Modeling Tree Species Count Data in the Understory and Canopy Layer of Two Mixed Old-Growth Forests in the Dinaric Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Marchi, M.; Ducci, F. Some refinements on species distribution models using tree-level national forest inventories for supporting forest management and marginal forest population detection. IForest 2018, 11, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Scarnati, L.; Attorre, F.; Farcomeni, A.; Francesconi, F.; De Sanctis, M. Modelling the spatial distribution of tree species with fragmented populations from abundance data. Community Ecol. 2009, 10, 215–224. [Google Scholar] [CrossRef]
- Du, H.; Hu, F.; Zeng, F.; Wang, K.; Peng, W.; Zhang, H.; Zeng, Z.; Zhang, F.; Song, T. Spatial distribution of tree species in evergreen-deciduous broadleaf karst forests in southwest China. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janík, D.; Adam, D.; Hort, L.; Král, K.; Šamonil, P.; Unar, P.; Vrška, T. Tree spatial patterns of Abies alba and Fagus sylvatica in the Western Carpathians over 30 years. Eur. J. For. Res. 2014, 133, 1015–1028. [Google Scholar] [CrossRef]
- Borregaard, M.K.; Hendrichsen, D.K.; Nacman, G. Spatial distribution. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, D.B., Eds.; Elsevier B.V.: Oxford, UK, 2008; pp. 3304–3310. [Google Scholar]
- Alexander, N. Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics 2000, 1, 453–463. [Google Scholar] [CrossRef]
- Peña-Rehbein, P.; Ríos-Escalante, P.D. los Use of negative binomial distribution to describe the presence of Anisakis in Thyrsites atun. Rev. Bras. Parasitol. Veterinária 2012, 21, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zuckerberg, B.; Porter, W.F.; Zhang, L. Spatial Poisson Models for Examining the Influence of Climate and Land Cover Pattern on Bird Species Richness. For. Sci. 2012, 58, 61–74. [Google Scholar] [CrossRef]
- Dale, M.R.T.; Dixon, P.; Fortin, M.J.; Legendre, P.; Myers, D.E.; Rosenberg, M.S. Conceptual and mathematical relationships among methods for spatial analysis. Ecography 2002, 25, 558–577. [Google Scholar] [CrossRef]
- Renato Augusto Ferreira, L.; Joao Lus Ferreira, B.; Paulo Inacio, P. Modeling Tree Diameter Distributions in Natural Forests: An Evaluation of 10 Statistical Models. For. Sci. 2015, 60, 320–327. [Google Scholar]
- Szmyt, J. Structural Diversity of Plant Populations: Insight from Spatial Analyses. In Applications of Spatial Statistics; Hung, M., Ed.; IntechOpen: Oxford, UK, 2016; pp. 97–126. [Google Scholar]
- Paluch, J.; Bartkowicz, L.; Moser, W.K. Interspecific effects between overstorey and regeneration in small-scale mixtures of three late-successional species in the Western Carpathians (southern Poland). Eur. J. For. Res. 2019, 138, 889–905. [Google Scholar] [CrossRef] [Green Version]
- Keren, S.; Svoboda, M.; Janda, P.; Nagel, T.A. Relationships between structural indices and conventional stand attributes in an old-growth forest in southeast Europe. Forests 2020, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Diggle, P. Some statistical aspects of spatial distribution models for plants and trees. Stud. For. Suec. 1982, 162, 1–47. [Google Scholar]
- Stamatellos, G.; Panourgias, G. Simulating spatial distributions of forest trees by using data from fixed area plots. Forestry 2005, 78, 305–312. [Google Scholar] [CrossRef]
- Diaci, J. Silver fir decline in mixed old-growth forests in slovenia: An interaction of air pollution, changing forest matrix and climate. In Air Pollution—New Developments; Moldoveanu, A., Ed.; InTech: Oxford, UK, 2011; pp. 263–274. [Google Scholar]
- Govedar, Z.; Krstić, M.; Keren, S.; Babić, V.; Zlokapa, B.; Kanjevac, B. Actual and balanced stand structure: Examples from beech-fir-spruce old-growth forests in the area of the Dinarides in Bosnia and Herzegovina. Sustainability 2018, 10, 540. [Google Scholar] [CrossRef] [Green Version]
- Podlaski, R. Forest modelling: The gamma shape mixture model and simulation of tree diameter distributions. Ann. For. Sci. 2017, 74, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Vrška, T.; Adam, D.; Hort, L.; Kolář, T.; Janík, D. European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—A developmental cycle or a linear trend induced by man? For. Ecol. Manag. 2009, 258, 347–356. [Google Scholar] [CrossRef]
- Szwagrzyk, J.; Maciejewski, Z.; Maciejewska, E.; Tomski, A.; Gazda, A. Forest recovery in set-aside windthrow is facilitated by fast growth of advance regeneration. Ann. For. Sci. 2018, 75, 80. [Google Scholar] [CrossRef] [Green Version]
- Garbarino, M.; Mondino, E.B.; Lingua, E.; Nagel, T.A.; Dukić, V.; Govedar, Z.; Motta, R. Gap disturbances and regeneration patterns in a Bosnian old-growth forest: A multispectral remote sensing and ground-based approach. Ann. For. Sci. 2012, 69, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Bujoczek, L.; Szewczyk, J.; Bujoczek, M. Deadwood volume in strictly protected, natural, and primeval forests in Poland. Eur. J. For. Res. 2018, 137, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Keren, S.; Diaci, J. Comparing the quantity and structure of deadwood in selection managed and old-growth forests in South-East Europe. Forests 2018, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Král, K.; Daněk, P.; Janík, D.; Krůček, M.; Vrška, T. How cyclical and predictable are Central European temperate forest dynamics in terms of development phases? J. Veg. Sci. 2018, 29, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Keren, S.; Medarević, M.; Obradović, S.; Zlokapa, B. Five Decades of Structural and Compositional Changes in Managed and Unmanaged Montane Stands: A Case Study from South-East Europe. Forests 2018, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Orman, O.; Dobrowolska, D. Gap dynamics in the Western Carpathian mixed beech old-growth forests affected by spruce bark beetle outbreak. Eur. J. For. Res. 2017, 136, 571–581. [Google Scholar] [CrossRef]
- Kenderes, K.; Král, K.; Vrška, T.; Standovár, T. Natural gap dynamics in a Central European mixed beech—spruce—fir old-growth forest. Ecoscience 2009, 16, 39–47. [Google Scholar] [CrossRef]
- Bottero, A.; Garbarino, M.; Dukić, V.; Govedar, Z.; Lingua, E.; Nagel, T.A.; Motta, R. Gap-phase dynamics in the old-growth forest of Lom, Bosnia and Herzegovina. Silva Fenn. 2011, 45, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Carrer, M.; Castagneri, D.; Popa, I.; Pividori, M.; Lingua, E. Tree spatial patterns and stand attributes in temperate forests: The importance of plot size, sampling design, and null model. For. Ecol. Manag. 2018, 407, 125–134. [Google Scholar] [CrossRef]
- Keren, S.; Diaci, J.; Motta, R.; Govedar, Z. Stand structural complexity of mixed old-growth and adjacent selection forests in the Dinaric Mountains of Bosnia and Herzegovina. For. Ecol. Manag. 2017, 400, 531–541. [Google Scholar] [CrossRef]
- Stojnić, S.; Avramidou, E.V.; Fussi, B.; Westergren, M.; Orlović, S.; Matović, B.; Trudić, B.; Kraigher, H.; Aravanopoulos, F.A.; Konnert, M. Assessment of genetic diversity and population genetic structure of Norway Spruce (Picea abies (L.) Karsten) at its Southern Lineage in Europe. Implications for conservation of forest genetic resources. Forests 2019, 10, 258. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, K.L.; Bončina, A.; Diaci, J.; Anić, I.; Boydak, M.; Curovic, M.; Govedar, Z.; Grigoriadis, N.; Ivojevic, S.; Keren, S.; et al. Culture and silviculture: Origins and evolution of silviculture in southeast Europe. Int. For. Rev. 2018, 20, 130–143. [Google Scholar] [CrossRef]
- Stupar, V.; Milanović, Đ. Istorijat Zaštite Prirode Na Području Nacionalnog Parka Sutjeska. Гласник Шумарскoг Факултета Универзитета У Бањoј Луци 2017, 1, 113–128. [Google Scholar] [CrossRef] [Green Version]
- Janowiak, M.K.; Nagel, L.M.; Webster, C.R. Spatial Scale and Stand Structure in Northern Hardwood Forests: Implications for Quantifying Diameter Distributions. For. Sci. 2008, 54, 497–506. [Google Scholar]
- Alessandrini, A.; Biondi, F.; Di, A.; Ziaco, E.; Piovesan, G. Tree size distribution at increasing spatial scales converges to the rotated sigmoid curve in two old-growth beech stands of the Italian Apennines. For. Ecol. Manag. 2011, 262, 1950–1962. [Google Scholar] [CrossRef]
- Nagel, T.A.; Svoboda, M.; Rugani, T.; Diaci, J. Gap regeneration and replacement patterns in an old-growth Fagus-Abies forest of Bosnia-Herzegovina. Plant Ecol. 2010, 208, 307–318. [Google Scholar] [CrossRef]
- Lafond, V.; Cordonnier, T.; De Coligny, F.; Courbaud, B. Reconstructing harvesting diameter distribution from aggregate data. Ann. For. Sci. 2012, 69, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Gowda, D.M. Probability Models To Study the Spatial Pattern, Abundance and Diversity of Tree Species. In Proceedings of the Conference on Applied Statistics in Agriculture, Manhattan, KS, USA, 1–3 May 2011; The Kansas State University: Manhattan, KS, USA, 2011; pp. 82–95. [Google Scholar]
- Gu, L.; O’Hara, K.L.; Li, W.Z.; Gong, Z.W. Spatial patterns and interspecific associations among trees at different stand development stages in the natural secondary forests on the Loess Plateau, China. Ecol. Evol. 2019, 9, 6410–6421. [Google Scholar] [PubMed]
- Pommerening, A.; Grabarnik, P. Individual-Based Methods in Forest Ecology and Management, 1st ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
Species | Stand Layer | Old-Growth Forest Janj | Old-Growth Forest Lom |
---|---|---|---|
Fagus sylvatica | understory | Clumped (5.45) | Clumped (1.43) |
canopy | Random (1.39) | Regular (0.62) | |
Abies alba | understory | Random (1.23) | Random (1.40) |
canopy | Random (1.12) | Random (0.77) | |
Picea abies | understory | Random (1.06) | Clumped (2.09) |
canopy | Random (1.36) | Random (1.37) | |
Conifers combined | understory | Clumped (1.43) | Clumped (2.80) |
canopy | Random (0.72) | Random (1.23) | |
All trees | understory | Clumped (4.48) | Clumped (1.81) |
canopy | Random (0.79) | Regular (0.42) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keren, S. Modeling Tree Species Count Data in the Understory and Canopy Layer of Two Mixed Old-Growth Forests in the Dinaric Region. Forests 2020, 11, 531. https://doi.org/10.3390/f11050531
Keren S. Modeling Tree Species Count Data in the Understory and Canopy Layer of Two Mixed Old-Growth Forests in the Dinaric Region. Forests. 2020; 11(5):531. https://doi.org/10.3390/f11050531
Chicago/Turabian StyleKeren, Srđan. 2020. "Modeling Tree Species Count Data in the Understory and Canopy Layer of Two Mixed Old-Growth Forests in the Dinaric Region" Forests 11, no. 5: 531. https://doi.org/10.3390/f11050531
APA StyleKeren, S. (2020). Modeling Tree Species Count Data in the Understory and Canopy Layer of Two Mixed Old-Growth Forests in the Dinaric Region. Forests, 11(5), 531. https://doi.org/10.3390/f11050531