Dragon’s Blood from Dracaena cambodiana in China: Applied History and Induction Techniques toward Formation Mechanism
Abstract
:1. Introduction
2. The History of Dragon’s Blood as a Traditional Chinese Medicine in China
3. The Dracaena Source Species and Their Conservation in China
3.1. Dracaena cochinchinensis
3.2. Dracaena cambodiana
3.3. Conservation of D. cochinchinensis and D. cambodiana in China
4. The Technology for Artificial Inducing Dragon’s Blood Formation
4.1. Wounds and Dragon’s Blood Formation
4.2. Microorganisms and Dragon’s Blood Formation
4.3. Plant Hormones and Dragon’s Blood Formation
4.4. Small Molecules and Dragon’s Blood Formation
5. The Mechanism of Dragon’s Blood Formation
5.1. Suppression Subtractive Hybridization
5.2. Transcriptome
6. The Genome Structure Characterization of Dracaena cambodiana
6.1. Organelle Genome Sequencing of Dracaena cambodiana
6.2. Genome SurveySsequencing of Dracaena cambodiana
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adolt, R.; Pavlis, J. Age structure and growth of Dracaena cinnabari populations on Socotra. Trees-Struct. Funct. 2004, 18, 43–53. [Google Scholar] [CrossRef]
- Aslam, J.; Mujib, A.; Sharma, M.P. In vitro micropropagation of Dracaena sanderiana Sander ex Mast: An important indoor ornamental plant. Saudi J. Biol. Sci. 2013, 20, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.Y.; Yi, T.; Sze-To, C.M.; Zhu, L.; Peng, W.L.; Zhang, Y.Z.; Zhao, Z.Z.; Chen, H.B. A systematic review of the botanical, phytochemical and pharmacological profile of Dracaena cochinchinensis, a plant source of the ethnomedicine “Dragon’s Blood”. Molecules 2014, 19, 10650–10669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.; Bleakley, B.; Gupta, R.K. Dragon’s blood: Botany, chemistry and therapeutic uses. J. Ethnopharmacol. 2008, 115, 361–380. [Google Scholar] [CrossRef]
- Chen, H.Q.; Zuo, W.J.; Wang, H.; Shen, H.Y.; Luo, Y.; Dai, H.F.; Mei, W.L. Two new antimicrobial flavanes from dragon’s blood of Dracaena cambodiana. J. Asian Nat. Prod. Res. 2012, 14, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.L.; Luo, Y.; Wang, H.; Shen, H.Y.; Zeng, Y.B.; Dai, H.F. Two new flavonoids from dragon’s blood of Dracaena cambodiana. Bull. Korean Chem. Soc. 2013, 34, 1791–1794. [Google Scholar] [CrossRef] [Green Version]
- Tapondjou, L.A.; Ponou, K.B.; Teponno, R.B.; Mbiantcha, M.; Djoukeng, J.D.; Nguelefack, T.B.; Watcho, P.; Cadenas, A.G.; Park, H.J. In vivo anti-inflammatory effect of a new steroidal saponin, mannioside A, and its derivatives isolated from Dracaena mannii. Arch. Pharm. Res. 2008, 31, 653. [Google Scholar] [CrossRef] [Green Version]
- Kougan, G.B.; Miyamoto, T.; Tanaka, C.; Paululat, T.; Mirjolet, J.F.; Duchamp, O.; Sondengam, B.L.; Lacaille-Dubois, M.A. Steroidal saponins from two species of Dracaena. J. Nat. Prod. 2010, 73, 1266–1270. [Google Scholar] [CrossRef]
- Zheng, D.J.; Xie, L.S.; Wang, Y.; Zhang, Z.L.; Zhang, W. Research advances in dragon’s blood plants in China. Chin. Wild Plant Res. 2009, 28, 15–20. [Google Scholar]
- Luo, Y.; Wang, H.; Zhao, Y.X.; Zeng, Y.B.; Shen, H.Y.; Dai, H.F.; Mei, W.L. Cytotoxic and antibacterial flavonoids from dragon’s blood of Dracaena cambodiana. Planta Med. 2011, 77, 2053–2056. [Google Scholar] [CrossRef] [Green Version]
- Sollmann, T. A sketch of the medical history of Dragon’s blood. J. Am. Pharm. Assoc. 1920, 9, 141–144. [Google Scholar] [CrossRef]
- Zheng, Q.A.; Yang, C.R. Dracaenoside A and B, new C-22 steroidal lactone glycosides from the stem of Dracaena cochinchinensis. Chin. Chem. Lett. 2003, 14, 1261–1264. [Google Scholar]
- Mabberley, D.J. Mabberley’s Plant-Book: A Portable Dictionary of Plants, Their Classification and Uses; Cambridge University Press: Cambridge, UK, 2008; pp. 287–288. [Google Scholar]
- Dioscorides, P. De Materia Medica (Translated by Beck L.Y); Olms Press: Hildesheim, Germany, 2005; p. 374. [Google Scholar]
- Krishnaraj, P.; Chang, Y.; Ho, T.J.; Lu, N.C.; Lin, M.D.; Chen, H.P. In vivo pro-angiogenic effects of dracorhodin perchlorate in zebrafish embryos: A novel bioactivity evaluation platform for commercial dragon blood samples. J. Food Drug Anal. 2019, 27, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Rustiami, H.; Setyowati, F.M.; Kartawinata, K. Taxonomy and uses of Daemonorops draco (Willd.) Blume. J. Trop. Ethnobiol. 2004, 1, 65–75. [Google Scholar]
- Nadezhdina, N.; Plichta, R.; Nadezhdin, V.; Gebauer, R.; Jupa, R.; Habrova, H.; Madera, P. A comparative structural and functional study of leaf traits and sap flow in Dracaena cinnabari and Dracaena draco seedlings. Funct. Plant Biol. 2015, 42, 1092–1105. [Google Scholar] [CrossRef]
- Chen, X.Q.; Xu, J.M.; Liang, S.Y.; Ji, Z.H.; Lang, K.Y. Liliaceae. Flora China 1978, 14, 276–277. [Google Scholar]
- Hu, Y.; Tu, P.; Li, R.; Wan, Z.; Wang, D. Studies on stilbene derivatives from Dracaena cochinchinensis and their antifungal activities. Chin. Tradit. Herb. Drugs 2001, 32, 104–106. [Google Scholar]
- Yi, T.; Chen, H.B.; Zhao, Z.Z.; Yu, Z.L.; Jiang, Z.H. Comparison of the chemical profiles and anti-platelet aggregation effects of two “dragon’s blood” drugs used in traditional Chinese medicine. J. Ethnopharmacol. 2011, 133, 796–802. [Google Scholar] [CrossRef] [Green Version]
- Van Minh, C.; Dat, N.T.; Dang, N.H.; Nam, N.H.; Ban, N.K.; Van Tuyen, N.; Huong, L.M.; Huong, T.T.; Van Kiem, P. Unusual 22S-spirostane steroids from Dracaena cambodiana. Nat. Prod. Commun. 2009, 4, 1934578X0900400908. [Google Scholar] [CrossRef] [Green Version]
- Mwachala, G.; Cheek, M.; Fischer, E.; Muasya, A.M. A new species of Dracaena L. (Dracaenaceae-Ruscaceae) from Mt Kupe and the Bakossi Mts, Cameroon. Kew Bull. 2007, 62, 613–616. [Google Scholar]
- Kamel, M.; Ghazaly, U.M.; Callmander, M.W. Conservation status of the endangered Nubian dragon tree Dracaena ombet in Gebel Elba national park, Egypt. Oryx 2018, 49, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.M.; Melo, M.J.; Parola, A.J.; de Melo, J.S.S.; Catarino, F.; Pina, F.; Cook, F.E.M.; Simmonds, M.S.J.; Lopes, J.A. Flavylium chromophores as species markers for dragon’s blood resins from Dracaena and Daemonorops trees. J. Chromatogr. A 2008, 1209, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.G.M.; Farwell, D.W.; Quye, A. ‘Dragon’s blood’I-characterization of an ancient resin using Fourier transform Raman spectroscopy. J. Raman Spectrosc. 1997, 28, 243–249. [Google Scholar] [CrossRef]
- Xue, Y.; Huang, B.L.; Lü, C.Q.; Zhao, Y.P.; Zhou, C.M.; Li, Y. Rapid propagation of Dracaena cambodiana in vitro. Guihaia 2007, 27, 937–940. [Google Scholar]
- Cai, X.T.; Xu, Z.F. A study on the resource of Chinese Dragon’s Blood. Acta Bot. Yunnanica 1979, 1, 1–10. [Google Scholar]
- Zheng, Q.A.; Zhang, Y.J.; Li, H.Z.; Yang, C.R. Flavonoids from Dragon’s Blood of Dracaena cochinchinensis. Helv. Chim. Acta 2004, 87, 1167–1171. [Google Scholar] [CrossRef]
- Zheng, Q.A.; Zhang, Y.J.; Li, H.Z.; Yang, C.R. Steroidal saponins from fresh stems of Dracaena cochinchinensis. Steroids 2004, 69, 111–119. [Google Scholar] [CrossRef]
- Ma, C.J. Cellulase elicitor induced accumulation of capsidiol in Capsicum annumm L. suspension cultures. Biotechnol. Lett. 2008, 30, 961–965. [Google Scholar] [CrossRef]
- Jasiński, M.; Kachlicki, P.; Rodziewicz, P.; Figlerowicz, M.; Stobiecki, M. Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol. Biochem. 2009, 47, 847–853. [Google Scholar] [CrossRef]
- Mialoundama, A.S.; Heintz, D.; Debayle, D.; Rahier, A.; Camara, B.; Bouvier, F. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol. 2009, 150, 1556–1566. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.H.; Lin, Y.J.; Kuo, C.H.; Ku, K.L. Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses. J. Agric. Food Chem. 2010, 58, 9518–9522. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yang, M.; Huang, H.; Chuan, Y.; He, X.; Li, C.; Zhu, Y.; Zhu, S. Priming maize resistance by its neighbors: Activating 1, 4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease. Front. Plant Sci. 2015, 6, 830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.X.; Wang, H.; Gai, C.J.; Chen, H.Q.; Li, W.; Mei, W.L.; Dai, H.F. Three new flavanoids from artificially induced dragon’s blood of Dracaena cambodiana. J. Asian Nat. Prod. Res. 2018, 20, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.Y.; Wang, H.; Zuo, W.J.; Zhao, Y.X.; Luo, Y.; Mei, W.L.; Dai, H.F. A new phenylpropanoid glycoside from dragon’s blood of Dracaena cambodiana. Chem. Res. Chin. Univ. 2013, 29, 483–486. [Google Scholar] [CrossRef]
- Shen, H.Y.; Zuo, W.J.; Wang, H.; Zhao, Y.X.; Guo, Z.K.; Luo, Y.; Li, X.N.; Dai, H.F.; Mei, W.L. Steroidal saponins from dragon’s blood of Dracaena cambodiana. Fitoterapia 2014, 94, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Cheng, Z.Y. Chinese dragon’ blood and Fusarium graminearum. Plant Mag. 1997, 1, 15–16. [Google Scholar]
- Gong, L.; Guo, S. Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afr. J. Biotechnol. 2009, 8, 731–736. [Google Scholar]
- Wang, X.H.; Zhang, C.; Yang, L.L.; Gomes-Laranjo, J. Production of dragon’s blood in Dracaena cochinchinensis plants by inoculation of Fusarium proliferatum. Plant Sci. 2011, 180, 292–299. [Google Scholar] [CrossRef]
- Ou, L.; Wang, X.; Zhang, C.H. Production and characterization of dragon’s blood from leaf blades of Dracaena cambodiana elicited by Fusarium proliferatum. Ind. Crop. Prod. 2013, 45, 230–235. [Google Scholar] [CrossRef]
- Yang, X.H.; Zheng, S.; Wang, X.H. Preliminary study on chemical inducers for dragon’s blood formed by Dracaena cambodiana. Amino Acid Biot. Resour. 2014, 36, 49–54. [Google Scholar]
- Yang, B.P.; Zhang, S.Z.; Cai, W.W.; Song, Q.S.; Wang, X.H.; Wang, D.; Yang, X.; Gu, L.H.; Feng, C.L.; Wang, J.G.; et al. Induced formation of dragon’s blood in the process of tissue culture of cambodia dragonblood (Dracaena cambodiana Pierre ex Gagnep). Chin. J. Trop. Crop. 2009, 30, 181–185. [Google Scholar]
- Zhu, J.H.; Cao, T.J.; Dai, H.F.; Li, H.L.; Guo, D.; Mei, W.L.; Peng, S.Q. De novo transcriptome characterization of Dracaena cambodiana and analysis of genes involved in flavonoid accumulation during formation of dragon’s blood. Sci. Rep.-U. K. 2016, 6, 38315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, J.; Wu, J.; Mei, W.L.; Dai, H.F. Flavonoids from Dracaena cambodiana. Chem. Nat. Compd. 2011, 47, 624. [Google Scholar] [CrossRef]
- Diatchenko, L.; Lau, Y.F.; Campbell, A.P.; Chenchik, A.; Moqadam, F.; Huang, B.; Lukyanov, S.; Lukyanov, K.; Gurskaya, N.; Sverdlov, E.D.; et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 1996, 93, 6025–6030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Zhang, S.; Yang, B.; Feng, C.; Yang, X.; Gu, H. Isolation of Genes Related to Dragon Biosynthesis from Dracaena cambodiana Pierre ex Gagnep. Mol. Plant Breed. 2008, 6, 881–885. [Google Scholar]
- Zhang, K.; Han, Y.T.; Zhao, F.L.; Hu, Y.; Gao, Y.R.; Ma, Y.F.; Zheng, Y.; Wang, Y.J.; Wen, Y.Q. Genome-wide identification and expression analysis of the CDPK gene family in grape, Vitis spp. BMC Plant Biol. 2015, 15, 164. [Google Scholar] [CrossRef] [Green Version]
- Veremeichik, G.N.; Grigorchuk, V.P.; Shkryl, Y.N.; Bulgakov, D.V.; Silantieva, S.A.; Bulgakov, V.P. Induction of resveratrol biosynthesis in Vitis amurensis cells by heterologous expression of the Arabidopsis constitutively active, Ca2+-independent form of the AtCPK1 gene. Process Biochem. 2017, 54, 144–155. [Google Scholar] [CrossRef]
- Gupta, R.; Min, C.W.; Kramer, K.; Agrawal, G.K.; Rakwal, R.; Park, K.H.; Wang, Y.M.; Finke Kim, S.T. A multi-omics analysis of glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics 2018, 18, 1700366. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, H.L.; Guo, D.; Wang, Y.; Dai, H.F.; Mei, W.L.; Peng, S.Q. Identification, characterization and expression analysis of genes involved in steroidal saponin biosynthesis in Dracaena cambodiana. J. Plant Res. 2018, 131, 555–562. [Google Scholar] [CrossRef]
- Petrussa, E.; Braidot, E.; Zancani, M.; Peresson, C.; Bertolini, A.; Patui, S.; Vianello, A. Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 2013, 14, 14950–14973. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Bhandawat, A.; Singh, G.; Parmar, R.; Seth, R.; Sharma, R.K. Spatial transcriptome analysis provides insights of key gene (s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Sci. Rep-U. K. 2017, 7, 45295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 2015, 20, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.H.; Li, H.L.; Guo, D.; Wang, Y.; Dai, H.F.; Mei, W.L.; Peng, S.Q. Transcriptome-wide identification and expression analysis of glutathione S-transferase genes involved in flavonoids accumulation in Dracaena cambodiana. Plant Physiol. Biochem. 2016, 104, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Schaart, J.G.; Dubos, C.; Romero De La Fuente, I.; Van Houwelingen, A.M.; de Vos, R.C.; Jonker, H.H.; Xu, W.J.; Routaboul, J.M.; Lepiniec, L.; Bovy, A.G. Identification and characterization of MYB-b HLH-WD 40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol. 2013, 197, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Hichri, I.; Barrieu, F.; Bogs, J.; Kappel, C.; Delrot, S.; Lauvergeat, V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J. Exp. Bot. 2011, 62, 2465–2483. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Chen, P.; Guo, D.; Li, H.; Wang, Y.; Dai, H.; Mei, W.L.; Peng, S. Identification and Functional Characterization of the DcF3′H Promoter from Dracaena cambodiana. Trop. Plant Biol. 2018, 11, 192–198. [Google Scholar] [CrossRef]
- Jeong, S.T.; Goto-Yamamoto, N.; Hashizume, K.; Esaka, M.J.P.S. Expression of the flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci. 2006, 170, 61–69. [Google Scholar] [CrossRef]
- Sun, R.Z.; Pan, Q.H.; Duan, C.Q.; Wang, J. Light response and potential interacting proteins of a grape flavonoid 3′-hydroxylase gene promoter. Plant Physiol. Biochem. 2015, 97, 70–81. [Google Scholar] [CrossRef]
- Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 2001, 13, 2099–2114. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Wang, B.; Zhong, Y.; Yao, L.; Cheng, L.; Wu, T. The soybean R2R3 MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis. Plant Mol. Biol. 2015, 89, 35–48. [Google Scholar] [CrossRef]
- Petit, R.J.; Vendramin, G.G. Evolutionary perspectives on the origins and conservation of European biodiversity. In Phylogeography of Southern European Refugia; Weiss, S., Ferrand, N., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 23–97. [Google Scholar]
- Zhu, Z.X.; Mu, W.X.; Wang, J.H.; Zhang, J.R.; Zhao, K.K.; Ross Friedman, C.; Wang, H.F. Complete plastome sequence of Dracaena cambodiana (Asparagaceae): A species considered “Vulnerable” in Southeast Asia. Mitochondrial DNA B 2018, 3, 620–621. [Google Scholar] [CrossRef] [Green Version]
- Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; Stevens, P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- Gong, L.; Qiu, X.H.; Huang, J.; Xu, W.; Bai, J.Q.; Zhang, J.; Su, H.; Xu, C.M.; Huang, Z.H. Constructing a DNA barcode reference library for southern herbs in China: A resource for authentication of southern Chinese medicine. PLoS ONE 2018, 13, e0201240. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; Yuan, Q.; Guo, L. Complete chloroplast genome sequence of Dracaena cochinchinensis: Genome structure and genomic resources. Mitochondrial DNA B 2019, 4, 1750–1751. [Google Scholar] [CrossRef] [Green Version]
- Bazinet, A.L.; Mitter, K.T.; Davis, D.R.; Van Nieukerken, E.J.; Cummings, M.P.; Mitter, C. Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Syst. Entomol. 2017, 42, 305–316. [Google Scholar] [CrossRef]
- Ding, X.; Mei, W.; Huang, S.; Wang, H.; Zhu, J.; Hu, W.; Ding, Z.; Tie, W.; Peng, S.; Dai, H. Genome survey sequencing for the characterization of genetic background of Dracaena cambodiana and its defense response during dragon’s blood formation. PLoS ONE 2018, 13, e0209258. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef] [Green Version]
- Kofler, R.; Schlötterer, C.; Lelley, T. SciRoKo: A new tool for whole genome microsatellite search and investigation. Bioinformatics 2007, 23, 1683–1685. [Google Scholar] [CrossRef] [Green Version]
- Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 2009, 25, 4–10. [Google Scholar] [CrossRef]
- Blanco, E.; Parra, G.; Guigó, R. Using geneid to identify genes. Curr. Protoc. Bioinform. 2007, 18, 4.3.1–4.3.28. [Google Scholar]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res. 2014, 43, D1049–D1056. [Google Scholar]
- Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M.C.; Estreicher, A.; Gasteiger, E.; Martin, M.J.; Michoud, K.; O’Donovan, C.; Phan, I.; et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2013, 42, D222–D230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Zhang, T. Construction of customized sub-databases from NCBI-nr database for rapid annotation of huge metagenomic datasets using a combined BLAST and MEGAN approach. PLoS ONE 2013, 8, e0059831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hématy, K.; Cherk, C.; Somerville, S. Host-pathogen warfare at the plant cell wall. Curr. Opin. Plant Biol. 2009, 12, 406–413. [Google Scholar] [CrossRef]
- Rejeb, K.B.; Abdelly, C.; Savouré, A. How reactive oxygen species and proline face stress together. Plant Physiol. Biochem. 2014, 80, 278–284. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Wang, J.; Gong, Z.; Zhou, J.M. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 2017, 38, 92–100. [Google Scholar] [CrossRef]
- Underwood, W. The plant cell wall: A dynamic barrier against pathogen invasion. Front. Plant Sci. 2012, 3, 85. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Alazem, M.; Lin, N.S. Roles of plant hormones in the regulation of host-virus interactions. Mol. Plant Pathol. 2015, 16, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Browse, J. Jasmonate: An oxylipin signal with many roles in plants. Vitam. Horm. 2005, 72, 431–456. [Google Scholar] [PubMed]
- Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Zhu, J.; Wang, H.; Chen, H.; Mei, W. Dragon’s Blood from Dracaena cambodiana in China: Applied History and Induction Techniques toward Formation Mechanism. Forests 2020, 11, 372. https://doi.org/10.3390/f11040372
Ding X, Zhu J, Wang H, Chen H, Mei W. Dragon’s Blood from Dracaena cambodiana in China: Applied History and Induction Techniques toward Formation Mechanism. Forests. 2020; 11(4):372. https://doi.org/10.3390/f11040372
Chicago/Turabian StyleDing, Xupo, Jiahong Zhu, Hao Wang, Huiqin Chen, and Wenli Mei. 2020. "Dragon’s Blood from Dracaena cambodiana in China: Applied History and Induction Techniques toward Formation Mechanism" Forests 11, no. 4: 372. https://doi.org/10.3390/f11040372
APA StyleDing, X., Zhu, J., Wang, H., Chen, H., & Mei, W. (2020). Dragon’s Blood from Dracaena cambodiana in China: Applied History and Induction Techniques toward Formation Mechanism. Forests, 11(4), 372. https://doi.org/10.3390/f11040372