The Effect of Environmental Conditions on Pollution Deposition and Canopy Leaching in Two Pine Stands (West Pomerania and Świętokrzyskie Mountains, Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Laboratory Analyses
2.2.1. Rainfall and Throughfall Measurements
2.2.2. Chemical Analysis
2.3. Data Analysis
2.3.1. Statistical Analysis
2.3.2. Enrichment Ratio
2.3.3. Canopy Budget Modelling
- Na+ ions are not subject to any processes during the infiltration of precipitation through the tree canopy; and
- Particles containing Ca2+, Mg2+, and K+ ions have the same size as particles containing Na+.
2.3.4. Neutralisation Indicators of Acidic Compounds
3. Results
3.1. Canopy Impacts on Rainwater Fluxes
3.2. Canopy Impacts on Rainwater Chemistry and Deposition Fluxes
3.3. Source of Ionic Species
4. Discussion
5. Conclusions
- The presence of cement/lime dust, mainly calcium and magnesium, emitted by industrial plants on Malik plot, affects conductivity, pH, and the chemical composition of precipitation, playing a key role in the neutralization processes of acidogenic compounds.
- Emissions from agricultural areas, mainly with ammonium ions, as well as chlorides and sodium, which are the source of marine aerosols, affected a low level of conductivity of atmospheric precipitation and the precipitation’s composition on Czarne plot, playing a key role in the neutralization processes of acidogenic compounds.
- Regardless of air pollution, the intensity of quantitative and qualitative transformation of precipitation in both pine stands was comparable. In both cases, the total ion load in throughfall was twice as high as on the open area, with the highest leaching intensity in the growing season. The leaching processes of K+ and Mg2+ did not depend on various anthropogenic pressures.
Author Contributions
Funding
Conflicts of Interest
References
- Kozłowski, R. The functioning of selected Polish geoecosystems under diverse anthropopressure conditions—The case of low mountains and foothills. Landf. Anal. 2013, 23, 1–150. [Google Scholar]
- Świercz, A. Chemical transformations in podzolic soils inducted by alkaline and acidic emissions in the Świętokrzyski region of Poland. Pol. J. Environ. Stud. 2008, 17, 129–138. [Google Scholar]
- Kozłowski, R.; Szwed, M. Utilisation of bio- and geoindicators for assessment of the state of natural environment in the south-western part of the Świętokrzyskie Mountains. In Infrastructure and Environment; Krakowiak-Bal, A., Vaverkova, M., Eds.; Springer: Cham, Germany, 2019. [Google Scholar] [CrossRef]
- Kozłowski, R.; Szwed, M.; Żukowski, W. Pine needles as bioindicator of pollution by trace elements from cement-limestone industry in Central-Eastern Poland. Carpathian J. Earth Environ. Sci. 2019, 14, 541–549. [Google Scholar] [CrossRef]
- Szpikowski, J.; Szpikowska, G.; Domańska, M.; Kruszyk, R.; Majewski, M. Condition and change of the environment geoekosystem of the upper Parsęta catchment. In the State and Changes of the Natural Environment of Polish Geoecosystems in the Years 1994—2015 Based on the Implementation of the Integrated Monitoring Natural Environment; Kostrzewski, A., Majewski, M., Eds.; Biblioteka Monitoringu Środowiska: Warsaw, Poland, 2018; pp. 75–124. [Google Scholar]
- Małek, S. Nutrient fluxes in planted Norway Spruce stands of different age in Southern Poland. Water Air Soil Pollut. 2010, 209, 45–59. [Google Scholar] [CrossRef]
- Kozłowski, R.; Jóźwiak, M. The transformation of precipitation in the tree canopy in selected forest ecosystems of Poland’s Świętokrzyskie Mountains. Prz. Geogr. 2017, 89, 133–153. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, S.; Hansen, K.; Staelens, J.; Wuyts, K. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Sci. Total Environ. 2012, 420, 168–182. [Google Scholar] [CrossRef]
- Adriaenssens, S.; Staelens, J.; Wuyts, K.; De Schrijver, A.; Van Wittenberghe, S.; Wuytack, T.; Kardel, F.; Verheyen, K.; Samson, R.; Boeckx, P. Foliar nitrogen uptake from wet deposition and the relation with leaf wettability and water storage capacity. Water Air Soil Pollut. 2011, 219, 43–57. [Google Scholar] [CrossRef]
- Herrmann, M.; Pust, J.; Pott, R. The chemical composition of throughfall beneath oak, birch and pine canopies in Northwest Germany. Plant Ecol. 2006, 184, 273–285. [Google Scholar] [CrossRef]
- Kowalska, A.; Astel, A.; Boczoń, A.; Polkowska, Ż. Atmospheric deposition in coniferous and deciduous tree stands in Poland. Atmos. Environ. 2016, 133, 145–155. [Google Scholar] [CrossRef]
- Whelan, M.J.; Sanger, L.J.; Baker, M.; Anderson, J.M. Spatial patterns of throughfall and mineral ion deposition in a lowland Norway spruce (Picea abies) plantation at the plot scale. Atmos. Environ. 1998, 32, 3493–3501. [Google Scholar] [CrossRef]
- Kozłowski, R.; Jóźwiak, M. Chemical denudation in a geoekosystem in acid immision conditions. Ecol. Chem. Eng. S. 2013, 20, 41–54. [Google Scholar] [CrossRef]
- Kozłowski, R.; Jóźwiak, M.; Jóźwiak, M.; Bochenek., W. Assessment of K+, Ca2+ and Mg2+ volume leaching in selected tree stands under conditions of acidic deposition. Sylwan 2012, 156, 607–615. [Google Scholar] [CrossRef]
- Kruszyk, R.; Kostrzewski, A.; Tylkowski, J. Variability of throughfall and stemflow deposition in pine and beech stands (Czarne Lake catchment, Gardno Lake catchment on Wolin Island). Prace Geogr. 2015, 143, 85–102. [Google Scholar] [CrossRef]
- Kruszyk, R. Changes in the physical properties of precipitation in pine stands in the area with a low degree of air pollution (Western Pomerania). Quaest. Geogr. 2013, 32, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Małek, S.; Astel, A. Throughfall chemistry in a spruce chronosequence in southern Poland. Environ. Pollut. 2008, 155, 517–527. [Google Scholar] [CrossRef]
- Polkowska, Ż.; Astel, A.; Walna, B.; Małek, S.; Mędrzycka, K.; Górski, T.; Siepak, J.; Namieśnik, J. Chemometric analysis of rainwater and throughfall at several sites in Poland. Atmos. Environ. 2005, 39, 837–855. [Google Scholar] [CrossRef]
- Potter, C.S.; Ragsdale, H.L.; Swank, W.T. Atmospheric Deposition and Foliar Leaching in a Regenerating Southern Appalachian Forest Canopy. J. Ecol. 1991, 79, 97–115. [Google Scholar] [CrossRef]
- Rodrigo, A.; Àvila, A.; Rodà, F. The chemistry of precipitation, throughfall and stemflow in two holm oak (Quercus ilex L.) forests under a contrasted pollution environment in NE Spain. Sci. Total Environ. 2003, 305, 195–205. [Google Scholar] [CrossRef]
- Ukonmaanaho, L.; Starr, M. Major nutrients and acidity: Budgets and trends at four remote boreal stands in Finland dyring the 1990s. Sci. Total. Environ. 2002, 297, 21–41. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar] [CrossRef]
- Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. In Agriculture Handbook, 2nd ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 1999; Volume 436, pp. 1–886. [Google Scholar]
- World References Base for Soil Resources 2006. A Framework for International Classification, Correlation and Communication; World Soil Resources Reports 103; Food and Agriculture Organization of the United Nations: Roma, Italy, 2006; pp. 1–145. [Google Scholar]
- Bredemeier, M. Forest canopy transformation of atmospheric deposition. Water Air Soil Pollut. 1988, 40, 121–138. [Google Scholar] [CrossRef]
- Draaijers, G.P.J.; Erisman, J.W.; van Leuven, N.F.M.; Romer, F.G.; Te Win kel, B.H.; Veltkamp, A.C.; Vermeulen, A.T.; Wyers, G.P. The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos. Environ. 1997, 31, 387–397. [Google Scholar] [CrossRef]
- Ulrich, B. Interaction of forest canopies with atmospheric constit uents: 1983 SO2, alkali and earth alkali cations and chloride. In Effect of Accumulation of Air Pollutants in Forest Ecosystems; Ul rich, B., Pankrath, J., Eds.; Reidel Publishing Company: Dordrecht, The Netherlands, 1983; pp. 33–45. [Google Scholar] [CrossRef]
- Van der Mass, M.P.; Pape, T. Hydrochemistry of two Douglas fir ecosystems and a heather ecosystem in the Veluwe, the Netherlands. In Dutch Priority Programme on Acidification Rep.120.1.01; National Institute of Public Health and Environmental Protection: Bilthoven, NL, USA, 1991. [Google Scholar]
- Keene, W.C.; Pszenny, A.P.; Galloway, J.N.; Hawley, M.E. Sea salt correction and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 1986, 91, 6647–6658. [Google Scholar] [CrossRef]
- Kulshrestha, U.C.; Kulshrestha, J.M.; Sekar, R.; Sastry, G.S.R.; Vairamani, M. Chemical characteristics of rain water at an urban site of south-central India. Atmos. Environ. 2003, 37, 3019–3026. [Google Scholar] [CrossRef]
- Parashar, D.C.; Granat, L.; Kulshrestha, U.C.; Pillai, A.G.; Naik, M.S.; Momin, G.A.; Prakasa, R.P.S.; Safai, P.D.; Khemani, L.T.; Naqvi, S.W.A.; et al. Chemical composition of precipitation in India and Nepal. In A Preliminary Report on an Indo–Swedish Project on Atmospheric Chemistry; Department of Meteorology, Stockholm University, International Meteorological Institute, Stockholm University, International Meteorological Institute: Stockholm, Sweden, 1996. [Google Scholar]
- Balasubramanian, R.; Victor, T.; Chun, N. Chemical and statistical analysis of precipitation in Singapore. Water Air Soil Pollut. 2001, 130, 451–456. [Google Scholar] [CrossRef]
- Nilsson, J.; Grennfelt, P. Critical Loads for Sulphur and Nitrogen; Report from the Nordic Working Group; Nordic Council of Ministers: Copenhagen, Denmark, 1988; p. 417.
- Błaś, M.; Sobik, M.; Quiel, F.; Netzel, P. Temporal and spatial variations of fog in the Western Sudety Mts., Poland. Atmos. Res. 2002, 64, 19–28. [Google Scholar] [CrossRef]
- Likens, G.E.; Bormann, F.H. Biogeochemistry of a Forested Ecosystem; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Žaltauskaite, J.; Juknys, R. Comparisation of principal ion fluxes and their modifications in the forest stands of different tree species. Balt. For. 2011, 17, 179–188. [Google Scholar]
- Caggiano, R.; Fikova, R.; Trippetta, S.; Bratanova-Doncheva, S.; Ignatova, N.; Telesca, L. An assessment of rainfall modification in mountainous ecosystems dominated by Fagus sylvatica L. and Picea abies (L.) Karst. (Western Balkans, Bulgaria) by multivariate analyses. Eur. J. For. Res. 2014, 133, 699–711. [Google Scholar] [CrossRef]
- Balestrini, R.; Arisci, S.; Bizio, M.C.; Mosello, R.; Rogora, M.; Tagliaferri, A. Dry deposition of particles and canopy exchange: Comparison of wet, bulk and throughfall deposition at five forest sites in Italy. Atmos. Environ. 2007, 41, 745–756. [Google Scholar] [CrossRef]
- De Schrijver, A.; Geudens, G.; Augusto, L.; Staelens, J.; Mertens, J.; Wuyts, K.; Gielis, L.; Verheyen, K. Effects of vegetation type on throughfall deposition and seepage flux: A review. Oecologia 2007, 153, 663–674. [Google Scholar] [CrossRef]
- Staelens, J.; De Schrijver, A.; Verheyen, K. Seasonal variation in throughfall and stemflow chemistry beneath a European beech (Fagus sylvatica) tree in relation to canopy phenology. Can. J. For. Res. 2007, 37, 1359–1372. [Google Scholar] [CrossRef]
- Devlaeminck, R.; de Schrijver, A.; Hermy, M. Variation in through—fall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders. Sci. Total. Environ. 2005, 337, 241–252. [Google Scholar] [CrossRef]
- Rothe, A.; Huber, C.; Kreutzer, K.; Weis, W. Deposition and soil leaching in stands of Norway spruce and European beech: Results from the Höglwald research in comparison with other European case studies. Plant Soil. 2002, 240, 33–45. [Google Scholar] [CrossRef]
- Fober, H. Mineralne Żywienie W: Białobok St. [red.]. Buk Zwyczajny (Fagus sylvatica L.); PWN Warszawa: Poznaniu, Poland, 1990. (In Polish) [Google Scholar]
- Le Tacon, F.; Toutain, F. Variations saisonnières et stationnelles de la teneur en éléments minéraux des feuillesde hêtre (Fagus sylvatica) dans l’est de la France. In Annales des Sciences Forestières; EDP Sciences: Les Ulis, France, 1973; Volume 30, pp. 1–29. [Google Scholar]
- Timbacher, C.; Weiss, P. Needle surface characteristics and element contents of Norway spruce in relation to the distance of emission sources. Environ. Pollut. 1999, 105, 111–119. [Google Scholar] [CrossRef]
- Shen, W.; Ren, H.; Jenerette, G.D.; Hui, D.; Ren, H. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence. Atmos. Environ. 2013, 64, 242–250. [Google Scholar] [CrossRef]
- Huber, C.; Kreutzer, K. Three years of continuous measurements of atmospheric ammonia concentrations over a forest stand at the Höglwald site in southern Bavaria. Plant Soil 2002, 240, 13–22. [Google Scholar] [CrossRef]
- Neirynck, J.; Janssens, A.I.; Roskams, P.; Quataret, P.; Verschelde, P.; Ceulemans, R. Nitrogen biogeochemistry of a mature Scots pine forest subjected to high nitrogen loads. Biogeochemistry 2008, 91, 201–222. [Google Scholar] [CrossRef]
- Cao, R.; Chen, S.; Yoshitake, S.; Ohtsuka, T. Nitrogen deposition and responses of forest structure to nitrogen deposition in a cool-temperate deciduous forest. Forests 2019, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.; Lee, S.Y.; Lee, C.; Cho, S.S. Recycling of Cement Kiln Dust as a Raw Material for Cement. Environments 2019, 6, 113. [Google Scholar] [CrossRef] [Green Version]
- Maslehuddin, M.; Al-Amoudi, O.S.B.; Shameem, M.; Rehman, M.K.; Ibrahim, M. Usage of cement kiln dust in cement products—Research review and preliminary investigations. Constr. Build. Mater. 2008, 22, 2369–2375. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R. Cement Kiln Dust. In Waste Materials and By-Products in Concrete; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczuk, A. Chemical characteristics of dust from cement kilns. Miner. Resour. Manag. 2019, 35, 87–102. [Google Scholar] [CrossRef]
- Pajuste, K.; Frey, J.; Asi, E. Interactions of atmosferic deposition with coniferous canopies in Estonia. Environ. Monit. Assess. 2006, 112, 177–196. [Google Scholar] [CrossRef] [PubMed]
- Ots, K.; Mandre, M. Monitoring of heavy metals uptake and allocation in Pinus sylvestris organs in alkalised soil. Environ. Monit. Assess. 2012, 184, 4105–4117. [Google Scholar] [CrossRef] [PubMed]
- Golobočanin, D.; Žujić, A.; Milenković, A.; Miljević, N. Precipitation composition and wet deposition temporal pattern in Central Serbia for the period from 1998 to 2004. Environ. Monit. Assess. 2008, 142, 185–198. [Google Scholar] [CrossRef] [PubMed]
Parameters | Czarne | Malik |
---|---|---|
Location | 53.7471° N, 16.5529° E | 50.8144° N, 20.4966° E |
Altitude (m above sea level) | 152 | 267 |
Species composition at sampling site (%) | Pinus sylvestris (86), Quercus robur (7), Fagus sylvatica (5), Betula pendula (2) | Pinus sylvestris (52), Carpinus betulus (27) Fagus sylvatica (21) |
Canopy cover (%) | 70 | 60 |
Trees age (year) 1 | Pinus sylvestris (92), Quercus robur (20), Fagus sylvatica (40), Betula pendula (20) | Pinus sylvestris (80), Carpinus betulus (50), Fagus sylvatica (60) |
Trees height (m) 1 | Pinus sylvestris (17–27), Quercus robur (5–10), Fagus sylvatica (10–15), Betula pendula (2–10) | Pinus sylvestris (25–35), Carpinus betulus (20–25), Fagus sylvatica (20–28) |
Soils | Spodic Udipsamments 2, Albic Brunic Arenosol (Dystric) 3 | Spodic Udipsamments 2, Albic Brunic Arenosol (Dystric) 3 |
Soils texture | Sand | Sand |
Pines average breast height (cm) 1 | 11–55 | 14–21 |
Average annual air temperature (2010–2013) | 7.1°–8.1° | 6.7°–7.7° |
Average annual total of precipitation (2010–2013) (mm) | 692.8 | 575.0 |
Variable | Method and Instrument | Reporting Unit | |
---|---|---|---|
Czarne | Malik | ||
pH, EC | Potentiometry | Potentiometry | pH unit, µS·cm−1 |
Cl−, NO3−, SO42− | Ion chromatography (DX-120 by Dionex) | Ion chromatography (Dionex ICS 3000) | mg·dm−3 |
NH4+ | Nessler spectrophotometric method (Spekol 1100, Carl Zeiss) | ||
Na+, K+ | AES Flame (SpectrAA-20 plus, Varian) | ||
Ca2+, Mg2+ | AAS Flame (SpectrAA-20 plus, Varian) |
SO42− | NO3− | Cl− | Ca2+ | K+ | NH4+ | Mg2+ | Na+ | pH | EC | |
---|---|---|---|---|---|---|---|---|---|---|
mg·dm−3 | - | µS·cm−1 | ||||||||
Malik—bulk precipitation BP | ||||||||||
Min | 1.76 | 0.37 | 0.09 | 1.21 | 0.12 | <0.01 | 0.25 | <0.01 | 3.95 | 17.3 |
Mean ± SD | 7.40 ± 8.85 | 3.32 ± 4.17 | 2.92 ± 1.48 | 3.99 ± 3.32 | 0.50 ± 0.39 | 0.67 ± 0.79 | 0.77 ± 0.47 | 1.47 ± 1.72 | 4.98 | 37.6 ± 23.2 |
Q2 | 5.69 | 2.35 | 2.58 | 3.86 | 0.40 | 0.57 | 0.75 | 0.98 | 5.39 | 41.7 |
Max | 39.3 | 19.0 | 7.40 | 14.96 | 1.67 | 3.65 | 2.52 | 7.84 | 7.70 | 109 |
N | 43 | 43 | 41 | 42 | 43 | 43 | 43 | 43 | 46 | 46 |
Malik—throughfall TF | ||||||||||
Min | 4.27 | 2.24 | 0.22 | 0.79 | 0.30 | <0.01 | 0.28 | 0.01 | 4.57 | 28.0 |
Mean ± SD | 17.3 ± 21.1 | 17.3 ± 21.3 | 3.29 ± 2.45 | 8.98 ± 9.57 | 4.96 ± 4.36 | 1.26 ± 1.29 | 1.41 ± 0.84 | 1.64 ± 1.93 | 5.91 | 65.9 ± 61.5 |
Q2 | 15.0 | 21.3 | 3.39 | 10.25 | 3.83 | 1.39 | 1.41 | 1.26 | 6.33 | 74.8 |
Max | 122.8 | 90.2 | 11.2 | 55.2 | 20.3 | 6.57 | 4.79 | 8.79 | 7.33 | 334 |
N | 43 | 43 | 41 | 42 | 43 | 43 | 43 | 43 | 46 | 46 |
Czarne—bulk precipitation BP | ||||||||||
Min | 0.45 | 0.60 | 0.19 | 0.16 | 0.08 | 0.12 | <0.01 | 0.23 | 4.56 | 4.5 |
Mean ± SD | 0.96 ± 0.88 | 1.50 ± 1.12 | 0.60 ± 0.35 | 0.79 ± 0.64 | 0.27 ± 0.26 | 0.69 ± 0.87 | 0.13 ± 0.06 | 0.63 ± 0.32 | 5.16 | 13.7 ± 8.1 |
Q2 | 0.88 | 1.50 | 0.62 | 0.78 | 0.23 | 0.76 | 0.12 | 0.62 | 5.26 | 14.4 |
Max | 6.15 | 6.95 | 1.64 | 3.59 | 1.25 | 4.22 | 0.35 | 2.32 | 6.57 | 51.3 |
N | 46 | 46 | 46 | 46 | 46 | 45 | 46 | 46 | 44 | 45 |
Czarne—throughfall TF | ||||||||||
Min | 0.53 | 0.43 | 0.54 | 0.56 | 0.50 | 0.46 | 0.18 | 0.58 | 4.47 | 17.0 |
Mean ± SD | 1.97 ± 7.22 | 2.81 ± 4.45 | 2.01 ± 2.34 | 1.24 ± 1.97 | 2.06 ± 3.34 | 2.41 ± 1.86 | 0.36 ± 0.49 | 1.26 ± 0.72 | 4.93 | 34.4 ± 50.5 |
Q2 | 2.08 | 2.90 | 2.03 | 1.40 | 1.79 | 2.44 | 0.38 | 1.32 | 5.15 | 36.7 |
Max | 50.3 | 27.6 | 15.3 | 14.2 | 22.6 | 8.04 | 3.59 | 4.67 | 6.49 | 342 |
N | 46 | 46 | 46 | 46 | 46 | 45 | 46 | 46 | 44 | 45 |
Rainfall | H+ | EC | Cl− | SO42− | NO3− | Ca2+ | Mg2+ | Na+ | NH4+ | K+ | |
---|---|---|---|---|---|---|---|---|---|---|---|
Rainfall | 0.209 | −0.783 **** | −0.356 * | −0.489 *** | −0.515 *** | −0.563 **** | −0.387 ** | −0.135 | −0.208 | −0.077 | |
H+ | 0.233 | −0.215 | −0.096 | 0.027 | −0.148 | −0.32 | −0.413 ** | −0.288 | −0.138 | −0.431 ** | |
EC | −0.847 **** | −0.285 | 0.511 *** | 0.665 **** | 0.499 *** | 0.726 **** | 0.622 **** | 0.000 | 0.095 | 0.226 | |
Cl− | −0.625 **** | −0.279 | 0.713 **** | 0.676 **** | 0.288 | 0.602 **** | 0.664 **** | 0.409 ** | 0.168 | 0.184 | |
SO42− | −0.777 **** | −0.137 | 0.870 **** | 0.746 **** | 0.270 | 0.591 **** | 0.656 **** | 0.034 | −0.116 | 0.183 | |
NO3− | −0.642 **** | −0.115 | 0.779 **** | 0.689 **** | 0.801 **** | 0.435 ** | 0.490 *** | 0.074 | 0.346 * | −0.009 | |
Ca2+ | −0.687 **** | −0.270 | 0.714 **** | 0.492 *** | 0.615 **** | 0.493 *** | 0.819 **** | 0.087 | 0.181 | 0.456 ** | |
Mg2+ | −0.740 **** | −0.188 | 0.814 **** | 0.636 **** | 0.682 **** | 0.526 *** | 0.821 **** | 0.126 | 0.094 | 0.422 ** | |
Na+ | −0.653 **** | −0.211 | 0.748 **** | 0.947 **** | 0.722 **** | 0.649 ***** | 0.559 **** | 0.717 **** | 0.279 | 0.106 | |
NH4+ | −0.515 *** | −0.587 **** | 0.607 **** | 0.187 | 0.288 | 0.459 ** | 0.387 ** | 0.290 | 0.199 | −0.381 * | |
K+ | −0.471 *** | −0.472 ** | 0.524 *** | 0.378 ** | 0.365 * | 0.193 | 0.668 **** | 0.626 **** | 0.366 * | 0.553 **** |
Sampling Sites | Cl− | SO42− | NO3− | Ca2+ | Mg2+ | Na+ | NH4+ | K+ | H+ | Total Load |
---|---|---|---|---|---|---|---|---|---|---|
Bulk precipitation | ||||||||||
Loads in kg·ha−1·year−1 | ||||||||||
Czarne | 4.2 | 6.6 | 10.4 | 5.4 | 0.9 | 4.4 | 6.0 | 1.9 | 0.05 | 39.8 |
Malik | 14.4 | 42.3 | 19.0 | 22.7 | 4.5 | 8.4 | 3.8 | 2.9 | 0.06 | 118.0 |
Ratio loads (-) | ||||||||||
Malik/Czarne | 3.4 (2.0–5.6) | 6.4 (5.1–9.8) | 1.8 (0.8–3.7) | 4.2 (2.6–5.8) | 4.9 (2.9–6.5) | 1.9 (1.2–3.0) | 0.6 (0.2–1.0) | 1.6 (1.2–1.9) | 1.2 (0.9–2.1) | 3.0 (2.1–4.5) |
Throughfall | ||||||||||
Loads in kg·ha−1·year−1 | ||||||||||
Czarne | 10.2 | 10.0 | 14.2 | 6.2 | 1.8 | 6.4 | 12.1 | 10.4 | 0.06 | 71.3 |
Malik | 13.4 | 71.0 | 70.9 | 36.4 | 5.8 | 6.7 | 5.1 | 20.3 | 0.01 | 229.6 |
Ratio loads (-) | ||||||||||
Malik/Czarne | 1.3 (0.9–2.0) | 7.1 (5.6–11.4) | 5.0 (1.8–6.6) | 5.9 (3.9–8.5) | 3.2 (2.9–3.7) | 1.1 (0.6–1.5) | 0.4 (0.3–0.6) | 2.0 (1.4–2.4) | 0.1 (0.03–0.3) | 3.2 (2.6–4.0) |
Enrichment ratio (-) | ||||||||||
Czarne | 2.5 *** (2.2–2.9) | 1.5 *** (1.3–1.7) | 1.4 * (1.3–1.4) | 1.1 (0.8–1.5) | 2.0 *** (1.7–2.3) | 1.5 *** (1.3–1.8) | 2.0 *** (1.2–3.3) | 5.6 *** (4.4–7.6) | 1.2 (0.8–1.6) | 1.8 *** (1.5–2.2) |
Malik | 0.9 (0.5–1.7) | 1.7 ** (0.9–2.9) | 3.7 *** (2.3–9.4) | 1.6 ** (1.1–2.0) | 1.3 * (1.0–1.9) | 0.8 (0.7–1.0) | 1.4 (0.9–3.4) | 7.0 *** (5.8–8.8) | 0.1 *** (0.03–0.2) | 1.9 *** (1.3–2.6) |
Solute/Factor | Bulk Precipitation | |||||||
Malik | Czarne | |||||||
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | ||
Cl− | 0.84 | 0.23 | 0.11 | 0.08 | 0.17 | 0.91 | −0.02 | |
NO3− | 0.14 | 0.09 | 0.92 | 0.05 | 0.73 | 0.47 | 0.14 | |
SO42− | 0.85 | 0.03 | 0.36 | −0.02 | 0.63 | 0.49 | 0.26 | |
Na+ | 0.28 | −0.22 | 0.18 | 0.82 | 0.27 | 0.85 | 0.14 | |
K+ | 0.34 | 0.75 | −0.05 | −0.08 | 0.12 | 0.45 | 0.70 | |
Mg2+ | 0.85 | 0.15 | −0.21 | 0.12 | 0.52 | 0.39 | 0.33 | |
Ca2+ | 0.89 | −0.12 | 0.19 | −0.02 | 0.89 | 0.03 | −0.08 | |
NH4+ | 0.56 | −0.12 | 0.30 | −0.64 | 0.77 | 0.22 | 0.45 | |
H+ | −0.12 | 0.86 | 0.14 | −0.07 | −0.11 | 0.11 | −0.87 | |
Eigenvalues | 3.73 | 1.52 | 1.05 | 1.00 | 4.59 | 1.20 | 1.06 | |
Explained variance (%) | 39 | 16 | 14 | 12 | 30 | 27 | 19 | |
Cumulative explained variance (%) | 39 | 55 | 69 | 81 | 30 | 57 | 76 | |
Solute/Factor | Throughfall | |||||||
Malik | Czarne | |||||||
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC4 | |
Cl− | 0.91 | 0.10 | 0.18 | −0.07 | 0.27 | 0.91 | 0.19 | 0.13 |
NO3− | 0.24 | 0.82 | 0.01 | 0.10 | 0.92 | 0.31 | 0.15 | 0.03 |
SO42− | 0.91 | −0.09 | 0.00 | 0.10 | 0.76 | 0.49 | 0.16 | −0.03 |
Na+ | 0.01 | 0.80 | 0.08 | −0.18 | 0.26 | 0.91 | 0.25 | 0.08 |
K+ | 0.44 | 0.13 | −0.70 | −0.30 | −0.13 | 0.28 | 0.60 | 0.58 |
Mg2+ | 0.82 | 0.27 | −0.29 | −0.24 | 0.20 | 0.38 | 0.83 | −0.07 |
Ca2+ | 0.83 | 0.34 | −0.09 | −0.13 | 0.31 | 0.08 | 0.84 | 0.07 |
NH4+ | 0.18 | 0.18 | 0.90 | −0.13 | 0.76 | 0.04 | 0.33 | 0.47 |
H+ | −0.08 | −0.05 | 0.01 | 0.96 | −0.15 | −0.05 | 0.04 | −0.93 |
Eigenvalues | 3.80 | 1.51 | 1.28 | 0.95 | 4.60 | 1.32 | 1.15 | 0.92 |
Explained variance (%) | 37 | 18 | 16 | 13 | 26 | 25 | 22 | 16 |
Cumulative explained variance (%) | 37 | 55 | 71 | 84 | 26 | 50 | 73 | 89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowski, R.; Kruszyk, R.; Małek, S. The Effect of Environmental Conditions on Pollution Deposition and Canopy Leaching in Two Pine Stands (West Pomerania and Świętokrzyskie Mountains, Poland). Forests 2020, 11, 535. https://doi.org/10.3390/f11050535
Kozłowski R, Kruszyk R, Małek S. The Effect of Environmental Conditions on Pollution Deposition and Canopy Leaching in Two Pine Stands (West Pomerania and Świętokrzyskie Mountains, Poland). Forests. 2020; 11(5):535. https://doi.org/10.3390/f11050535
Chicago/Turabian StyleKozłowski, Rafał, Robert Kruszyk, and Stanisław Małek. 2020. "The Effect of Environmental Conditions on Pollution Deposition and Canopy Leaching in Two Pine Stands (West Pomerania and Świętokrzyskie Mountains, Poland)" Forests 11, no. 5: 535. https://doi.org/10.3390/f11050535
APA StyleKozłowski, R., Kruszyk, R., & Małek, S. (2020). The Effect of Environmental Conditions on Pollution Deposition and Canopy Leaching in Two Pine Stands (West Pomerania and Świętokrzyskie Mountains, Poland). Forests, 11(5), 535. https://doi.org/10.3390/f11050535