Evaluation of Individual Distance-Independent Diameter Growth Models for Japanese Cedar (Cryptomeria japonica) Trees under Multiple Thinning Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Individual-Tree Diameter Growth Model
2.3. Distance-Independent Competition Index
2.3.1. Basal Area of Trees Larger than the Subject Tree (BAL)
2.3.2. Diameter Ratio (DR)
2.3.3. Basal Area Ratio (BR)
2.3.4. Cumulative Distribution Function (CDF)
2.3.5. Relative Spacing Index (Sr)
2.3.6. Site Density Index (SDI)
2.4. Model Fitting and Evaluation
3. Results
3.1. The Goodness of Fit for Distance-Independent Competition Index
3.2. Comparison of Model Accuracy between TDM Model and TIS Model
3.3. Model Accuracy under Different Thinning Intensities
4. Discussion
4.1. Model Selection for TDM and TIS Models
4.2. Diameter Growth Model Accuracy for TDM and TIS Models
4.3. Application for Forest Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujimori, T. Ecological and Silvicultural Strategies for Sustainable Forest Management; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Davis, L.S.; Johnson, K.N.; Bettinger, P.; Howard, T. Forest Management: To Sustain Ecological, Economic, and Social Values; McGraw Hill: New York, NY, USA, 2001. [Google Scholar]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A.; Vanclay, J.K. Forest Growth and Yield Modeling; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bose, A.K.; Weiskittel, A.; Kuehne, C.; Wagner, R.G.; Turnblom, E.; Burkhart, H.E. Does commercial thinning improve stand-level growth of the three most commercially important softwood forest types in North America? For. Ecol. Manag. 2018, 409, 683–693. [Google Scholar] [CrossRef]
- Lussetti, D.; Kuljus, K.; Ranneby, B.; Ilstedt, U.; Falck, J.; Karlsson, A. Using linear mixed models to evaluate stand level growth rates for dipterocarps and Macaranga species following two selective logging methods in Sabah, Borneo. For. Ecol. Manag. 2019, 437, 372–379. [Google Scholar] [CrossRef]
- Wykoff, W.R. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Sci. 1990, 36, 1077–1104. [Google Scholar]
- Monserud, R.A.; Sterba, H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. Manag. 1996, 80, 57–80. [Google Scholar] [CrossRef]
- Hökkä, H.; Alenius, V.; Penttilä, T. Individual-tree basal area growth models for Scots Pine, Pibescent Birch and Norway Spruce on Drained peatlands in Finland. Silva Fenn. 1997, 31, 161–178. [Google Scholar] [CrossRef]
- Contreras, M.A.; Affleck, D.; Chung, W. Evaluating tree competition indices as predictors of basal area increment in western Montana forests. For. Ecol. Manag. 2011, 262, 1939–1949. [Google Scholar] [CrossRef]
- Quiñonez-Barraza, G.; Zhao, D.; De Los Santos Posadas, H.M.; Corral-Rivas, J.J. Considering neighborhood effects improves individual dbh growth models for natural mixed-species forests in Mexico. Ann. For. Sci. 2018, 75, 78. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Cao, Q.V.; Cao, T. Evaluation of distance-independent competition indices in predicting tree survival and diameter growth. Can. J. For. Res. 2019, 49, 440–446. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Bare, B.B. Distance-dependent and distance-independent models of Douglas-fir and western hemlock basal area growth following silvicultural treatment. For. Ecol. Manag. 1996, 89, 1–11. [Google Scholar] [CrossRef]
- Miyamoto, A.; Amano, M. Difference of growth by the spatial distribution of individual trees and growth factor. Bull. FFPRI 2002, 1, 163–178. [Google Scholar]
- Tenzin, J.; Tenzin, K.; Hasenauer, H. Individual tree basal area increment models for broadleaved forests in Bhutan. Forestry 2017, 90, 367–380. [Google Scholar] [CrossRef]
- Takata, K.; Kobayashi, S. Relationships between diameter or basal-area growth and competition factors for Cryptomeria japonica D. DON stands after the last thinning. J. Jpn. For. Soc. 1983, 65, 113–118. [Google Scholar]
- Daniels, R.F.; Burkhart, H.E.; Clason, T.R. A comparison of competition measures for predicting growth of loblolly pine trees. Can. J. For. Res. 1986, 16, 1230–1237. [Google Scholar] [CrossRef]
- Biging, G.S.; Dobbertin, M. Evaluation of Competition Indices in Individual Tree Growth Models. For. Sci. 1995, 41, 360–377. [Google Scholar]
- Kahriman, A.; Şahin, A.; Sönmez, T.; Yavuz, M. A novel approach to selecting a competition index: The effect of competition on individual-tree diameter growth of Calabrian pine. Can. J. For. Res. 2018, 48, 1217–1226. [Google Scholar] [CrossRef]
- Kuehne, C.; Weiskittel, A.R.; Waskiewicz, J. Comparing performance of contrasting distance-independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogeneous, mixed-species forests of Northeastern United States. For. Ecol. Manag. 2019, 433, 205–216. [Google Scholar] [CrossRef]
- Uzoh, F.C.C.; Oliver, W.W. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. For. Ecol. Manag. 2008, 256, 438–445. [Google Scholar] [CrossRef]
- Roberts, S.D.; Harrington, C.A. Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests. For. Ecol. Manag. 2008, 255, 2771–2781. [Google Scholar] [CrossRef]
- Mäkinen, H.; Isomäki, A. Thinning intensity and growth of Scots pine stands in Finland. For. Ecol. Manag. 2004, 201, 311–325. [Google Scholar] [CrossRef]
- Mäkinen, H.; Isomäki, A. Thinning intensity and growth of Norway spruce stands in Finland. Forestry 2004, 77, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Chauret, G.; Swift, D.E.; Duchesne, I. Effects of precommercial thinning on tree growth and lumber quality in a jack pine stand in New Brunswick, Canada. Can. J. For. Res. 2006, 36, 945–952. [Google Scholar] [CrossRef]
- Del Río, M.; Calama, R.; Cañellas, I.; Roig, S.; Montero, G. Thinning intensity and growth response in SW-European Scots pine stands. Ann. For. Sci. 2008, 65, 308. [Google Scholar]
- Kitahara, F. Summary of Field Measurements Data of Japanese Sugi in Kudarukawa National Forest; Annual Report 56; Shikoku Research Center Foreatry and Forest Products Research Institute: Kochi, Japan, 2015; pp. 33–34. [Google Scholar]
- Tanaka, K. A Stochastic Model of Diameter Growth in an Even-Aged Pure Forest Stand. J. Jpn. For. Soc. 1986, 68, 226–236. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 8 November 2019).
- Sprugel, D.G. Correcting for Bias in Log-Transformed Allometric Equations. Ecology 1983, 64, 209–210. [Google Scholar] [CrossRef]
- Wykoff, W.R.; Crookston, N.L.; Stage, A.R. User’s Guide to the Stand Prognosis Model; General Technical Report INT-133; United States Department of Agriculture: Washington, DC, USA, 1982. [Google Scholar]
- Curtis, R.O.; Marshall, D.D. Technical Note: Why Quadratic Mean Diameter? West. J. Appl. For. 2000, 15, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Wilson, F.G. Numerical expression of stocking in terms of height. J. For. 1946, 44, 758–761. [Google Scholar]
- Reineke, L.H. Perfecting a stand-density index for even aged forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Nishizono, T.; Tanaka, K. Does the relationship between quadratic mean diameter and stem density in old thinned and unthinned Cryptomeria japonica forests deviate from a power function? J. For. Plan. 2012, 18, 63–76. [Google Scholar]
- Kunisaki, T. Selecting a convenient index of stand density for the management of dense plantations of young Sugi (Cryptomeria japonica). Bull. Iwate Univ. 2013, 44, 1–18. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Tanaka, S.; Takahashi, T.; Nishizono, T.; Kitahara, F.; Saito, H.; Iehara, T.; Kodani, E.; Awaya, Y. Stand Volume Estimation Using the k-NN Technique Combined with Forest Inventory Data, Satellite Image Data and Additional Feature Variables. Remote Sens. 2014, 7, 378–394. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, Y.; Kiyono, Y.; Fujimori, T. Crown Development and Stem Growth in Relation to Stand Density in Even-Aged Pure Stands (II) Clear-length model of Cryptomeria japonica stands as a function of stand density and tree height. J. Jpn. For. Soc. 1985, 67, 391–397. [Google Scholar]
- Mäkinen, H.; Isomäki, A. Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. For. Ecol. Manag. 2004, 201, 295–309. [Google Scholar] [CrossRef]
- Palahí, M.; Pukkala, T.; Miina, J.; Montero, G. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 2003, 60, 1–10. [Google Scholar]
- Aussenac, G. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 2000, 57, 287–301. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
Thinning Rate at 25 Years Old (%) | Thinning Rate at 37 Years Old (%) | |||
---|---|---|---|---|
Volume | Number of trees | Volume | Number of trees | |
(1) Intensive thinning | 26 | 41 | 29 | 38 |
(2) Moderate thinning | 22 | 38 | 23 | 34 |
(3) Light thinning | 20 | 32 | 23 | 34 |
(4) No thinning | - | - | - | - |
Age (Year) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
14 | 19 | 23 | 29 | 34 | 40 | 45 | 51 | 56 | 61 | |
(1) Intensive thinning (0.116 ha) | ||||||||||
Mean height (m) | 11.3 | 13.9 | 16.7 | 20.7 | 23.2 | 26.0 | 28.8 | 30.4 | 32.0 | 33.3 |
Mean DBH (cm) | 14.5 | 17.2 | 18.8 | 25.5 | 27.6 | 32.3 | 34.4 | 37.3 | 38.9 | 40.8 |
Stand density (trees/ha) | 2509 | 2509 | 2457 | 1241 | 1241 | 879 | 724 | 707 | 707 | 707 |
(2) Moderate thinning (0.123 ha) | ||||||||||
Mean height (m) | 10.4 | 12.9 | 15.4 | 20.9 | 22.7 | 25.8 | 28.5 | 30.3 | 31.6 | 33.6 |
Mean DBH (cm) | 13.9 | 17.2 | 19.1 | 25.1 | 27.3 | 32.1 | 34.7 | 36.9 | 39.0 | 41.0 |
Stand density (trees/ha) | 2236 | 2236 | 2154 | 1228 | 1228 | 919 | 805 | 805 | 780 | 780 |
(3) Light thinning (0.106 ha) | ||||||||||
Mean height (m) | 11.3 | 14.2 | 16.9 | 21.9 | 23.1 | 26.3 | 29.1 | 30.4 | 31.8 | 33.4 |
Mean DBH (cm) | 15.6 | 18.9 | 20.7 | 26.2 | 28.0 | 33.1 | 35.6 | 37.5 | 38.6 | 40.6 |
Stand density (trees/ha) | 2189 | 2189 | 2132 | 1349 | 1349 | 887 | 887 | 887 | 877 | 868 |
(4) No thinning (0.113 ha) | ||||||||||
Mean height (m) | 10.2 | 13.1 | 15.6 | 18.9 | 20.8 | 24.4 | 25.7 | 26.9 | 28.3 | 29.5 |
Mean DBH (cm) | 14.1 | 16.9 | 18.8 | 21.0 | 23.4 | 25.8 | 26.7 | 28.4 | 30.4 | 31.8 |
Stand density (trees/ha) | 2469 | 2469 | 2407 | 2248 | 2009 | 1770 | 1770 | 1681 | 1487 | 1416 |
Marginal R2 | Conditional R2 | AIC | ΔAIC | |
---|---|---|---|---|
(1) Intensive thinning | ||||
Null | 0.29 | 0.53 | 2611 | 126 |
BAL | 0.35 | 0.63 | 2523 | 38 |
DR | 0.33 | 0.56 | 2569 | 83 |
BR | 0.31 | 0.56 | 2602 | 117 |
CDF | 0.29 | 0.53 | 2618 | 133 |
Sr | 0.36 | 0.62 | 2485 | 0 |
SDI | 0.32 | 0.59 | 2546 | 61 |
(2) Moderate thinning | ||||
Null | 0.30 | 0.59 | 2596 | 247 |
BAL | 0.37 | 0.67 | 2475 | 126 |
DR | 0.34 | 0.61 | 2553 | 204 |
BR | 0.33 | 0.61 | 2585 | 236 |
CDF | 0.30 | 0.59 | 2602 | 253 |
Sr | 0.42 | 0.70 | 2349 | 0 |
SDI | 0.36 | 0.65 | 2463 | 114 |
(3) Light thinning | ||||
Null | 0.28 | 0.57 | 2481 | 230 |
BAL | 0.38 | 0.70 | 2317 | 66 |
DR | 0.36 | 0.62 | 2396 | 144 |
BR | 0.33 | 0.62 | 2441 | 189 |
CDF | 0.28 | 0.57 | 2488 | 237 |
Sr | 0.41 | 0.69 | 2251 | 0 |
SDI | 0.34 | 0.63 | 2371 | 119 |
(4) No thinning | ||||
Null | 0.35 | 0.58 | 3957 | 363 |
BAL | 0.43 | 0.68 | 3749 | 155 |
DR | 0.42 | 0.65 | 3824 | 230 |
BR | 0.38 | 0.62 | 3934 | 340 |
CDF | 0.35 | 0.58 | 3964 | 371 |
Sr | 0.49 | 0.68 | 3594 | 0 |
SDI | 0.48 | 0.68 | 3614 | 20 |
Parameters | Description | Estimate | SE | p-Value |
---|---|---|---|---|
(1) Intensive thinning | ||||
α0 | intercept | −5.571 | 0.340 | <0.001 |
α1 | DBH | 0.200 | 0.014 | <0.001 |
α2 | DBH2 | −0.002 | 0.000 | <0.001 |
α3 | Age | −0.056 | 0.003 | <0.001 |
α4 | Sr | 0.161 | 0.013 | <0.001 |
(2) Moderate thinning | ||||
α0 | intercept | −6.260 | 0.346 | <0.001 |
α1 | DBH | 0.174 | 0.012 | <0.001 |
α2 | DBH2 | −0.001 | 0.000 | <0.001 |
α3 | Age | −0.043 | 0.003 | <0.001 |
α4 | Sr | 0.200 | 0.012 | <0.001 |
(3) Light thinning | ||||
α0 | intercept | −6.650 | 0.368 | <0.001 |
α1 | DBH | 0.199 | 0.014 | <0.001 |
α2 | DBH2 | −0.002 | 0.000 | <0.001 |
α3 | Age | −0.044 | 0.003 | <0.001 |
α4 | Sr | 0.209 | 0.013 | <0.001 |
(4) No thinning | ||||
α0 | intercept | −6.801 | 0.307 | <0.001 |
α1 | DBH | 0.213 | 0.014 | <0.001 |
α2 | DBH2 | −0.002 | 0.000 | <0.001 |
α3 | Age | −0.030 | 0.003 | <0.001 |
α4 | Sr | 0.195 | 0.010 | <0.001 |
Marginal R2 | Conditional R2 | AIC | ΔAIC | |
---|---|---|---|---|
Null | 0.33 | 0.58 | 11578 | 803 |
BAL | 0.40 | 0.67 | 11080 | 305 |
DR | 0.36 | 0.62 | 11393 | 618 |
BR | 0.35 | 0.61 | 11504 | 729 |
CDF | 0.33 | 0.58 | 11587 | 811 |
Sr | 0.42 | 0.67 | 10775 | 0 |
SDI | 0.37 | 0.63 | 11205 | 430 |
Parameters | Description | Estimate | SE | p-Value |
---|---|---|---|---|
α0 | intercept | −5.587 | 0.156 | <0.001 |
α1 | DBH | 0.177 | 0.007 | <0.001 |
α2 | DBH2 | −0.002 | 0.000 | <0.001 |
α3 | Age | −0.040 | 0.002 | <0.001 |
α4 | Sr | 0.163 | 0.005 | <0.001 |
RMSE (cm) | rRMSE (%) | Bias (cm) | Variance (cm) | |||||
---|---|---|---|---|---|---|---|---|
TDM | TIS | TDM | TIS | TDM | TIS | TDM | TIS | |
(1) Intensive thinning | 0.249 | 0.250 | 54.2 | 54.4 | −0.092 | −0.104 | 0.054 | 0.052 |
(2) Moderate thinning | 0.230 | 0.220 | 47.8 | 45.8 | −0.074 | −0.068 | 0.047 | 0.044 |
(3) Light thinning | 0.237 | 0.228 | 51.1 | 49.1 | −0.078 | −0.071 | 0.050 | 0.047 |
(4) No thinning | 0.203 | 0.199 | 60.6 | 59.4 | −0.049 | −0.081 | 0.039 | 0.033 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukumoto, K.; Nishizono, T.; Kitahara, F.; Hosoda, K. Evaluation of Individual Distance-Independent Diameter Growth Models for Japanese Cedar (Cryptomeria japonica) Trees under Multiple Thinning Treatments. Forests 2020, 11, 344. https://doi.org/10.3390/f11030344
Fukumoto K, Nishizono T, Kitahara F, Hosoda K. Evaluation of Individual Distance-Independent Diameter Growth Models for Japanese Cedar (Cryptomeria japonica) Trees under Multiple Thinning Treatments. Forests. 2020; 11(3):344. https://doi.org/10.3390/f11030344
Chicago/Turabian StyleFukumoto, Keiko, Tomohiro Nishizono, Fumiaki Kitahara, and Kazuo Hosoda. 2020. "Evaluation of Individual Distance-Independent Diameter Growth Models for Japanese Cedar (Cryptomeria japonica) Trees under Multiple Thinning Treatments" Forests 11, no. 3: 344. https://doi.org/10.3390/f11030344
APA StyleFukumoto, K., Nishizono, T., Kitahara, F., & Hosoda, K. (2020). Evaluation of Individual Distance-Independent Diameter Growth Models for Japanese Cedar (Cryptomeria japonica) Trees under Multiple Thinning Treatments. Forests, 11(3), 344. https://doi.org/10.3390/f11030344