Drought Primarily Reduces Canopy Transpiration of Exposed Beech Trees and Decreases the Share of Water Uptake from Deeper Soil Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Weather Conditions and Water Budget Measurements
2.3. Sap Flux Measurements and Canopy Transpiration Calculations
2.4. Simulation of Water Budget
3. Results
3.1. Meteorology and Water Budget of the Ecosystem
3.2. Canopy Transpiration and Soil Water Uptake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blunden, J.; Arndt, D.S. State of the Climate in 2016. Bull. Amer. Meteor. Soc. 2017, 98, Si-S277. [Google Scholar] [CrossRef] [Green Version]
- Hlásny, T.; Mátyás, C.; Seidl, R.; Kulla, L.; Merganičová, K.; Trombik, J.; Dobor, L.; Barcza, Z.; Konôpka, B. Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesn. Cas. J. 2014, 60, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Kjellstrom, E.; Nikulin, G.; Hansson, U.; Strandberg, G.; Ullerstig, A. 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus Ser. A-Dyn. Meteorol. Oceanogr. 2011, 63, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 471–480. [Google Scholar] [CrossRef]
- Geßler, A.; Keitel, C.; Kreuzwieser, J.; Matyssek, R.; Seiler, W.; Rennenberg, H. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees-Struct. Funct. 2007, 21, 1–11. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Kopp, G.; Ruff, M.; Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees-Struct. Funct. 2017, 31, 672–686. [Google Scholar] [CrossRef]
- Mausolf, K.; Härdtle, W.; Hertel, D.; Leuschner, C.; Fichtner, A. Impacts of multiple environmental change drivers on growth of European beech (Fagus sylvatica): Forest history matters. Ecosystems 2019. [Google Scholar] [CrossRef]
- Mausolf, K.; Wilm, P.; Hardtle, W.; Jansen, K.; Schuldt, B.; Sturm, K.; von Oheimb, G.; Hertel, D.; Leuschner, C.; Fichtner, A. Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests. Sci. Total Environ. 2018, 642, 1201–1208. [Google Scholar] [CrossRef]
- Cavin, L.; Jump, A.S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 2017, 23, 362–379. [Google Scholar] [CrossRef] [Green Version]
- Rebetez, M.; Mayer, H.; Dupont, O.; Schindler, D.; Gartner, K.; Kropp, J.P.; Menzel, A. Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci. 2006, 63, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Breda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, R.; Hommel, R.; Poschenrieder, W.; Grote, R.; Holst, J.; Biernath, C.; Gessler, A.; Priesack, E. Stomatal conductance and intrinsic water use efficiency in the drought year 2003: A case study of European beech. Trees 2016, 30, 153–174. [Google Scholar] [CrossRef]
- Tyree, M.T.; Ewers, F.W. The hydraulic architecture of trees and other woody plants. New Phytol. 1991, 119, 345–360. [Google Scholar] [CrossRef]
- Cruiziat, P.; Cochard, H.; Ameglio, T. Hydraulic architecture of trees: Main concepts and results. Ann. For. Sci. 2002, 59, 723–752. [Google Scholar] [CrossRef] [Green Version]
- Aranda, I.; Cano, F.J.; Gasco, A.; Cochard, H.; Nardini, A.; Mancha, J.A.; Lopez, R.; Sanchez-Gomez, D. Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiol. 2015, 35, 34–46. [Google Scholar] [CrossRef]
- Kaufmann, M.R.; Kelliher, F.M. Measuring transpiration rates. In Techniques and Approaches in Forest Tree Ecophysiology; Lassoie, J.P., Hinckley, T.M., Eds.; CRC Press: Boca Raton, FL, USA, 1991; pp. 117–140. [Google Scholar]
- Čermák, J.; Kučera, J.; Nadezhdina, N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 2004, 18, 529–546. [Google Scholar] [CrossRef]
- Dalsgaard, L.; Mikkelsen, T.N.; Bastrup-Birk, A. Sap flow for beech (Fagus sylvatica L.) in a natural and a managed forest—effect of spatial heterogeneity. J. Plant Ecol. 2011, 4, 23–35. [Google Scholar] [CrossRef]
- Diaconu, D.; Kahle, H.P.; Spiecker, H. Thinning increases drought tolerance of European beech: A case study on two forested slopes on opposite sides of a valley. Eur. J. For. Res. 2017, 136, 319–328. [Google Scholar] [CrossRef]
- Jochheim, H.; Einert, P.; Ende, H.-P.; Kallweit, R.; Lüttschwager, D.; Schindler, U. Wasser- und Stoffhaushalt eines Buchen-Altbestandes im Nordostdeutschen Tiefland - Ergebnisse einer 4jährigen Messperiode. Arch. Für Forstwes. Und Landsch. 2007, 41, 1–14. [Google Scholar]
- Sommer, M.; Jochheim, H.; Höhn, A.; Breuer, J.; Zagorski, Z.; Busse, J.; Barkusky, D.; Meier, K.; Puppe, D.; Wanner, M.; et al. Si cycling in a forest biogeosystem - the importance of transient state biogenic Si pools. Biogeosciences 2013, 10, 4991–5007. [Google Scholar] [CrossRef] [Green Version]
- Kallweit, R.; Kätzel, R. Einleitung. In Forstliche Umweltkontrolle—Ergebnisse aus Zehnjährigen Untersuchungen zur Wirkung von Luftverunreinigungen in Brandenburgs Wäldern; Landesforstanstalt Eberswalde (LFE): Eberswalde, Germany, 2001; pp. 8–15. [Google Scholar]
- Bartelink, H.H. A model of dry matter partitioning in trees. Tree Physiol. 1998, 18, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granier, A. Une novelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. For. Sci. 1985, 42, 193–200. [Google Scholar] [CrossRef]
- Granier, A.; Biron, P.; Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 2000, 100, 291–308. [Google Scholar] [CrossRef]
- Lüttschwager, D.; Remus, R. Radial distribution of sap flux density in trunks of a mature beech stand. Ann. Sci. 2007, 64, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Saveyn, A.; Steppe, K.; Lemeur, R. Spatial variability of xylem sap flow in mature beech (Fagus sylvatica) and its diurnal dynamics in relation to microclimate. Botany 2008, 86, 1440–1448. [Google Scholar] [CrossRef]
- Thornton, P.E.; Law, B.E.; Gholz, H.L.; Clark, K.L.; Falge, E.; Ellsworth, D.S.; Goldstein, A.H.; Monson, R.K.; Hollinger, D.; Falk, M.; et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 2002, 113, 185–222. [Google Scholar] [CrossRef]
- Koitzsch, R.; Helling, R.; Vetterlein, E. Simulation des Bodenfeuchteverlaufs unter Berücksichtigung der Wasserbewegung und des Wasserentzuges durch Pflanzenbestände. Arch. Für Acker- Und Pflanzenbau Und Bodenkd. 1980, 24, 717–725. [Google Scholar]
- Mirschel, W.; Wenkel, K.-O.; Koitzsch, R. Simulation of soil water and evapotranspiration using the model BOWET and data sets from Krummbach and Eisenbach, two research catchments in North Germany. Ecol. Model. 1995, 81, 53–69. [Google Scholar] [CrossRef]
- Breda, N.; Granier, A. Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann. For. Sci. 1996, 53, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Aguilos, M.; Stahl, C.; Burban, B.; Hérault, B.; Courtois, E.; Coste, S.; Wagner, F.; Ziegler, C.; Takagi, K.; Bonal, D. Interannual and Seasonal Variations in Ecosystem Transpiration and Water Use Efficiency in a Tropical Rainforest. Forests 2019, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Jochheim, H.; Puhlmann, M.; Beese, F.; Berthold, D.; Einert, P.; Kallweit, R.; Konopatzky, A.; Meesenburg, H.; Meiwes, K.J.; Raspe, S.; et al. Modelling the carbon budget of intensive forest monitoring sites in Germany using the simulation model BIOME-BGC. Iforest Biogeosciences For. 2009, 2, 7–10. [Google Scholar] [CrossRef]
- Jochheim, H.; Janott, M.; Granke, O.; Olschofsky, K.; Fischer, R.; Fleck, S.; Kallweit, R.; Schulz, C. Modelling the Carbon Budget of Forests at Intensive Monitoring Plots under Current and Future Climate with Biome-BGC; Leibniz Centre for Agricultural Landscape Research (ZALF): Müncheberg, Germany, 2011; p. 98. [Google Scholar]
- Keitel, C.; Adams, M.A.; Holst, T.; Matzarakis, A.; Mayer, H.; Rennenberg, H.; Gessler, A. Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant Cell Environ. 2003, 26, 1157–1168. [Google Scholar] [CrossRef] [Green Version]
- Schipka, F.; Heimann, J.; Leuschner, C. Regional variation in canopy transpiration of Central European beech forests. Oecologia 2005, 143, 260–270. [Google Scholar] [CrossRef]
- Schmidt, M.W.T. Canopy Transpiration of Beech Forests in Northern Bavaria—Structure and Function in Pure and Mixed Stands with Oak at Colline and Montane Sites; Universität Bayreuth: Bayreuth, Germany, 2007. [Google Scholar]
- Baumgarten, M.; Weis, W.; Kühn, A.; May, K.; Matyssek, R. Forest transpiration—Targeted through xylem sap flux assessment versus hydrological modeling. Eur. J. For. Res. 2014, 133, 677–690. [Google Scholar] [CrossRef]
- Kozlowski, T.T.; Kramer, P.J.; Pallardy, S.G. The Physiological Ecology of Woody Plants; Academic Press: San Diego, CA, USA, 1991. [Google Scholar]
- Czajkowski, T.; Ahrends, B.; Bolte, A. Critical limits of soil water availability (CL-SWA) for forest trees—An approach based on plant water status. Landbauforsch. Vti Agric. For. Res. 2009, 2, 87–94. [Google Scholar]
- Mölder, I.; Leuschner, C. European beech grows better and is less drought sensitive in mixed than in pure stands: Tree neighbourhood effects on radial increment. Trees-Struct. Funct. 2014, 28, 777–792. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1. [Google Scholar] [CrossRef]
- Liu, Y.; Muller, R.N. Effect of drought and frost on radial growth of overstory and understory stems in a deciduous forest. Am. Midl. Nat. 1993, 129, 19–25. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Lopez, B.C.; Loepfe, L.; Lloret, F. Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 2012, 168, 877–888. [Google Scholar] [CrossRef]
- Zang, C.; Pretzsch, H.; Rothe, A. Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees-Struct. Funct. 2012, 26, 557–569. [Google Scholar] [CrossRef]
- Schäfer, K.V.R.; Oren, R.; Tenhunen, J.D. The effect of tree height on crown level stomatal conductance. Plant Cell Environ. 2000, 23, 365–375. [Google Scholar] [CrossRef]
- Van Wittenberghe, S.; Adriaenssens, S.; Staelens, J.; Verheyen, K.; Samson, R. Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees-Struct. Funct. 2012, 26, 1427–1438. [Google Scholar] [CrossRef]
- Latte, N.; Lebourgeois, F.; Claessens, H. Growth partitioning within beech trees (Fagus sylvatica L.) varies in response to summer heat waves and related droughts. Trees-Struct. Funct. 2016, 30, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Bolte, A.; Rahmann, T.; Kuhr, M.; Pogoda, P.; Murach, D.; Von Gadow, K. Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. Karst.). Plant Soil 2004, 264, 1–11. [Google Scholar] [CrossRef]
- Kuhr, M. Grobwurzelarchitektur in Abhängigkeit von Baumart, Alter, Standort und Sozialer Stellung; Georg-August-Universität Göttingen: Göttingen, Germany, 2000. [Google Scholar]
- Finér, L.; Helmisaari, H.S.; Lõhmus, K.; Majdi, H.; Brunner, I.; Børja, I.; Eldhuset, T.; Godbold, D.; Grebenc, T.; Konôpka, B.; et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst. 2007, 141, 394–405. [Google Scholar] [CrossRef]
- Le Goff, N.; Ottorini, J.M. Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann. For. Sci. 2001, 58, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Grote, R.; Gessler, A.; Hommel, R.; Poschenrieder, W.; Priesack, E. Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees 2016, 30, 1467–1482. [Google Scholar] [CrossRef]
- Zapater, M.; Hossann, C.; Breda, N.; Brechet, C.; Bonal, D.; Granier, A. Evidence of hydraulic lift in a young beech and oak mixed forest using O-18 soil water labelling. Trees-Struct. Funct. 2011, 25, 85–894. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Richards, J.H. Hydraulic lift—Water efflux from upper roots improves effectiveness of water-uptake by deep roots. Oecologia 1998, 79, 1–5. [Google Scholar] [CrossRef]
- Domec, J.C.; King, J.S.; Noormets, A.; Treasure, E.; Gavazzi, M.J.; Sun, G.; McNulty, S.G. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange. New Phytol. 2010, 187, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Breda, N.; Granier, A.; Aussenac, G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 1995, 15, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Van der Maaten, E. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees-Struct. Funct. 2012, 26, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Attia, Z.; Domec, J.C.; Oren, R.; Way, D.A.; Moshelion, M. Growth and physiological responses of isohydric and anisohydric poplars to drought. J. Exp. Bot. 2015, 66, 4373–4381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Sancho, E.; Vásconez-Navas, L.K.; Seidel, H.; Dorado-Liñán, I.; Menz, A. Responses of contrasting tree functional types to air warming and drought. Forests 2017, 8, 450. [Google Scholar] [CrossRef] [Green Version]
- Magh, R.K.; Bonn, B.; Grote, R.; Burzlaff, T.; Pfautsch, S.; Rennenberg, H. Drought superimposes the positive effect of Silver Fir on water relations of European Beech in mature forest stands. Forests 2019, 10, 897. [Google Scholar] [CrossRef] [Green Version]
- Klein, T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 2014, 28, 1313–1320. [Google Scholar] [CrossRef]
Basal Area Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
2002–2003 | d1.3 [cm] | 58.4 | 55.2 | 52.1 | 48.6 | 45.1 | 43.9 | 39.3 | 35.5 | 32.5 | 24.1 |
h [m] | 32.6 | 31.4 | 32.0 | 32.1 | 31.6 | 29.4 | 31.0 | 29.1 | 27.6 | 24.3 | |
2004–2005 | d1.3 [cm] | 60.2 | 56.3 | 52.5 | 49.3 | 46.5 | 43.9 | 41.0 | 37.0 | 34.7 | 18.8 |
h [m] | 31.4 | 31.6 | 32.4 | 30.6 | 31.8 | 29.6 | 30.3 | 30.4 | 32.2 | 22.1 |
2002 | 2003 | 2004 | 2005 | |
---|---|---|---|---|
Air temperature in May–Sept (°C) | 16.5 | 16.7 | 14.9 | 15.2 |
VPD in May–Sept (Pa) | 774 | 926 | 728 | 779 |
Global radiation in May–Sept (J cm−2) | 1412 | 1602 | 1415 | 1415 |
Precipitation (mm a−1) | 813 | 467 | 657 | 631 |
Canopy evaporation (mm a−1) | 135 | 109 | 164 | 142 |
Stand precipitation (mm a−1) | 677 | 357 | 493 | 489 |
Soil evaporation* (mm a−1) | 73 | 57 | 59 | 44 |
Measured transpiration T (mm a−1) | 213 | 237 | 235 | 278 |
Simulated transpiration T* (mm a−1) | 251 | 227 | 250 | 261 |
Potential transpiration Tp* (mm a−1) | 308 | 350 | 304 | 314 |
T*/Tp* in May–Sept (-) | 0.814 | 0.649 | 0.822 | 0.830 |
REW50 < 0.4* (days a−1) | 21 | 81 | 5 | 22 |
Drainage in 250 cm* (mm a−1) | 340 | 52 | 144 | 163 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lüttschwager, D.; Jochheim, H. Drought Primarily Reduces Canopy Transpiration of Exposed Beech Trees and Decreases the Share of Water Uptake from Deeper Soil Layers. Forests 2020, 11, 537. https://doi.org/10.3390/f11050537
Lüttschwager D, Jochheim H. Drought Primarily Reduces Canopy Transpiration of Exposed Beech Trees and Decreases the Share of Water Uptake from Deeper Soil Layers. Forests. 2020; 11(5):537. https://doi.org/10.3390/f11050537
Chicago/Turabian StyleLüttschwager, Dietmar, and Hubert Jochheim. 2020. "Drought Primarily Reduces Canopy Transpiration of Exposed Beech Trees and Decreases the Share of Water Uptake from Deeper Soil Layers" Forests 11, no. 5: 537. https://doi.org/10.3390/f11050537
APA StyleLüttschwager, D., & Jochheim, H. (2020). Drought Primarily Reduces Canopy Transpiration of Exposed Beech Trees and Decreases the Share of Water Uptake from Deeper Soil Layers. Forests, 11(5), 537. https://doi.org/10.3390/f11050537