Inheritance and Correlation Analysis of Pulpwood Properties, Wood Density, and Growth Traits of Slash Pine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection
2.3. Chemical Analysis
2.3.1. Lignin Content
2.3.2. Holocellulose Content (HC)
2.3.3. Wood Density
2.4. Statistical Analysis
3. Results
3.1. Differences of Family in Growth and Wood Properties
3.2. Genetic and Phenotypic Correlation between Four Wood Properties
3.3. Family Selection
3.4. Realised Genetic Gains
4. Discussion
4.1. Genetic Variation Parameters
4.2. Correlations
4.3. Family Selection and Genetic Gain
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: New York, NY, USA, 2011. [Google Scholar]
- Pereira, H. Variability in the Chemical Composition of Plantation Eucalypts (Eucalyptus globulus Labill.). Wood Fiber Sci. 2007, 20, 82–90. [Google Scholar]
- Santos, A.; Amaral, M.E.; Vaz, A.; Anjos, O.; Rogério, S. Effect of Eucalyptus globulus Wood Density on Papermaking Potential. Tappi J. 2008, 7, 25–32. [Google Scholar]
- Jahan, M.S.; Haider, M.M.; Rahman, M.; Biswas, D. Chemical Pulping: Evaluation of Rubber Wood (Hevea brasiliensis) as a Raw Material for Kraft Pulping. Nord. Pulp Pap. Res. J. 2011, 26, 258–262. [Google Scholar] [CrossRef]
- Chong, E.W.; Liew, K.C.; Phiong, S.K. Preliminary Study on Organosolv Pulping of Acacia Hybrid. J. For. Environ. Sci. 2013, 29, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Skyba, O.; Douglas, C.J.; Mansfield, S.D. Syringyl-Rich Lignin Renders Poplars More Resistant to Degradation by Wood Decay Fungi. Appl. Environ. Microbiol. 2013, 79, 2560–2571. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.S.; Santana, A.L.; Maranhão, C.A.; Rita de Cássia, M.; De Lima, V.L.; Da Silva, S.I.; Nascimento, M.S.; Bieber, L. Natural Resistance of Five Woods to Phanerochaete chrysosporium Degradation. Int. Biodeterior. Biodegrad. 2010, 64, 711–715. [Google Scholar] [CrossRef]
- Panshin, A.J.; De Zeeuw, C. Textbook of Wood Technology. Part 1. Formation, Anatomy, and Properties of Wood; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Kumar, S.; Burdon, R.D.; Ramsfield, T.; Richardson, B. Genetic Improvement of Stiffness of Radiata Pine: Synthesis of Results from Acoustic Assessments. N. Z. J. For. Sci. 2010, 40, 085–197. [Google Scholar]
- Hein, P.R.; Campos, A.C.; Trugilho, P.F.; Lima, J.T.; Chaix, G. Near Infrared Spectroscopy for Estimating Wood Basic Density in Eucalyptus urophylla and E. grandis. Cerne 2015, 15, 133–141. [Google Scholar]
- Barbara, L.; Moore, J.R.; Evans, R. Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence. In Size- and Age-Related Changes in Tree Structure and Function; Springer: Dordrecht, The Netherlands, 2011; pp. 121–164. [Google Scholar]
- Balodis, V. Pulpwood quality assessment of forest resources. Csiro Aust Div Chem Technol Res. Rev. 1981, 1980, 13–32. [Google Scholar]
- Romain, L.; Bossu, J.; Va, S.; Morel, H.; Amusant, N.; Nicolini, E.; Beauchêne, J. Wood Density Variations of Legume Trees in French Guiana Along the Shade Tolerance Continuum: Heartwood Effects on Radial Patterns and Gradients. Forests 2019, 10, 80. [Google Scholar]
- Bush, D.; Walker, J. Selecting and Breeding Eucalypts for Natural Durability. Developing a Eucalypt Resource: Learning from Australia and Elsewhere; Wood Technology Research Centre: Blenheim, New Zealand, 2011; pp. 125–136. [Google Scholar]
- Andres, S.; Lal, P. Impacts of Climate Change and Bioenergy Markets on the Profitability of Slash Pine Pulpwood Production in the Southeastern United States. Forests 2018, 9, 656. [Google Scholar]
- Courchene, C.E.; Clark, A.; Belli, M.L.; Cooper, W.J.; Shiver, B.D. Effects of Intensive Silvicultural Treatments on Kraft Pulp Quality of Loblolly and Slash Pine. In Proceedings of the Pulping/Process and Product Quality Conference, Boston, MA, USA, 5–8 November 2000. [Google Scholar]
- Sun, X.; Zhang, S.; Qi, L.; Wang, J.; Lu, S.; Jiang, Y. Genetic Variations in Pulpwood Qualities of Open-Pollinated Japanese Larch Families. For. Res. 2003, 16, 515–522. [Google Scholar]
- Zhang, S.Y.; Morgenstern, E.K. Genetic Variation and Inheritance of Wood Density in Black Spruce (Picea mariana) and Its Relationship with Growth: Implications for Tree Breeding. Wood Sci. Technol. 1995, 30, 63–75. [Google Scholar] [CrossRef]
- Lin, K.; Huang, X.H.; Wang, L.H.; Li, R.G.; Yan, J.Q. The Change of Pal Activity and Lignin Content During Adventitious Buds Formation of Cotyledon in Cucumis melon L. J. East China Norm. Univ. Nat. Sci. 1996, 14, 92–97. [Google Scholar]
- Peilin, F.; Zhou, N.; Zhang, J.; Lin, Y.; Zhang, L. Optimization of Determination Process of Cellulose Content with Pine Sawdust and Nitric Acid-Ethanol Method. Adv. Text. Technol. 2013, 21, 1–5. [Google Scholar]
- Hu, C.; Su, Z.; Yun, H.; Wen, W.; Wang, T.; Lu, Q. An Improved Method for Determining the Density of Increment Core Wood Samples Using Hydrostatic Weighing Techniques. J. South China Agric. Univ. 2010, 31, 105–108. [Google Scholar]
- Li, Y.; Apiolaza, L.A.; Altaner, C. Genetic Variation in Heartwood Properties and Growth Traits of Eucalyptus bosistoana. Eur. J. Res. 2018, 137, 565–572. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017.
- Douglas, B.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Zhang, S.; Jiang, J.; Luan, Q. Index Selection for Growth and Construction Wood Properties in Pinus elliottii open-Pollinated Families in Southern China. South. For. J. For. Sci. 2018, 80, 209–216. [Google Scholar]
- Hodge, G.R.; Purnell, R.C. Genetic Parameter Estimates for Wood Density, Transition Age, and Radial Growth in Slash Pine. Can. J. For. Res. 1993, 23, 1881–1891. [Google Scholar] [CrossRef]
- Ukrainetz, N.K.; Kang, K.Y.; Aitken, S.N.; Stoehr, M.; Mansfield, S.D. Heritability and Phenotypic and Genetic Correlations of Coastal Douglas-Fir (Pseudotsuga menziesii) Wood Quality Traits. Can. J. For. Res. 2008, 38, 1536–1546. [Google Scholar] [CrossRef]
- Gaspar, M.J.; Lousada, J.L.; Rodrigues, J.C.; Aguiar, A.; Almeida, M.H. Does Selecting for Improved Growth Affect Wood Quality of Pinus pinaster in Portugal? For. Ecol. Manag. 2009, 258, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, M.J.; Alves, A.; Louzada, J.L.; Morais, J.; Santos, A.; Fernandes, C.; Almeida, M.H.; Rodrigues, J.C. Genetic Variation of Chemical and Mechanical Traits of Maritime Pine (Pinus pinaster Aiton). Correlations with Wood Density Components. Ann. For. Sci. 2011, 68, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Weng, Q.; Li, F.; Li, M.; Zhou, C.; Gan, S. Genetic Parameters for Growth and Wood Chemical Properties in Eucalyptus urophylla × E. tereticornis Hybrids. Ann. For. Sci. 2018, 75, 16. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.X.; Powell, M.B.; Yang, J.L.; Ivković, M.; McRae, T.A. Efficiency of Early Selection for Rotation-Aged Wood Quality Traits in Radiata Pine. Ann. For. Sci. 2007, 64, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, Q.; Tian, Y.; Yang, S.; Wang, H.; Wang, L.; Li, Y.; Zhang, P.; Zhao, X. Comprehensive Assessment of Growth Traits and Wood Properties in Half-Sib Pinus koraiensis Families. Euphytica 2018, 214, 202. [Google Scholar] [CrossRef]
- Hong, Z.; Fries, A.; Wu, H.X. High Negative Genetic Correlations between Growth Traits and Wood Properties Suggest Incorporating Multiple Traits Selection Including Economic Weights for the Future Scots Pine Breeding Programs. Ann. For. Sci. 2014, 71, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Kroon, J.; Andersson, B.; Mullin, T.J. Genetic Variation in the Diameter–Height Relationship in Scots Pine (Pinus sylvestris). Can. J. For. Res. 2008, 38, 1493–1503. [Google Scholar] [CrossRef]
- Park, Y.-S.; Weng, Y.; Mansfield, S.D. Genetic Effects on Wood Quality Traits of Plantation-Grown White Spruce (Picea glauca) and Their Relationships with Growth. Tree Genet. Genomes 2012, 8, 303–311. [Google Scholar] [CrossRef]
- Hylen, G. Age Trends in Genetic Parameters of Wood Density in Young Norway Spruce. Can. J. For. Res. 1999, 29, 135–143. [Google Scholar] [CrossRef]
- Isik, F.; Mora, C.R.; Schimleck, L.R. Genetic Variation in Pinus taeda Wood Properties Predicted Using Non-Destructive Techniques. Ann. For. Sci. 2011, 68, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Gwaze, D.P.; Byram, T.D.; Bridgwater, F.E. Genetic Parameter Estimates for Growth and Wood Density in Loblolly Pine (Pinus taeda L.). For. Genet. 2001, 8, 47–55. [Google Scholar]
- Samuel, C.J.A.; Jonusrowe, R.C.B. A Study of Population Variation and Inheritance in Sitka Spruce. Silvae Genetica 1979, 28, 1. [Google Scholar]
- Poke, F.S.; Potts, B.M.; Vaillancourt, R.E.; Raymond, C.A. Genetic Parameters for Lignin, Extractives and Decay in Eucalyptus globulus. Ann. For. Sci. 2006, 63, 813–821. [Google Scholar] [CrossRef]
- Pot, D.; Chantre, G.; Rozenberg, P.; Rodrigues, J.C.; Jones, G.L.; Pereira, H.; Hannrup, B.; Cahalan, C.; Plomion, C. Genetic Control of Pulp and Timber Properties in Maritime Pine (Pinus pinaster Ait.). Ann. For. Sci. 2002, 59, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, Y.; Jiang, J.; Liu, J. Spectroscopic Determination of Leaf Chlorophyll Content and Color for Genetic Selection on Sassafras tzumu. Plant Methods 2019, 15, 73. [Google Scholar] [CrossRef] [PubMed]
Traits | Max | Mean | Min | SD | CV (%) | h2 |
---|---|---|---|---|---|---|
WD (g/cm−3) | 0.89 | 0.56 | 0.30 | 0.15 | 23.94 | 0.24 |
DBH (cm) | 36.01 | 18.15 | 9.51 | 7.37 | 27.75 | 0.27 |
Lignin (%) | 30.90 | 28.56 | 26.61 | 0.92 | 3.12 | 0.32 |
HC (%) | 72.87 | 67.21 | 62.24 | 2.08 | 2.98 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Ding, X.; Jiang, J.; Luan, Q. Inheritance and Correlation Analysis of Pulpwood Properties, Wood Density, and Growth Traits of Slash Pine. Forests 2020, 11, 493. https://doi.org/10.3390/f11050493
Li Y, Ding X, Jiang J, Luan Q. Inheritance and Correlation Analysis of Pulpwood Properties, Wood Density, and Growth Traits of Slash Pine. Forests. 2020; 11(5):493. https://doi.org/10.3390/f11050493
Chicago/Turabian StyleLi, Yanjie, Xianyin Ding, Jingmin Jiang, and Qifu Luan. 2020. "Inheritance and Correlation Analysis of Pulpwood Properties, Wood Density, and Growth Traits of Slash Pine" Forests 11, no. 5: 493. https://doi.org/10.3390/f11050493
APA StyleLi, Y., Ding, X., Jiang, J., & Luan, Q. (2020). Inheritance and Correlation Analysis of Pulpwood Properties, Wood Density, and Growth Traits of Slash Pine. Forests, 11(5), 493. https://doi.org/10.3390/f11050493