Valuation of the Economic Benefits from Using Genetically Improved Forest Reproductive Materials in Afforestation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Breţcu Trial
3.2. Măneciu Trial
3.3. Heritability and Genetic Gain in the Măneciu Trial
3.4. Comandău Trial
3.5. Heritability and Genetic Gain in the Comandău Trial
3.6. Predicting the Growth Model and Profitability at the End of the Rotation Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- White, T.W.; Adams, W.T.; Neale, D.B. Forest Genetics; CABI Publishing: Cambridge, UK, 2007; p. 682. [Google Scholar]
- Cavatassi, R. Valuation Methods for Environmental Benefits in Forestry and Watershed Investment Projects. ESA Working Paper No. 04-01. Available online: http://www.fao.org/3/ae056e/ae056e00.pdf (accessed on 3 February 2020).
- Dong, P.-W.; Zhuang, S.-Y.; Lin, X.-H.; Zhang, X.-Z. Economic evaluation of forestry industry based on ecosystem coupling. Math. Comput. Model. 2013, 58, 1010–1017. [Google Scholar] [CrossRef]
- Routa, J.; Kellomäki, S.; Strandman, H.; Bergh, J.; Pulkkinen, P.; Peltola, H. The timber and energy biomass potential of intensively managed cloned Norway spruce stands. GCB Bioenergy 2013, 5, 43–52. [Google Scholar] [CrossRef]
- Pyörälä, P.; Peltola, H.; Strandman, H.; Kilpeläinen, A.; Asikainen, A.; Jylhä, K.; Kellomäki, S. Effects of management on economic profitability of forest biomass production and carbon neutrality of bioenergy use in Norway spruce stands under the changing climate. Bioenergy Res. 2014, 7, 279–294. [Google Scholar] [CrossRef]
- Kilpeläinen, A.; Alam, A.; Torssonen, P.; Ruusuvuori, H.; Kellomäki, S.; Peltola, H. Effects of intensive forest management on net climate impact of energy biomass utilisation from final felling of Norway spruce. Biomass Bioenergy 2016, 87, 1–8. [Google Scholar] [CrossRef]
- Budeanu, M.; Apostol, E.N.; Popescu, F.; Postolache, D.; Ioniţă, L. Testing of the narrow crowned Norway spruce ideotype (Picea abies f. pendula) and the hybrids with normal crown form (pyramidalis) in multisite comparative trials. Sci. Total Environ. 2019, 689, 980–990. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, O.; Bokma, F.; García-Gil, R.; Komulainen, P.; Repo, T. Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climate change. For. Ecol. Manag. 2004, 197, 79–89. [Google Scholar] [CrossRef]
- Lindgren, D.; Karlsson, B.; Andersson, B.; Prescher, F. The Swedish Seed Orchard Program for Scots Pine and Norway Spruce. In Proceedings of the a Seed Orchard Conference, Umea, Sweden, 26–28 September 2007; Lindgren, D., Ed.; pp. 142–151. Available online: http://daglindgren.upsc.se/Umea07/ZProcFinalFeb08.pdf (accessed on 14 February 2020).
- Koskela, J.; Vinceti, B.; Dvorak, W. The Use and Exchange of Forest Genetic Resources for Food and Agriculture; Backround study paper No 44; Commission on Genetic Resources for Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 72. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.604.5162&rep=rep1&type=pdf (accessed on 14 February 2020).
- Pâques, L.E. Introduction. In Forest Tree Breeding in Europe. Current State-of-the-Art and Perspectives, Managing Forest Ecosystems, 1st ed.; Pâques, L.E., Ed.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA; London, UK, 2013; pp. 1–9. [Google Scholar] [CrossRef]
- Ruotsalainen, S. Increased forest production through forest tree breeding. Scand. J. For. Res. 2014, 29, 333–344. [Google Scholar] [CrossRef]
- Dumroese, R.K.; Williams, M.I.; Stanturf, J.A.; St Clair, J.B. Considerations for restoring temperate forests of tomorrow: Forest restoration, assisted migration, and bioengineering. New For. 2015, 46, 947–964. [Google Scholar] [CrossRef]
- Frank, A.; Sperisen, C.; Howe, G.T.; Brang, P.; Walthert, L.; St Clair, B.J.; Heiri, C. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Ecology 2017, 98, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Frank, A.; Howe, G.T.; Sperisen, C.; Brang, P.; St Clair, J.B.; Schmatz, D.R.; Heiri, C. Risk of genetic maladaptation due to climate change in three major European tree species. Glob. Chang. Biol. 2017, 23, 5358–5371. [Google Scholar] [CrossRef]
- Myking, T.; Rusanen, M.; Steffenrem, A.; Kjær, E.D.; Jansson, G. Historic transfer of forest reproductive material in the Nordic region: Drivers, scale and implications. Forestry 2016, 89, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe. State of Europe’s Forests. 2015. Available online: http://www.foresteurope.org/docs/fullsoef2015.pdf (accessed on 14 February 2020).
- Leech, S.M.; Lara Almuedo, P.; O’Neill, G. Assisted migration: Adapting forest management to a changing climate. BC J. Ecosyst. Manag. 2011, 12, 18–34. Available online: https://jem-online.org/index.php/jem/article/view/91/98 (accessed on 18 February 2020).
- Liesebach, M. Variety transfer across Europe. In Forest Tree Breeding in Europe; Current State-of-the-Art and Perspectives, 1st ed.; Pâques, L.E., Ed.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA; London, UK, 2013; pp. 75–77. [Google Scholar] [CrossRef]
- Aarrestad, P.A.; Myking, T.; Stabbetorp, O.E.; Tollesfrud, M.M. Foreign Norway Spruce (Picea abies) Provenances in Norway and Effects on Biodiversity. Nina Report 1075. 2014. Available online: NINArapport1075_171014_kvalitetssikret.docx (accessed on 18 February 2020).
- Rehfeldt, G.E.; Jaquish, B.C.; Sáenz-Romero, C.; Joyce, D.G.; Leites, L.P.; St Clair, J.B.; López-Upton, J. Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: Reforestation. For. Ecol. Manag. 2014, 324, 147–157. [Google Scholar] [CrossRef]
- Jansen, S.; Geburek, T. Historic translocations of European larch (Larix decidua Mill.) genetic resources across Europe—A review from the 17th until the mid-20th century. For. Ecol. Manag. 2016, 379, 114–123. [Google Scholar] [CrossRef]
- Jansen, S.; Konrad, H.; Geburek, T. Crossing borders—European forest reproductive material moving in trade. J. Environ. Manag. 2019, 233, 308–320. [Google Scholar] [CrossRef]
- Lefèvre, F.; Koskela, J.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C.; Schler, S.; Bozzano, M.; Alizoti, P.; Bakys, R. Dynamic Conservation of Forest Genetic Resources in 33 European Countries. Conserv. Biol. 2013, 27, 373–384. [Google Scholar] [CrossRef]
- Koskela, J.; Lefèvre, F.; Schueler, S.; Kraigher, H.; Olrik, D.C.; Hubert, J.; Longauer, R.; Bozzano, M.; Yrjn, L.; Alizoti, P. Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol. Conserv. 2013, 157, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Nystedt, B.; Street, N.R.; Wetterbom, A.; Zuccolo, A.; Lin, Y.C.; Scofield, D.G.; Vezzi, F.; Delhomme, N.; Giacomello, S.; Alexeyenko, A. The Norway spruce genome sequence and conifer genome evlution. Nature 2013, 497, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.F.D. Future prospects. In Genetics, Genomics and Breeding of Conifers; Plomion, C., Bousquet, J., Kole, C., Eds.; CRC Press: Abingdon, UK, 2011; pp. 404–438. [Google Scholar]
- Mullin, T.J.; Andersson, B.; Bastien, J.C.; Beaulieu, J.; Burdon, R.D.; Dvorak, W.S.; King, J.N.; Kondo, T.; Krakowski, J.; Lee, S.J. Economic importance, breeding objectives and achievements. In Genetics, Genomics and Breeding of Conifers; Plomion, C., Bousquet, J., Kole, C., Eds.; CRC Press: Abingdon, UK, 2011; pp. 40–127. [Google Scholar]
- Şofletea, N.; Curtu, A.L. Dendrologie (Dendrology); Transylvania University Publishing House: Brasov, Romania, 2007; p. 540. [Google Scholar]
- Skrøppa, T. EUFORGEN Technical Guidelines for Genetic Conservation and Use of Norway Spruce (Picea abies); International Plant Genetic Institutes: Rome, Italy, 2003; p. 6. Available online: https://books.google.ro/books (accessed on 19 February 2020).
- Westin, J.; Haapanen, M. Norway spruce—Picea abies (L.) Karst. In Best Practice for Tree Breeding in Europe; Mullin, T.J., Lee, S.J., Eds.; Skogforsk: Uppsala, Sweden, 2013; pp. 29–47. [Google Scholar]
- Şofletea, N.; Budeanu, M. Response of Norway Spruce (Picea abies (L) Karst.) seed stand progenies tested under different site conditions. Sumar. List 2015, 139, 47–57. Available online: https://hrcak.srce.hr/137362 (accessed on 19 February 2020).
- Enescu, V.; Ioniţă, L. Inter and intrapopulational genetic variation of some genetic resources of Norway spruce (Picea abies (L) Karst.). Ann. For. Res. 2002, 45, 67–77. [Google Scholar]
- Giurgiu, V.; Decei, I.; Drăghiciu, D. Metode Si Tabele Dendrometrice (Methods and Dendrometrical Tables); Ceres Publishing House: Bucharest, Romania, 2004; p. 575. [Google Scholar]
- Apostol, E.N.; Budeanu, M. Adaptability of narrow-crowned Norway spruce ideotype (Picea abies (L.) Karst. pendula form) in 25 years half-sib comparative trials in the eastern Carpathians. Forests 2019, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, P.; Pöykkö, T. Inherited narrow crown form, harvest index and stem biomass production in Norway spruce, Picea abies. Tree Physiol. 1990, 6, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Pârnuţă, G. Variabilitatea Genetică Si Ameliorarea Arborilor De Molid Cu Coroană Îngustă În România (Genetic Variability and Breeding of Narrow-Crowned Norway Spruce Trees in Romania); Silvică Publishing House: Bucharest, Romania, 2008; p. 181, (In Romanian with English Abstract). [Google Scholar]
- Nanson, A. Génétique Et Amélioration Des Arbres Forestières (Genetic and Forest Trees Breeding); Les presses agronomique de Gembloux: Gembloux, Belgium, 2004; p. 712. (In French) [Google Scholar]
- Falconer, D.S. Introduction to Quantitative Genetics, 2nd ed.; Longmans Green: London, UK; New York, NY, USA, 1981. [Google Scholar]
- Fordaq Romania. The Average Price of Wood in Romania. 2019. Available online: https://lemn.fordaq.com/news/Analiza_Rezultatele_licitatiilor_organizate_de_64951.html (accessed on 12 February 2020).
- Breed, R. An Open Statistical Package to Analyse Genetic Data (WP6). 2016. Available online: http://famuvie.github.io/breedR/ (accessed on 3 February 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 3 February 2020).
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Ahtikoski, A.; Ojansuu, R.; Haapanen, M.; Hynynen, J.; Kärkkäinen, K. Financial performance of using genetically improved regeneration material of Scots pine (Pinus sylvestris L.) in Finland. New For. 2012, 43, 335–348. [Google Scholar] [CrossRef]
- Ciceu, A.; Radu, R.; Garcia-Duro, J. National forestry accounting plan of Romania. Voluntari, Romania. 2019. Available online: http://www.mmediu.ro (accessed on 3 February 2020).
- Rosvall, O. The economic value of tree improvement. In Review of the Swedish Tree Breeding Programme; Rosvall., O., Ed.; Skogforsk: Uppsala, Sweden, 2011; pp. 13–14. [Google Scholar]
- Gould, P.; Marshall, D. Incorporation of genetic gain into growth projections of Douglas-fir using ORGANON and the forest vegetation simulator. West. J. Appl. For. 2010, 25, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Moberg, L. Predicting knot properties of Picea abies and Pinus sylvestris from generic tree descriptors. Scand. J. For. Res. 2006, 21, 49–62. [Google Scholar] [CrossRef]
- Kantola, A.; Mäkinen, H.; Mäkelä, A. Stem form and branchiness of Norway spruce as a sawn timber-Predicted by a process based model. For. Ecol. Manag. 2007, 241, 209–222. [Google Scholar] [CrossRef]
- Barszcz, A.; Sandalak, A.; Sandalak, J. Knottiness of spruce stems from the Dolomites as the basis for distinguishing quality zones in round wood. Folia For. Pol. Ser. A 2010, 52, 89–97. [Google Scholar]
- Charru, M.; Seynave, I.; Hervé, J.C.; Bontemps, J.D. Spatial patterns of historical growth changes in Norway spruce across western European mountains and the key effect of climate warming. Trees 2014, 28, 205–221. [Google Scholar] [CrossRef]
- Zubizarreta Gerendiain, A.; Peltola, H.; Pulkkinen, P. Growth and wood property traits in narrow crowned Norway spruce (Picea abies f. pendula) clones grown in southern Finland. Silva Fenn. 2009, 43, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Rosvall, O.; Jansson, G.; Andersson, B.; Ericsson, T.; Karlsson, B.; Sonesson, J.; Stener, L.G. Predicted Genetic Gain from Existing and Future Seed Orchards and Clone Mixes in Sweden. In Proceedings of the Integrating Tree Breeding and Forestry—Proceedings of the Nordic Group for Management of Genetic Resources of Trees, Helsinki, Finland, 23–27 March 2002; Haapanen, M., Mikola, J., Eds.; Research Papers 842. pp. 71–85. Available online: http://urn.fi/URN:ISBN:951-40-1822-2 (accessed on 19 February 2020).
Breţcu Trial | Breast Height Diameter (cm) | Trees Height (m) | Trees Volume (m3) | Volume/Hectare (m3/ha) |
---|---|---|---|---|
Average Breţcu | 24.8 ± 5.1 | 21.6 ± 2.3 | 0.518 ± 0.2 | 474 |
Best 10% provenances | 26.6 ± 5.2 | 22.7 ± 2.3 | 0.617 ± 0.2 | - |
Best 10% trees | 33.9 ± 2.1 | 25.3 ± 0.8 | 0.983 ± 0.1 | - |
Local provenance (in trial) | 24.0 ± 5.3 | 21.6 ± 2.3 | 0.509 ± 0.2 | - |
IUFRO standard provenance | 24.5 ± 5.2 | 21.8 ± 2.3 | 0.509 ± 0.2 | - |
Nearest population | 22.0 ± 4.7 | 19.0 ± 2.2 | 0.345 ± 0.1 | 375 |
National average volume/ha* | - | - | - | 342 |
Măneciu Trial | Breast Height Diameter | Tree Height | Tree Volume |
---|---|---|---|
All trees | |||
Best 10% trees* | 22.2 ± 2.4 | 19.1 ± 0.6 | 0.382 ± 0.1 |
Trial average* | 17.0 ± 3.6 | 16.2 ± 2.1 | 0.210 ± 0.1 |
Heritability (i/F) | 0.08/ 0.18 | 0.23/ 0.31 | 0.04/ 0.15 |
Genetic gain (i/F) (%) | 15/ 13 | 25/ 22 | 13/ 21 |
Pendula trees | |||
Best 10% trees* | 22.0 ± 2.5 | 19.2 ± 0.7 | 0.377 ± 0.1 |
Average pendula* | 17.0 ± 3.7 | 16.2 ± 2.1 | 0.210 ± 0.1 |
Heritability (i/F) | 0.02/ 0.15 | 0.23/ 0.67 | 0.01/ 0.18 |
Genetic gain (i/F) (%) | 2/ 8 | 20/ 34 | 2/ 20 |
Pyramidalis trees | |||
Best 10% trees* | 22.4 ± 2.4 | 19.1 ± 0.6 | 0.387 ± 0.1 |
Average pyramidalis* | 17.0 ± 3.6 | 16.2 ± 2.1 | 0.210 ± 0.1 |
Heritability (i/F) | 0.19/ 0.21 | 0.32/ 0.13 | 0.14/ 0.15 |
Genetic gain (i/F) (%) | 22/ 19 | 31/ 6 | 25/ 23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcu, N.; Budeanu, M.; Apostol, E.N.; Radu, R.G. Valuation of the Economic Benefits from Using Genetically Improved Forest Reproductive Materials in Afforestation. Forests 2020, 11, 382. https://doi.org/10.3390/f11040382
Marcu N, Budeanu M, Apostol EN, Radu RG. Valuation of the Economic Benefits from Using Genetically Improved Forest Reproductive Materials in Afforestation. Forests. 2020; 11(4):382. https://doi.org/10.3390/f11040382
Chicago/Turabian StyleMarcu, Nicu, Marius Budeanu, Ecaterina Nicoleta Apostol, and Raul Gheorghe Radu. 2020. "Valuation of the Economic Benefits from Using Genetically Improved Forest Reproductive Materials in Afforestation" Forests 11, no. 4: 382. https://doi.org/10.3390/f11040382
APA StyleMarcu, N., Budeanu, M., Apostol, E. N., & Radu, R. G. (2020). Valuation of the Economic Benefits from Using Genetically Improved Forest Reproductive Materials in Afforestation. Forests, 11(4), 382. https://doi.org/10.3390/f11040382