The Accessibility of Post-Fire Areas for Mechanized Thinning Operations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cone Index
3.2. Soil Compaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stempski, W.; Jabłoński, K. Efektywność maszynowego pozyskiwania drewna z drzewostanu uszkodzonego przez wiatr (Effectiveness of mechanized wood harvesting in a tree stand damaged by wind). Nauka Przyr. Technol. 2015, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, G.; Sowa, J.M.; Michalec, K.; Gaj-Gielarowec, D.; Gielarowiec, K. Salvage condition assessment of timber volume in disturbed areas. Balt. For. 2017, 23, 619–625. [Google Scholar]
- Ubysz, B.; Szczygieł, R. Pożary—przyczyna klęsk w Polsce i na świecie (Fires: A cause of natural disasters in Poland and all over the world). Postępy techniki w leśnictwie 2003, 84, 32–40. [Google Scholar]
- Venäläinen, A.; Korhonen, N.; Hyvärinen, O.; Koutsias, N.; Xystrakis, F.; Urbieta, I.R.; Moreno, J.M. Temporal variations and change in forest fire danger in Europe for 1960–2012. Nat. Hazard. Earth Sys. Sci. 2014, 14, 1477–1490. [Google Scholar] [CrossRef] [Green Version]
- Sousa-Silva, R.; Verbist, B.; Lomba, Â.; Valent, P.; Suškevičs, M.; Picard, O.; Hoogstra-Klein, M.A.; Cosofret, V.; Bouriaud, L.; Ponette, Q.; et al. Adapting forest management to climate change in Europe: Linking perceptions to adaptive responses. For. Policy Econ. 2018, 90, 22–30. [Google Scholar] [CrossRef]
- Hawryś, Z.; Zwoliński, J.; Kwapis, Z.; Małecka, M. Rozwój sosny zwyczajnej na terenie pożarzysk leśnych z 1992 roku w nadleśnictwach Rudy Raciborskie i Potrzebowice (The development of pine in forest areas after the 1992 fire in the Rudy Raciborskie and the Potrzebowice Forest Districts). Leśne Prace Badawcze 2004, 2, 7–20. [Google Scholar]
- Szabla, K. Warunki powstawania i rozwoju pożarów, niektóre działania organizacyjne oraz aktualne zagadnienia hodowlane i ochronne w Nadleśnictwie Rudy Raciborskie (Conditions of the occurrence and development of fires, some organisational measures, and the current silviculture and protection issues in the Rudy Raciborskie Forest District). Sylwan 1994, 138, 75–83. [Google Scholar]
- Arocena, J.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- Johnson, D.; Curtis, P. Effects of forest management on soil C and N storage: Meta analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Mroz, G.; Jurgensen, M.; Harvey, A.; Larsen, M. Effects of Fire on Nitrogen in Forest Floor Horizons1. Soil Sci. Soc. Am. J. 1980, 44, 395–400. [Google Scholar] [CrossRef]
- Oswald, B.; Davenport, D.; Neuenschwander, L. Effects of slash pile burning on the physical and chemical soil properties of Vassar soils. J. Sustain. Forest. 1999, 8, 75–86. [Google Scholar] [CrossRef]
- Olejarski, I. Wpływ zabiegów agrotechnicznych na niektóre właściwości gleb oraz stan upraw sosnowych na pożarzyskach wielkoobszarowych (The influence of agrotechnical treatments on some of the properties of soils and the condition of Scots pine forest regeneration in large post-fire areas). Leśne Prace Badawcze 2003, 2, 47–77. [Google Scholar]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Simard, D.; Fyles, J.; Paré, D.; Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 2001, 81, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Dziadowiec, H. Wpływ pożaru lasu na właściwości gleb leśnych (Impact of forest fire on forest soil properties). In Środowiskowe skutki pożaru lasu; Sewerniak, P., Gonet, S.S., Eds.; Polskie towarzystwo Substancji Humusowych: Wrocław, Poland, 2010; pp. 7–25. [Google Scholar]
- Durgin, P.; Vogelsang, P. Dispersion of kaolinite by water extracts of Douglas-fir ash. Can. J. Soil Sci. 1984, 64, 439–443. [Google Scholar] [CrossRef]
- Giovannini, G.; Lucchesi, S. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci. 1997, 162, 479–486. [Google Scholar] [CrossRef]
- Dymov, A.A.; Abakumov, E.V.; Bezkorovaynaya, N.; Prokushkin, A.S.; Kuzyakov, V.; Milanovsky, E. Impact of forest fire on soil properties. Теoретическая и прикладная экoлoгия 2018, 4, 13–23. [Google Scholar]
- Kania, J.; Malawska, M.; Gutry, P.; Kamiński, J.; Wiłkomirski, B. Zmiany przyrodnicze torfowiska niskiego spowodowane pożarem (Low moor environment changes caused by a fire). Woda-Środowisko-Obszary Wiejskie 2006, 6, 155–173. [Google Scholar]
- Dubé, S.; Plamondon, A.P.; Rothwell, R.L. Watering up after clear-cutting on forested wetlands of the St. Lawrence lowland. Water Resour. Res. 1995, 31, 1741–1750. [Google Scholar] [CrossRef]
- Korytowski, M. Analiza zmian stanów wód gruntowych po wycięciu drzewostanu w siedlisku lasu mieszanego wilgotnego na przykładzie Leśnictwa Laski (An analysis of changes in ground water stages after cutting out a stand on a humid mixed forest site as exemplified by the Laski Forest Range). Rocznik Ochrona Środowiska 2013, 15, 1274–1286. [Google Scholar]
- Đuka, A.; Poršinsky, T.; Pentek, T.; Pandur, Z.; Janeš, D.; Papa, I. Soil Measurements in the Context of Planning Harvesting Operations and Variable Climatic Conditions. South East Eur. For. 2018, 9, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Poršinsky, T.; Sraka, M.; Stankić, I. Comparison of two approaches to soil strength classifications. Croatian Journal of Forest Engineering. J. Theory Appl. For. Eng. 2006, 27, 17–26. [Google Scholar]
- Uusitalo, J.; Ala-Ilomäki, J.; Lindeman, H.; Toivio, J.; Sirén, M. Modelling soil moisture – soil strength relationship of fine-grained upland forest soils. Silva Fenn. 2019, 53, 10050. [Google Scholar] [CrossRef]
- McNabb, D.H.; Startsev, A.D.; Nguyen, H. Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Sci. Soc. Am. J. 2001, 65, 1238–1247. [Google Scholar] [CrossRef]
- McDonald, T.P.; Seixas, F. Effect of slash on forwarder soil compaction. J. For. Eng. 1997, 8, 15–26. [Google Scholar]
- Han, H.S.; Page-Dumroese, D.; Han, S.K.; Tirocke, J. Effects of slash, machine passes, and soil moisture on penetration resistance in a cut-to-length harvesting. Int. J. For. Eng. 2006, 17, 11–24. [Google Scholar] [CrossRef]
- Akay, A.E.; Sessions, J.; Aruga, K. Designing a forwarder operation considering tolerable soil disturbance and minimum total cost. J. Terramechanics 2007, 44, 187–195. [Google Scholar] [CrossRef]
- Poršinsky, T.; Stankić, I. Efficiency of Timberjack 1710B Forwarder on Roundwood Extraction from Croatian Lowland Forests. Glasnik za šumske pokuse 2006, 5, 573–587. [Google Scholar]
- Kulak, D.; Stańczykiewicz, A.; Szewczyk, G.; Lubera, A.; Strojny, T. Czynniki wpływające na zmiany zwięzłości gleb leśnych podczas pozyskiwania surowca drzewnego (Factors affecting the changes in penetration resistance of forest soils during timber harvesting). Sylwan 2015, 159, 318–325. [Google Scholar]
- Poršinsky, T.; Stankić, I. Environmental Evaluation of Timberjack 1710B Forwarder on Roundwood Extraction from Croatian Lowland Forests. Glasnik za šumske pokuse 2006, 5, 589–600. [Google Scholar]
- Saarilahti, M. Soil interaction model. In Development of a Protocol for Ecoefficient Wood Harvesting on Sensitive Sites (ECOWOOD); University of Helsinki, Department of Forest Resource Management: Helsinki, Finland, 2002. [Google Scholar]
- Poršinsky, T.; Horvat, D. Wheel numeric as parameter for assessing environmental acceptability of vehicles for timber extraction/Indeks kotaca kao parametar procjene okolisne prihvatljivosti vozila za privlacenje drva. Nova Mehanizacija Sumarstva 2005, 26, 25–39. [Google Scholar]
- Shoop, S. Terrain characterization for trafficability. U.S.; CRREL Report 93-6; Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1993. [Google Scholar]
- Lasota, J.; Błońska, E. Siedliskoznawstwo leśne na nizinach oraz wyżynach Polski (Forest habitat science in Poland’s lowlands and uplands); Wydawnictwo Uniwersytetu Rolniczego w Krakowie: Krakow, Poland, 2013; p. 236. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015; p. 190. [Google Scholar]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jakowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—principles, classification scheme and correlations. Soil Sci. Ann. 2019, 70, 71–97. [Google Scholar]
- ASAE. Soil cone penetrometer (ASAE S313.3 FEB99). ASAE Stand. 2000, 1999, 831–833. [Google Scholar]
- ASAE. Procedures for using and reporting data obtained with the soil cone penetrometer (ASAE EP542 FEB99). ASAE Stand. 2000, 1999, 986–989. [Google Scholar]
- Eijkelkamp Agrisearch Equipment. Penetrologger—operating instructions: Giesbeek, Netherlands, 2014. Available online: https://www.eijkelkamp.com (accessed on 24 March 2016).
- Ward, S.M.; Lyons, J. The development of an operations protocol for wood harvesting on sensitive sites. In Proceedings of the International conference “Thinnings: A Valuable Forest Management Tool”. IUFRO Unit 3.09.00, Quebec City, QC, Canada, 9–14 September 2001; FERIC, Natural Resources Canada, Canadian Forest Service: Quebec City, QC, Canada; pp. 1–12. [Google Scholar]
- Owende, P.; Lyons, J.; Haarlaa, R.; Peltola, A.; Spinelli, R.; Molano, J.; Ward, S.M. Operations protocol for Eco-efficient Wood Harvesting on Sensitive Sites. Project ECOWOOD, Funded under the EU 5th Framework Project (Quality of Life and Management of Living Resources) Contract No. QLK5-1999-00991, 2002. Available online: https://www.ucd.ie/foresteng (accessed on 10 March 2016).
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. 2014. Available online: https://www.statsoft.com (accessed on 31 March 2015).
- Nugent, C.; Canali, C.; Owende, P.; Nieuwenhuis, M.; Ward, S. Characteristic site disturbance due to harvesting and extraction machinery traffic on sensitive forest sites with peat soils. For. Ecol. Manag. 2003, 180, 85–98. [Google Scholar] [CrossRef]
- Sutherland, B. Preventing Soil Compaction and Rutting in the Boreal Forest of Western Canada: A Practical Guide to Operating Timber-Harvesting Equipment; Advantage Report; Forest Engineering Research Institute of Canada: Pointe-Claire, QC, Canada, 2003; Volume 4. [Google Scholar]
- Poršinsky, T.; Pentek, T.; Bosner, A.; Stankić, I. Ecoefficient timber forwarding on lowland soft soils. In Global Perspectives on Sustainable Forest Management; Okia, C.A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 275–288. [Google Scholar]
- Naghdi, R.; Solgi, A. Effects of skidder passes and slope on soil disturbance in two soil water contents. Croat. J. For. Eng. 2014, 35, 73–80. [Google Scholar]
- McEwan, A.; Brink, M.; van Zyl, S. Guidelines for difficult terrain ground based harvesting operations in South Africa. Institute for Commercial Forestry Research. ICFR Bull. Ser. 2013, 2, 149. [Google Scholar]
- Bygdén, G.; Eliasson, L.; Wästerlund, I. Rut depth, soil compaction and rolling resistance when using bogie tracks. J. Terramechanics 2003, 40, 179–190. [Google Scholar] [CrossRef]
- Sirén, M.; Ala-Ilomäki, J.; Lindeman, H.; Uusitalo, J.; Kiilo, K.E.K.; Salmivaara, A.; Ryynänen, A. Soil disturbance by cut-to-length machinery on mid-grained soils. Silva. Fenn. 2019, 53, 1–24. [Google Scholar] [CrossRef]
- Kulak, D. Wieloaspektowa Metoda Oceny Stanu Gleb leśnych po Przeprowadzeniu Procesów Pozyskiwania Drewna (Multicriterial Method for Assessment of Forest Soil Condition after Various Forest Operations); Wydawnictwo Uniwersytetu Rolniczego w Krakowie: Kraków, Poland, 2017; p. 159. [Google Scholar]
- Halvorson, J.J.; Gatto, L.W.; McCool, D.K. Overwinter changes to near-surface bulk density, penetration resistance and infiltration rates in compacted soil. J. Terramechanics 2003, 40, 1–24. [Google Scholar] [CrossRef]
Symbol | 1F | 1C | 2F | 2C | 3F | 3C | 4F | 4C | 5F | 5C |
---|---|---|---|---|---|---|---|---|---|---|
Forest site type 1 | Fresh mixed coniferous forest site | Fresh mixed coniferous forest site | Fresh mixed coniferous forest site | Moist mixed broadleaved forest site | Moist mixed coniferous forest site | |||||
Soil type 2 | Podzol | Brunic Arenosol | Albic Brunic Arenosol | Stagnosol | Gleyic Podzol | |||||
Soil textural group 3 | Sand | Loamy sand | Sand | Sandy loam | Sand | |||||
Area (ha) | 10.77 | 0.90 | 9.35 | 1.8 | 0.37 | 9.44 | 1.22 | 7.13 | 28.59 | 18.22 |
Species composition | Pine 80% Larch 10% Birch 10% | Pine 100% | Pine 80% Birch 20% | Pine 100% | Pine 50% Birch 50% | Pine 100% | Pine 70% Alder 20% Larch 10% | Pine 100% | Pine 90% Birch 10% | Pine 60% Birch 20% Larch 10% Alder 10% |
Age (years) | 24 | 87 | 24 | 70 | 25 | 135 | 23 | 120 | 23 | 27 |
Growing stock (m3/ha) | 175 | 237 | 65 | 210 | 65 | 340 | 110 | 340 | 110 | 120 |
CI (MPa) | ||||||||||||
Site | 1 | 2 | 3 | 4 | 5 | Together | ||||||
F | C | F | C | F | C | F | C | F | C | F | C | |
No. | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 150 | 150 |
Mean | 2.02 a | 1.59 b | 2.11 a | 1.58 b | 2.33 a | 1.66 b | 2.06 a | 1.41 b | 2.24 a | 1.78 b | 2.15 a | 1.60 b |
SD | 0.66 | 0.34 | 0.70 | 0.40 | 1.06 | 0.55 | 0.49 | 0.29 | 0.80 | 0.57 | 0.76 | 0.45 |
Minimum | 0.95 | 0.80 | 1.08 | 0.88 | 0.63 | 0.93 | 0.88 | 0.93 | 1.08 | 1.00 | 0.63 | 0.80 |
Maximum | 3.25 | 2.53 | 3.78 | 2.85 | 4.80 | 3.38 | 3.13 | 2.03 | 3.90 | 3.12 | 4.80 | 3.38 |
Statistics t | 3.163 | 3.617 | 3.069 | 6.627 | 2.503 | 7.569 | ||||||
p-value | 0.002 | 0.001 | 0.003 | 0.000 | 0.015 | 0.000 | ||||||
Moisture (%) | ||||||||||||
Site | 1 | 2 | 3 | 4 | 5 | Together | ||||||
F | C | F | C | F | C | F | C | F | C | F | C | |
No. | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 150 | 150 |
Mean | 32.23 a | 29.00 a | 26.60 a | 19.67 a | 22.29 a | 19.80 a | 21.00 a | 25.97 a | 22.63 a | 20.56 a | 24.99 a | 23.05 a |
SD | 5.44 | 13.02 | 12.10 | 6.96 | 4.28 | 7.13 | 5.18 | 8.96 | 7.74 | 6.48 | 8.49 | 9.57 |
Minimum | 21.00 | 8.00 | 8.00 | 8.00 | 16.00 | 9.00 | 10.00 | 7.00 | 3.00 | 8.00 | 3.00 | 7.00 |
Maximum | 43.00 | 73.00 | 42.00 | 37.00 | 34.00 | 40.00 | 34.00 | 42.00 | 40.00 | 34.00 | 43.00 | 73.00 |
Statistics t | 1.255 | 1.865 | 1.596 | −1.918 | 1.092 | 1.841 | ||||||
p-value | 0.215 | 0.059 | 0.116 | 0.059 | 0.280 | 0.067 |
Forwarder Class | Weight (Tones) | Number of Wheels | Front Tires | Rear Tires | Load Capacity (Tones) | NGP (kPa) |
---|---|---|---|---|---|---|
Without Band Tracks | ||||||
Medium | 12.9 | 8 | 600/50-22.5 | 600/50-22.5 | 9.0 | 76 |
12.7 | 6 | 28L-26 | 710/40-24.5 | 12.0 | 83 | |
14.4 | 6 | 710/55R34 | 710/45-26.5 | 12.0 | 84 | |
16.2 | 8 | 600/55-26.5 | 600/55-26.5 | 12.0 | 86 | |
Large | 15.9 | 6 | 28L-26 | 800/40-26.5 | 13.0 | 85 |
17.8 | 8 | 710/45-26.5 | 710/45-26.5 | 13.0 | 80 | |
15.1 | 6 | 710/55R34 | 800/40-26.5 | 15.0 | 89 | |
16.9 | 8 | 710/45-26.5 | 710/45-26.5 | 15.0 | 82 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulak, D.; Sowa, J.M.; Szewczyk, G.; Stańczykiewicz, A. The Accessibility of Post-Fire Areas for Mechanized Thinning Operations. Forests 2020, 11, 471. https://doi.org/10.3390/f11040471
Kulak D, Sowa JM, Szewczyk G, Stańczykiewicz A. The Accessibility of Post-Fire Areas for Mechanized Thinning Operations. Forests. 2020; 11(4):471. https://doi.org/10.3390/f11040471
Chicago/Turabian StyleKulak, Dariusz, Janusz M. Sowa, Grzegorz Szewczyk, and Arkadiusz Stańczykiewicz. 2020. "The Accessibility of Post-Fire Areas for Mechanized Thinning Operations" Forests 11, no. 4: 471. https://doi.org/10.3390/f11040471
APA StyleKulak, D., Sowa, J. M., Szewczyk, G., & Stańczykiewicz, A. (2020). The Accessibility of Post-Fire Areas for Mechanized Thinning Operations. Forests, 11(4), 471. https://doi.org/10.3390/f11040471