Change Detection and Land Suitability Analysis for Extension of Potential Forest Areas in Indonesia Using Satellite Remote Sensing and GIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Extent and Forest Coverage in Study Area
2.2. Change Detection Analysis
2.2.1. Data Acquisition and Sources
2.2.2. Image Processing for Land Use/Land Cover (LULC)
2.2.3. Accuracy Assessment
2.3. Suitability Analysis for Extension of Potential Forest Area
2.3.1. Criteria for Suitability Analysis
Settlements
LULC
Elevation
Distance from Rivers
Distance from Roads
2.3.2. Reclassification of Criteria
2.4. AHP
2.5. Land Suitability for Forest Extension Areas
3. Results
3.1. Change Detection Analysis
3.2. Accuracy Assessment
3.3. Land Suitability Analysis for Extension of Potential Forest Area
Reclassification of Criteria
3.4. AHP
3.5. Land Suitability Analysis for Extension of Potential Forest Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Bank. Sustaining Economic Growth, Rural Livelihoods, and Environmental Benefit: Strategic Options for Forest Assistance in Indonesia; World Bank Office: Jakarta, Indonesia, 2006. [Google Scholar]
- United Nations. Country Factsheet on Food and Agriculture Policy Trends; FAO: Jakarta, Indonesia, 2017; Volume 8, pp. 1–6. [Google Scholar]
- United Nations. The State of food and agriculture. Choice Rev. Online 2009, 3, 1–180. [Google Scholar]
- Ministry of Forestry 2015. Forest Production Map for Use Of Forest Utilization, Directorate General of Forestry Business Forestry Ministry of Forestry, 2015; Forest area and Conservation Area of South Sumatra Province, Forestry Data South Sumatra, 2015 (Peta Indikatif Arahan Pemanfaatan Hutan Pada Kawasan Hutan Produksi Yang Tidak Dibebani Izin Untuk Usaha Pemanfaatan Hasil Hutan Kayu. 2014. Lembar Peta, Sumatera Selatan, Indonesia. Available online: http://appgis.dephut.go.id/appgis/Arahan_Pemanfaatan_2015/Sumsel.pdf (accessed on 12 January 2019).
- Santika, T.; Meijaard, E.; Budiharta, S.; Law, E.A.; Kusworo, A.; Hutabarat, J.A.; Indrawan, T.P.; Struebig, M.J.; Raharjo, S.; Huda, I.; et al. Community forest management in Indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Glob. Environ. Chang. 2017, 46, 60–71. [Google Scholar] [CrossRef]
- Forest Area and Conservation Area Of South Sumatra Province, Forestry Data South Sumatra. 2016. Available online: http://data.dishut.sumselprov.go.id/layers/geonode:KawasanHutan_AR_2016_SumateraSelatan_PPH_250_ (accessed on 11 February 2019).
- Houghton, R.A. Releases of carbon to the atmosphere from degradation of forests in tropical Asia. Can. J. For. Res. 1991, 21, 132–142. [Google Scholar] [CrossRef]
- Yelwa, S.A. Land Cover Changes across Nigeria as Detected from high Temporal Resolution Meteorological Data. Maid. J. Arts Soc. Sci. 2005, 3, 73–79. [Google Scholar]
- Potter, C.; Genovese, V.; Gross, P.; Boriah, S.; Steinbach, M.; Kumar, V. Revealing land cover change in California with satellite data. Eos 2007, 88, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Miller, J. Integrating GIS and Remotely Sensed Data for Mapping Forest Disturbance and Change. In Understanding Forest Disturbance and Spatial Pattern; Wulder, M.A., Franklin, S.E., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 133–171. [Google Scholar] [CrossRef]
- Mancino, G.; Nolè, A.; Ripullone, F.; Ferrara, A. Landsat TM imagery and NDVI differencing to detect vegetation change: Assessing natural forest expansion in Basilicata, southern Italy. iForest Biogeosci. For. 2014, 7, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Rawat, J.S.; Kumar, M. Monitoring land user/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district ALmora, Uttarakhand, India. Egypt. J. Rem. Sens. Space Sci. 2015, 18, 77–84. [Google Scholar]
- Mickelson, J.G.; Civco, D.L.; Silander, J.A. Delineating vegetation coverage canopy species in the northeastern United States using multi-temporal TM imagery. Photogramm. Eng. Remote Sens. 1998, 64, 891–904. [Google Scholar]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Wang, C.; Lin, H.; Zhang, J.; Jiang, J.; Wang, B. Land Development Suitability Evaluation of Pingtan Island Based on Scenario Analysis and Landscape Ecological Quality Evaluation. Sustainability 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E.; Pinzon, J.; Didan, K.; Morisette, J.; Tucker, C. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. [Google Scholar] [CrossRef]
- Tarantino, E.; Novelli, A.; Aquilino, M.; Figorito, B.; Fratino, U. Comparing the MLC and JavaNNS Approaches in Classifying Multi-Temporal LANDSAT Satellite Imagery over an Ephemeral River Area. Int. J. Agric. Environ. Inf. Syst. 2015, 6, 83–102. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Diallo, Y.; Hu, G.; Wen, X. Applications of remote sensing in land use/land cover change detection in Puer and Simao Counties, Yunnan Province. J. Am. Sci. 2009, 5, 157–166. [Google Scholar]
- Hegazy, I.R.; Kaloop, M.R. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built. Environ. 2015, 4, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Pijanowski, B.; Duh, J. Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. J. Environ. Manag. 2000, 59, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Sawathvong, S. Experiences from developing an integrated land-use planning approach for protected areas in the Lao PDR. For. Policy Econ. 2004, 6, 553–566. [Google Scholar] [CrossRef]
- Chen, H.; Kocaoglu, D.F. A sensitivity analysis algorithm for hierarchical decision models. Eur. J. Oper. Res. 2008, 185, 266–288. [Google Scholar] [CrossRef]
- Escobar, M.; Moreno-Jiménez, J.M. Reciprocal distributions in the analytic hierarchy process. Eur. J. Oper. Res. 2000, 123, 154–174. [Google Scholar] [CrossRef]
- Huang, Y.-F. Enhancement on sensitivity analysis of priority in analytic hierarchy process. Int. J. Gen. Syst. 2002, 31, 531–542. [Google Scholar] [CrossRef]
- Badamasi, M.M.; Yelwa, S.A. Change detection and classification of land cover at Falgore game reserve: A Preliminary assessment. BEST J. 2010, 7, 75–83. [Google Scholar]
- Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Liu, X.-H.; Skidmore, A.; Van Oosten, H. Integration of classification methods for improvement of land-cover map accuracy. ISPRS J. Photogramm. Remote Sens. 2002, 56, 257–268. [Google Scholar] [CrossRef]
- Currit, N. Development of a remotely sensed, historical land-cover change database for rural Chihuahua, Mexico. Int. J. Appl. Earth Obs. Geoinform. 2005, 7, 232–247. [Google Scholar] [CrossRef]
- Bailly, J.-S.; Arnaud, M.; Puech, C. Boosting: A classification method for remote sensing. Int. J. Remote Sens. 2007, 28, 1687–1710. [Google Scholar] [CrossRef]
- Campbell, J.B. Introduction to remote sensing. Geocarto Int. 1987, 2, 64. [Google Scholar] [CrossRef]
- Wright, J.; Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation. Geogr. J. 1980, 146, 448. [Google Scholar] [CrossRef]
- Olmo, M.C.; Abarca-Hernández, F. Computing geostatistical image texture for remotely sensed data classification. Comput. Geosci. 2000, 26, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.R. Remote Sensing of the Environment, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007; p. 17. [Google Scholar]
- Gao, J.; Liu, Y.-S. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int. J. Appl. Earth Obs. Geoinform. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Araújo, R. Comparison of performance of object-based image analysis techniques available in open source software (Spring and Orfeo Toolbox/Monteverdi) considering very high spatial resolution data. J. Appl. Remote Sens. 2016, 10, 16011. [Google Scholar] [CrossRef]
- Thomlinson, J.R.; Bolstad, P.V.; Cohen, W.B. Coordinating methodologies for scaling land cover classifications from site-specific to global: Steps toward validating global map products. Remote Sens. Environ. 1999, 70, 16–28. [Google Scholar] [CrossRef]
- Congalton, R. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Strand, G.H. Settlement Planning with GIS. A Case Study of Thmarpouk, Cambodia. Habitat Int. J. 1993, 17, 75–85. [Google Scholar] [CrossRef]
- Chaudhary, B.S.; Saroha, G.P.; Yadav, M. Human Induced Land Use Land Cover Changes in Northern Part of Gurgaon District, Haryana, India: Natural Resources Census Concept. J. Hum. Ecol. 2008, 23, 243–252. [Google Scholar] [CrossRef]
- Nayak, P.; Oliveira, L.E.; Berkes, F. Resource degradation, marginalization, and poverty in small-scale fisheries: Threats to social-ecological resilience in India and Brazil. Ecol. Soc. 2014, 19, 73. [Google Scholar] [CrossRef] [Green Version]
- Gradstein, R.S.; Homeier, J.; Gansert, D. (Eds.) Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot; University of Akron Press: Akron, OH, USA, 2010; p. 224. [Google Scholar]
- Spracklen, D.V.; Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 2014, 11, 2741–2754. [Google Scholar] [CrossRef] [Green Version]
- Holdridge, L.R.; Hubbert, M.K. Determination of World Plant Formations from Simple Climatic Data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef]
- Major, J. A Climatic Index to Vascular Plant Activity. Ecology 1963, 44, 485–498. [Google Scholar] [CrossRef]
- Churkina, G.; Running, S.W. Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes. Ecosystems 1998, 1, 206–215. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, H.; Falk, M.; Fuentes, J.; et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A. Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology 2003, 84, 1165–1170. [Google Scholar] [CrossRef]
- Berner, L.T.; Law, B.E. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. Biogeosciences 2015, 12, 6617–6635. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef]
- Kirchmair, I. Biogeography of West African Gallery Forests. Ph.D. Thesis, Johann Wolfgang Goethe-Universität, Frankfurt, Germany, 29 September 2017. Available online: http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/44536 (accessed on 22 March 2019).
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A Challenge for Freshwater Ecology. Bioscience 2014, 64, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Demissie, F.; Yeshitila, K.; Kindu, M.; Schneider, T. Land use/Land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sens. Appl. Soc. Environ. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Gigovic, L.; Drobnjak, S.; Pamučar, D. The Application of the Hybrid GIS Spatial Multi-Criteria Decision Analysis Best–Worst Methodology for Landslide Susceptibility Mapping. ISPRS Int. J. Geo-Inform. 2019, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Nigussie, G.; Moges, M.A.; Moges, M.M.; Steenhuis, T.S. Assessment of Suitable Land for Surface Irrigation in Ungauged Catchments: Blue Nile Basin, Ethiopia. Water 2019, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytical Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980; p. 350. [Google Scholar]
- Saaty, T.L. How to make a decision. The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Mendoza, G.A.; Sprouse, W. Forest planning and decision making under fuzzy environments: An overview and illustrations. Forest Sci. 1989, 35, 481–502. [Google Scholar]
- Kangas, J. A method for utility comparison of forest drainage alternatives. Suo 1991, 42, 49–59. [Google Scholar]
- Kangas, J. Choosing the regeneration chain in a forest stand: A decision model based on multi-attribute utility theory. University of Joensuu. Publ. Sci. 1992, 24, 1–230. [Google Scholar]
- Schmoldt, D.L.; Peterson, D.L.; Silsbee, D.G. Developing inventory and monitoring programs based on multiple objectives. Environ. Manag. 1994, 28, 707–727. [Google Scholar] [CrossRef]
- Tarp, P.; Helles, F. Multi-criteria decision making in forest management planning—An overview. J. Forest Econ. 1995, 1, 273–306. [Google Scholar]
- Saaty, T. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.; Ozdemir, M. Why the magic number seven plus or minus two. Math. Comput. Model. 2003, 38, 233–244. [Google Scholar] [CrossRef]
- Wedley, W.C. Consistency prediction for incomplete AHP matrices. Math. Comput. Model. 1993, 17, 151–161. [Google Scholar] [CrossRef]
- Lakiãeviã, M.; Srðeviã, B. AHP group decision-making in selecting tree species for urban wet sites. Contemp. Agric. 2012, 61, 8–14. [Google Scholar]
- FAO (2000b). Asia-Pacific Forestry Commission: Development of national-level criteria and indicators for the sustainable management of dry forests of Asia. Workshop Report, RAP Publication 2000/07, Food and Agriculture Organization. Available online: http://www.fao.org/3/x6896e/x6896e00.htm (accessed on 5 February 2019).
- Fitzherbert, E.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.; Donald, P.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef]
- Lawson, S. Consumer Goods and Deforestation: An Analysis of the Extent and Nature of Illegality in Forest Conversion for Agriculture and Timber Plantations; Forest Trends: Washington, DC, USA, 2014; pp. 1–158. Available online: http://www.forest-trends.org/documents/files/doc_4718.pdf (accessed on 11 February 2019).
- Martin, R.M.; Kneeland, D.; Brooks, D.; Matta, R. The State of the World’s Forests in Brief. Forests and Agriculture: Land-use Challenges and Opportunities; FAO: Rome, Italy, 2016; p. 46. ISBN 978-92-5-107292-9. [Google Scholar]
- Cossalter, C.; Pye-Smith, C. Fast-Wood Forestry: Myths and Realities; CIFOR: Bogor, Indonesia, 2003. [Google Scholar]
- Kanowski, J.; Catterall, C.P.; Wardell-Johnson, G. Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. For. Ecol. Manag. 2005, 208, 359–372. [Google Scholar] [CrossRef] [Green Version]
- Weber, N. Afforestation in Europe: Lessons learned, challenges remaining. In Restoration of Boreal and Temperate Forests; CRC Press: Boca Raton, FL, USA, 2005; pp. 121–135. [Google Scholar]
- Sanchirico, J.N.; Siikamaki, J. Natural resource economics and policy in the 21st Century: Conservation of ecosystem services. Resources 2007, 165, 8–10. [Google Scholar]
- Sheil, D.; Puri, R.; Basuki, I.; Van Heist, M.; Wan, M.; Liswanti, N.; Rukmiyati; Sardjono, M.A.; Samsoedin, I.; Sidiyasa, K.; et al. Exploring Biological Diversity, Environment and Local Peoples Perspectives in Forest Landscapes, 2nd ed.; CIFOR: Bogor, Indonesia, 2002. [Google Scholar]
- Gunningham, N. The New Collaborative Environmental Governance: The Localization of Regulation. J. Law Soc. 2009, 36, 145–166. [Google Scholar] [CrossRef]
- Costanza, R.; D’arge, R.; Groot, R.E.; Stephen, F.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. Natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Landell-Mills, N. Developing markets for forest environmental services: An opportunity for promoting equity while securing efficiency? Philos. Trans. Ser. 2002, 360, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Balmford, A.; Bruner, A.; Cooper, P.; Costanza, R.; Farber, S.; Green, R.E.; Jenkins, M.; Jefferiss, P.; Jessamy, V.; Madden, J.; et al. Ecology: Economic reasons for conserving wild nature. Science 2002, 297, 950–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No | Data and Map | Description | Source |
---|---|---|---|
1 | LULC | Extracted from 30 m resolution | 2018, Landsat 8 OLI, Landsat 7 ETM+ |
2 | River | Scale 1:25.000 | 2005, Indonesia Geospatial Agency |
3 | Road | Scale 1:25.000 | 2005, Indonesia Geospatial Agency |
4 | Elevation | Extracted 90 m from Data Elevation Model National SRTM | 2015, USGS |
5 | Settlements | Extracted from 30 m resolution | 2018, Landsat 8 |
Class Name | Description |
---|---|
Urban | Areas designated as urban zone |
Waterbodies | River, lakes, waterlogged and swamp areas |
Vegetation | Areas covered by trees, both agriculture and planted |
Forest | Areas covered by forest |
Criteria | Suitability Class | Sub-criteria | Reference |
---|---|---|---|
Settlements | S1 | <214 | [52] |
S2 | 264–365 | [52] | |
S3 | 365–414 | [52] | |
N | >414 | [52] | |
LULC | S1 | Forest | [53] |
S2 | Vegetation | [53] | |
S3 | Urban | [53] | |
N | Waterbodies | [53] | |
Elevation | S1 | <350 m | [15] |
S2 | 350–900 m | [15] | |
S3 | 900–1600 m | [15] | |
N | >1600 m | [15] | |
Distance from roads | S1 | <10 m | [54] |
S2 | 10–23 m | [54] | |
S3 | 23–45 m | [54] | |
N | >45 m | [54] | |
Distance from rivers | S1 | <6 m | [55] |
S2 | 6–13 m | [55] | |
S3 | 13–21 m | [55] | |
N | > 29 m | [55] |
Criteria | Suitability Class | Suitability Range | Percentage Area (%) | Area (Ha) |
---|---|---|---|---|
Settlements | S1 | <214 | 57.47 | 1310 |
S2 | 264–365 | 23.48 | 535 | |
S3 | 365–414 | 13.72 | 313 | |
N | >414 | 5.33 | 121 | |
LULC | S1 | Forest | 57.6 | 790,712 |
S2 | Vegetation | 24.2 | 333,020 | |
S3 | Urban | 13.2 | 180,615 | |
N | Waterbodies | 5 | 68,806 | |
Elevation | S1 | <350 | 53.28 | 495,989 |
S2 | 350–900 | 25.56 | 237,940 | |
S3 | 900–1600 | 15.82 | 147,314 | |
N | >1600 | 5.34 | 49,681 | |
Distance from roads | S1 | <10 | 85.77 | 1,163,759 |
S2 | 10–23 | 9.77 | 132,494 | |
S3 | 23–45 | 3.73 | 50,577 | |
N | >45 | 0.74 | 9985 | |
Distance from rivers | S1 | <6 | 97.96 | 1,339,701 |
S2 | 6–13 | 1.38 | 18,856 | |
S3 | 13–21 | 0.44 | 6032 | |
N | >29 | 0.22 | 2994 |
Index | Definition | Index | Definition |
---|---|---|---|
1 | Equally important | 1/1 | Equally important |
2 | Equally or slightly more important | 1/2 | Equally or slightly less important |
3 | Slightly more important | 1/3 | Slightly less important |
4 | Slightly to much more important | 1/4 | Slightly to way less important |
5 | Much more important | 1/5 | Way less important |
6 | Much to far more important | 1/6 | Way to far less important |
7 | Far more important | 1/7 | Far less important |
8 | Far more important to extremely more important | 1/8 | Far less important to extremely less important |
9 | Extremely more important | 1/9 | Extremely less important |
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|
RI | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Forest Zone | Changing Area (Urban Class) | Changing Area (Vegetation Class) | Changing Area (Forest Class) | Changing Area (Waterbody Class) | ||||
---|---|---|---|---|---|---|---|---|
(%) | (ha) | (%) | (ha) | (%) | (ha) | (%) | (ha) | |
TRF | 37.03 | 14.78 | −21.47 | −8.61 | −20.09 | −8.06 | -- | -- |
NRF | −19.78 | −55.22 | -- | -- | 33.05 | 92.26 | −0.99 | −2.75 |
WRF | 3 | 29.56 | -- | -- | 33.44 | 329.7 | −6.2 | −61.15 |
CPF | 4.56 | 372.16 | 10.09 | 823.49 | −13.56 | −1105.72 | −1.09 | −88.66 |
PPF | 9.52 | 163.72 | 31.16 | 535.7 | −40.21 | −691.12 | -- | -- |
LPF | 48.75 | 1514.34 | 23.63 | 733.92 | −72 | −2236.62 | −0.37 | −11.65 |
Accuracy Assessment | Class | TRF | CPF, PPF and LPF | WRF | NRF | ||||
---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | ||||||
2003 | 2018 | 2003 | 2018 | 2003 | 2018 | 2003 | 2018 | ||
Producers Accuracy | Urban | 96 | 90 | 92 | 92 | 88 | 94 | 92 | 86 |
Vegetation | 90 | 96 | 88 | 100 | 94 | 96 | 86 | 86 | |
Forest | 92 | 96 | 92 | 90 | 96 | 94 | 96 | 96 | |
Waterbody | 92 | 80 | 88 | 84 | 96 | 96 | 96 | 90 | |
User Accuracy | Urban | 96 | 82 | 92 | 85 | 100 | 98 | 90 | 86 |
Vegetation | 90 | 96 | 88 | 85 | 87 | 87 | 91 | 86 | |
Forest | 92 | 100 | 92 | 100 | 89 | 96 | 96 | 96 | |
Waterbody | 92 | 85 | 88 | 100 | 100 | 100 | 92 | 90 | |
Overall Accuracy | 93 | 91 | 90 | 92 | 94 | 95 | 93 | 90 | |
Kappa Coefficient | 0.84 | 0.79 | 0.80 | 0.82 | 0.86 | 0.89 | 0.83 | 0.78 |
Criteria | Expert A | Expert B | Expert C | Expert D | Expert E | Average Weight | Weight (%) |
---|---|---|---|---|---|---|---|
Settlements | 0.190 | 0.354 | 0.160 | 0.245 | 0.102 | 0.210 | 29 |
LULC | 0.214 | 0.222 | 0.102 | 0.143 | 0.379 | 0.212 | 29 |
Elevation | 0.086 | 0.066 | 0.379 | 0.119 | 0.160 | 0.162 | 23 |
Distance from roads | 0.092 | 0.097 | 0.065 | 0.100 | 0.065 | 0.084 | 12 |
Distance from rivers | 0.074 | 0.049 | 0.043 | 0.033 | 0.043 | 0.048 | 7 |
Land Suitability Classes | TRF | CPF, PPF and LPF | WRF | NRF | ||||
---|---|---|---|---|---|---|---|---|
(%) | (ha) | (%) | (ha) | (%) | (ha) | (%) | (ha) | |
N | 45 | 3730.61 | 16 | 44,994.77 | 1 | 2638.72 | 2 | 4913.48 |
S3 | 40 | 3275.66 | 13 | 37,215.08 | 17 | 54,503.27 | 11 | 22,793.10 |
S2 | 8 | 682.43 | 41 | 112,191.20 | 52 | 167,012.93 | 48 | 99,498.03 |
S1 | 7 | 591.44 | 30 | 81,663.91 | 30 | 98,133.18 | 39 | 79,798.61 |
Total | 100 | 8280.13 | 100 | 276,064.96 | 100 | 322,288.09 | 100 | 207,003.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurda, N.; Noguchi, R.; Ahamed, T. Change Detection and Land Suitability Analysis for Extension of Potential Forest Areas in Indonesia Using Satellite Remote Sensing and GIS. Forests 2020, 11, 398. https://doi.org/10.3390/f11040398
Nurda N, Noguchi R, Ahamed T. Change Detection and Land Suitability Analysis for Extension of Potential Forest Areas in Indonesia Using Satellite Remote Sensing and GIS. Forests. 2020; 11(4):398. https://doi.org/10.3390/f11040398
Chicago/Turabian StyleNurda, Nety, Ryozo Noguchi, and Tofael Ahamed. 2020. "Change Detection and Land Suitability Analysis for Extension of Potential Forest Areas in Indonesia Using Satellite Remote Sensing and GIS" Forests 11, no. 4: 398. https://doi.org/10.3390/f11040398
APA StyleNurda, N., Noguchi, R., & Ahamed, T. (2020). Change Detection and Land Suitability Analysis for Extension of Potential Forest Areas in Indonesia Using Satellite Remote Sensing and GIS. Forests, 11(4), 398. https://doi.org/10.3390/f11040398