262, 413–423. [Google Scholar] [CrossRef]
- Pukkala, T.; Lähde, E.; Laiho, O. Optimizing the structure and management of uneven-sized stands of Finland. Forestry 2010, 83, 129–142. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.T.; Fontes, M. Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica 2000, 32, 793–810. [Google Scholar] [CrossRef]
- Oliveira-Filho, A.T.; Budke, J.C.; Jarenkow, J.A.; Eisenlohr, P.V.; Neves, D.R.M. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J. Plant Ecol. 2013, 8, 242–260. [Google Scholar] [CrossRef] [Green Version]
- Iriarte, J.; Behling, H. The expansion of Araucaria forest in the southern Brazilian highlands during the last 4000 years and its implications for the development of the Taquara/Itarare’ Tradition. Environ. Archaeol. 2007, 12, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, P.; Silva, A.C.; Ferreira, T.S.; Souza, S.T.; Gomes, J.P.; Silva, K.M.; Santos, K.F. Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Braz. J. Bot. 2012, 35, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Behling, H.; Pillar, V. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos Trans. R. Soc. B 2007, 362, 243–251. [Google Scholar] [CrossRef] [Green Version]
- BRASIL. Ministério do Meio Ambiente—MMA. Resolução CONAMA nº 278, de 24 de maio de 2001. Dispõe Contra o Corte e Exploração de Espécies Ameaçadas de Extinção da Flora da Mata Atlântica. Diário Oficial da República Federativa do Brasil, Brasília, DF, 18 de Junho. 2001. Available online: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=276 (accessed on 12 January 2020).
- Lacerda, A.E.B.; Rosot, M.A.D.; Figueiredo Filho, A.; Garrastazú, M.C.; Nimmo, E.R.; Kellermann, B.; Radomski, M.I.; Beimgraben, T.; Mattos, P.P.; Oliveira, Y.M.M. Sustainable forest management in rural Southern Brazil: Exploring participatory forest management planning. In Sustainable Forest Management—Case Studies; Martin-Garcia, J., Diez, J.J., Eds.; InTech: London, UK, 2012; pp. 97–118. [Google Scholar]
- Longhi, R.V.; Schneider, P.R.; Longhi, S.J.; Marangon, G.P.; Costa, E.A. Growth Dynamics of Araucaria after Management Interventions in Natural Forest. Floram 2018, 25. [Google Scholar] [CrossRef]
- De Liocourt, F. De L’amanagement des Sapinières. Bull. Triemestriel Societe Forestiere de Franche-Compté et Belfort, Besancon 1898, 6, 396–409. [Google Scholar]
- Schneider, P.R.; Finger, C.A.G. Manejo Sustentado de Florestas Inequiâneas Heterogêneas; UFSM: Santa Maria, RS, Brazil, 2000; p. 195. [Google Scholar]
- Hess, A.F.; Calgarotto, A.R.; Pinheiro, R.; Wanginiak, T.C.R. Proposta de manejo de Araucaria angustifolia (Bertol.) Kuntze utilizando o quociente de Liocourt e análise de incremento, em propriedade rural no município de Lages, SC. Pesqui. Florest. Bras. 2010, 30, 337–345. [Google Scholar] [CrossRef]
- Hess, A.F.; Minatti, M.; Ferrari, L.; Pintro, B.A. Manejo de Floresta Ombrófila Mista pelo método de Liocourt, Município de Painel, SC. Cerne 2014, 20, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Kerr, G. The management of silver fir forests: De Liocourt (1898) revisited. Forestry 2014, 87, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Gove, J.H. A demographic study of the exponential distribution applied to uneven-aged forests. Forestry 2017, 90, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Govedar, Z.; Krstić, M.; Keren, S.; Babić, V.; Zlokapa, B.; Kanjevac, B. Actual and Balanced Stand Structure: Examples from Beech-Fir-Spruce Old-Growth Forests in the Area of the Dinarides in Bosnia and Herzegovina. Sustainability 2018, 10, 540. [Google Scholar] [CrossRef] [Green Version]
- Reitz, R.; Klein, R.M. Flora Ilustrada Catarinense: Araucariáceas; Herbário Barbosa Rodrigues: Itajaí, Brazil, 1966; p. 63. [Google Scholar]
- Paludo, G.F.; Mantovani, A.; Klauberg, C.; Reis, M.S. Demographic structure and spatial pattern of Araucaria angustifolia (bertol.) Kuntze (Araucariaceae) population in Santa Catarina. Rev. Árvore 2009, 33, 1109–1121, (Article in Portuguese with English abstract). [Google Scholar] [CrossRef]
- Kramer, K.U.; Green, P.S. The Families and Genera of Vascular Plants; Pteridophytes and Gymnosperms; Springer: Berlin/Heidelberg, Germany, 1990; Volume 1, p. 424. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Watzlawick, L.F.; Côrte, A.P.D.; Fernandes, L.A.V.; Siqueira, J.D.P. Inventários Florestais: Planejamento e Execução, 2nd ed.; Mult-Graphic: Curitiba, Brazil, 2009; p. 316. [Google Scholar]
- Meyer, H.A. Eine mathematisch-statistische Untersuchung über den Aufbau des Plenterwaldes. Schweiz. Z. Forstwes. 1933, 84, 33–46. [Google Scholar]
- Meyer, H.A.; Stevenson, D.D. The structure and growth of virgin beech-birch-maple-hemlock forests in northern Pennsylvania. J. Agric. Res. 1943, 67, 465–484. [Google Scholar]
- Meyer, H.A. Structure, growth, and drain in balanced uneven-aged forests. J. For. 1952, 50, 85–92. [Google Scholar]
- Kozak, A. A variable-exponent taper equation. Can. J. For. Res. 1988, 18, 1363–1368. [Google Scholar] [CrossRef]
- Costa, E.A.; Finger, C.A.G.; Schneider, P.R.; Hess, A.F. Função de afilamento e sortimentos de madeira para Araucaria angustifolia. Ciênc. Florest. 2016, 26, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.A.; Finger, C.A.G.; Schneider, P.R.; Müller, I. Approximation of numerical integration applied to Araucaria angustifolia stem taper models. Floresta 2015, 45, 31–40. [Google Scholar] [CrossRef] [Green Version]
- SAS. The SAS System for Windows; SAS Institute: Cary, NC, USA, 2004. [Google Scholar]
- Kangas, A.; Maltamo, M. Forest Inventory: Methodology and Application; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2006; Volume 10, p. 362. [Google Scholar]
- Santa Catarina. Projeto de Lei—PL/0556.0/2017: Florianópolis: Assembléia Legislativa do Estado de Santa Catarina. 2017; p. 10. Available online: http://www.alesc.sc.gov.br/legislativo/tramitacao-de-materia/PL./0556.0/2017 (accessed on 12 January 2020).
- Costa, E.A.; Hess, A.F.; Finger, C.A.G. Structure and growth of araucaria forest in southern Brazil. Bosque 2017, 38, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Sanquetta, C.R.; Dalla Côrte, A.P.; Eisfeld, R.L. Crescimento, mortalidade e recrutamento em duas florestas de Araucária (Araucaria angustifolia (Bert.) O. Ktze.) no Estado do Paraná, Brasil. RECEN 2003, 5, 101–112. [Google Scholar]
- Rosot, M.A.D. Manejo florestal de uso múltiplo: Uma alternativa contra a extinção da Floresta com Araucária? Pesqui. Florest. Bras. 2007, 55, 75–85. [Google Scholar]
- Hess, A.F.; Loiola, T.; Souza, I.A.; Minatti, M.; Ricken, P.; Borsoi, G.A. Forest management for the conservation of Araucaria angustifolia in southern brazil. Floresta 2018, 48, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Martins, P.J.; Mazon, J.A.; Martinkoski, L.; Benin, C.C.; Watzlawick, L.F. Arboreal Vegetation Dynamics in an Anthropized Montane Araucaria Forest. Florest. Ambiente 2017. (Article in Portuguese with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Picard, N.; Gasparotto, D. Liocourt’s law for tree diameter distribution in forest stands. Ann. For. Sci. 2016, 73, 751–755. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Jiang, B.; Yuan, W.; Shen, A.; Yang, S.; Yao, S.; Liu, J. On the Management of Large-Diameter Trees in China’s Forests. Forests 2020, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- Bordignon, M.; Monteiro-Filho, E.L.A. Seasonal food resources of the squirrel Sciurus ingrami in a secondary Araucaria Forest in southern Brazil. Stud. Neotrop. Fauna Environ. 1999, 34, 137–140. [Google Scholar] [CrossRef]
- Carvalho, A.L.; d’Oliveira, M.V.N.; Putz, F.E.; Oliveira, L.C. Natural regeneration of trees in selectively logged forest in western Amazonia. For. Ecol. Manag. 2017, 392, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Needham, T.; Kershaw, J.A., Jr.; MacLean, D.A.; Su, Q. Effects of mixed stand management to reduce impacts of spruce budworm defoliation on balsam fir stand-level growth and yield. North. J. Appl. For. 1999, 16, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Schweitzer, C.J.; Dey, D.C.; Wang, Y. Hardwood-Pine Mixedwoods Stand Dynamics Following Thinning and Prescribed Burning. Fire Ecol. 2016, 12, 85–104. [Google Scholar] [CrossRef]
- Jactel, H.; Nicoll, B.C.; Branco, M.; Gonzalez-Olabarria, J.R.; Grodzki, W.; Långström, B.; Moreira, F.; Netherer, S.; Orazio, C.; Piou, D. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 2009, 66, 1–18. [Google Scholar] [CrossRef]
Variables | Units | q = 1.1 | q = 1.3 | q = 1.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Grem | m2·ha−1 | 10.0 | 14.0 | 18.0 | 10.0 | 14.0 | 18.0 | 10.0 | 14.0 | 18.0 |
Vr | m3∙ha−1 | 89.3 | 125.0 | 160.7 | 82.8 | 116.0 | 149.1 | 76.4 | 107.0 | 137.5 |
cc | years | 27.2 | 13.2 | 2.8 | 30.3 | 16.3 | 5.9 | 33.6 | 19.7 | 9.3 |
CI | % | 48.1 | 27.3 | 6.6 | 51.8 | 32.6 | 13.3 | 55.6 | 37.8 | 20.0 |
Rate Cut | m3∙ha−1 | 82.7 | 47.0 | 11.3 | 89.1 | 56.0 | 22.9 | 95.6 | 65.0 | 34.4 |
Total | m3∙83.5 ha−1 | 6907.7 | 3926.7 | 945.7 | 7442.8 | 4675.9 | 1908.9 | 7980.1 | 5428.1 | 2876.0 |
Center of the Class Diameter (CC) | Observed Forest Stand | Remaining Forest Stand | Cut | Assortments | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
hic | h | VS1 | VS2 | VS3 | VS4 | Vtci | ||||||||||||||
N∙ha−1 | G∙ha−1 | V∙ha−1 | N∙ha−1 | G∙ha−1 | V∙ha−1 | N∙ha−1 | G∙ha−1 | V∙ha−1 | (m) | (m) | n | % | n | % | n | % | (m3∙cc) | % | (m3∙cc) | |
12.5 | 81 | 0.9940 | 4.1 | 52 | 0.6339 | 2.6 | 30 | 0.3601 | 1.5 | 5.4 | 9.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0503 | 100.0 | 0.0503 |
17.5 | 52 | 1.2507 | 7.0 | 40 | 0.9557 | 5.4 | 12 | 0.2951 | 1.7 | 8.1 | 11.9 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.1351 | 100.0 | 0.1351 |
22.5 | 30 | 1.1928 | 7.9 | 31 | 1.2152 | 8.1 | 0 | 0.0000 | 0.0 | 9.9 | 13.9 | 0 | 0.0 | 0 | 0.0 | 1 | 32.3 | 0.1789 | 67.7 | 0.2644 |
27.5 | 27 | 1.6037 | 12.0 | 24 | 1.3964 | 10.4 | 4 | 0.2072 | 1.6 | 11.1 | 15.3 | 0 | 0.0 | 0 | 0.0 | 3 | 72.1 | 0.1229 | 27.9 | 0.4406 |
32.5 | 24 | 1.9910 | 15.7 | 18 | 1.5003 | 12.0 | 5 | 0.4907 | 3.7 | 12.0 | 16.4 | 0 | 0.0 | 1 | 33.6 | 3 | 53.0 | 0.0890 | 13.4 | 0.6656 |
37.5 | 26 | 2.8716 | 24.2 | 14 | 1.5365 | 13.1 | 12 | 1.3351 | 11.1 | 12.7 | 17.3 | 0 | 0.0 | 2 | 56.4 | 3 | 40.8 | 0.0262 | 2.8 | 0.9408 |
42.5 | 23 | 3.2628 | 29.0 | 11 | 1.5181 | 13.6 | 12 | 1.7447 | 15.4 | 13.3 | 18.0 | 0 | 0.0 | 3 | 73.6 | 2 | 23.5 | 0.0372 | 2.9 | 1.2674 |
47.5 | 19 | 3.3669 | 31.8 | 8 | 1.4587 | 13.6 | 11 | 1.9082 | 18.2 | 13.7 | 18.6 | 1 | 52.5 | 3 | 46.9 | 0 | 0.0 | 0.0097 | 0.6 | 1.6466 |
52.5 | 11 | 2.3812 | 22.3 | 6 | 1.3708 | 13.2 | 4 | 1.0105 | 9.1 | 14.1 | 19.1 | 1 | 51.1 | 3 | 46.8 | 0 | 0.0 | 0.0437 | 2.1 | 2.0796 |
57.5 | 4 | 1.0387 | 9.2 | 5 | 1.2648 | 12.5 | 0 | 0.0000 | 0.0 | 14.4 | 19.5 | 2 | 83.9 | 1 | 12.7 | 0 | 0.0 | 0.0871 | 3.4 | 2.5674 |
62.5 | 3 | 0.9204 | 8.9 | 4 | 1.1495 | 11.7 | 0 | 0.0000 | 0.0 | 14.7 | 19.8 | 2 | 82.7 | 1 | 12.8 | 0 | 0.0 | 0.1407 | 4.5 | 3.1112 |
67.5 | 2 | 0.7157 | 8.0 | 3 | 1.0314 | 10.7 | 0 | 0.0000 | 0.0 | 14.9 | 20.1 | 2 | 81.6 | 1 | 12.9 | 0 | 0.0 | 0.2048 | 5.5 | 3.7121 |
70.0 | 1 | 0.3848 | 5.8 | 3 | 0.9728 | 10.2 | 0 | 0.0000 | 0.0 | 15.0 | 20.3 | 2 | 81.1 | 1 | 13.0 | 0 | 0.0 | 0.2411 | 6.0 | 4.0343 |
Total * | 300 | 20.9 | 172.0 | 211 | 14.0 | 116.0 | 91 | 7.4 | 62.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnoni Costa, E.; Liesenberg, V.; Felipe Hess, A.; Guimarães Finger, C.A.; Renato Schneider, P.; Villanova Longhi, R.; Schons, C.T.; Adriano Borsoi, G. Simulating Araucaria angustifolia (Bertol.) Kuntze Timber Stocks With Liocourt’s Law in a Natural Forest in Southern Brazil. Forests 2020, 11, 339. https://doi.org/10.3390/f11030339
Arnoni Costa E, Liesenberg V, Felipe Hess A, Guimarães Finger CA, Renato Schneider P, Villanova Longhi R, Schons CT, Adriano Borsoi G. Simulating Araucaria angustifolia (Bertol.) Kuntze Timber Stocks With Liocourt’s Law in a Natural Forest in Southern Brazil. Forests. 2020; 11(3):339. https://doi.org/10.3390/f11030339
Chicago/Turabian StyleArnoni Costa, Emanuel, Veraldo Liesenberg, André Felipe Hess, César Augusto Guimarães Finger, Paulo Renato Schneider, Régis Villanova Longhi, Cristine Tagliapietra Schons, and Geedre Adriano Borsoi. 2020. "Simulating Araucaria angustifolia (Bertol.) Kuntze Timber Stocks With Liocourt’s Law in a Natural Forest in Southern Brazil" Forests 11, no. 3: 339. https://doi.org/10.3390/f11030339
APA StyleArnoni Costa, E., Liesenberg, V., Felipe Hess, A., Guimarães Finger, C. A., Renato Schneider, P., Villanova Longhi, R., Schons, C. T., & Adriano Borsoi, G. (2020). Simulating Araucaria angustifolia (Bertol.) Kuntze Timber Stocks With Liocourt’s Law in a Natural Forest in Southern Brazil. Forests, 11(3), 339. https://doi.org/10.3390/f11030339