Assessment of Restoration Effects and Invasive Potential Based on Vegetation Dynamics of Pitch Pine (Pinus rigida Mill.) Plantation in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Experimental Design
2.3. Mapping and Analysis
2.4. Vegetation Analysis
2.5. Soil Analysis
2.6. Statistical Analysis
3. Results
3.1. Species Composition
3.2. Species Diversity
3.3. Canopy Profile
3.4. Vegetation Dynamics
3.5. Physic-Chemical Property of Soil
3.6. Naturalization and Invasive Potential of Pitch Pine
4. Discussion
4.1. Successional Changes of Pitch Pine Plantation
4.2. Restoration Effects Confirmed from Pitch Pine Plantation
4.3. Naturalization and Invasive Potential of the Pitch Pine in South Korea
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. State of the World’s Forests 2011; Food Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Lamb, D.; Erskine, P.D.; Parrotta, J.A. Restoration of degraded tropical forest landscapes. Science 2005, 310, 1628–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar] [CrossRef]
- Suzuki, N.; Olson, D.H. Options for biodiversity conservation in managed forest landscapes of multiple ownerships in Oregon and Washington, USA. In Plantation Forests and Biodiversity: Oxymoron or Opportunity? Springer: Berlin/Heidelberg, Germany, 2008; pp. 93–115. [Google Scholar]
- Bremer, L.L.; Farley, K.A. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef] [Green Version]
- Lemenih, M.; Itanna, F. Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma 2004, 123, 177–188. [Google Scholar] [CrossRef]
- Butler, R.; Montagnini, F.; Arroyo, P. Woody understory plant diversity in pure and mixed native tree plantations at La Selva Biological Station, Costa Rica. For. Ecol. Manag. 2008, 255, 2251–2263. [Google Scholar] [CrossRef]
- Kim, S.M.; An, J.H.; Lim, Y.K.; Pee, J.H.; Kim, G.S.; Lee, H.Y.; Cho, Y.C.; Bae, K.H.; Lee, C.S. Ecological changes of the Larix kaempferi plantations and the restoration effects confirmed from the results. Korean J. Ecol. Environ. 2013, 46, 241–250. [Google Scholar] [CrossRef]
- Kim, S.M.; An, J.H.; Lim, Y.K.; Pee, J.H.; Kim, G.S.; Lee, H.Y.; Cho, Y.C.; Bae, K.H.; Lee, C.S. The effects of ecological restoration confirmed in the Pinus koraiensis plantation. J. Agric. Life Sci. 2013, 47, 19–28. [Google Scholar]
- KNRB. Resources of black locust (Robinia pseudoacacia) and its use. In Symposium to Commemorate Foundation of Korean Network for Research of Black Locust; KNRB: Seoul, Korea, 1992. [Google Scholar]
- KNRB. A study on development of new demand for rearing of black locust (Robinia pseudoacacia) forest and its use. In Symposium to Commemorate Foundation of Korean Network for Research of Black Locus; KNRB: Seoul, Korea, 1994. [Google Scholar]
- Lee, C.S.; Hong, S.K. Changes of landscape pattern and vegetation structure in rural area disturbed by fire. Korean J. Ecol. 1998, 21, 389–399. [Google Scholar]
- Lee, D.K.; Kang, H.S.; Park, Y.D. Natural restoration of deforested woodlots in South Korea. For. Ecol. Manag. 2004, 201, 23–32. [Google Scholar] [CrossRef]
- Lee, C.; Kim, T. Changes in Soil Characteristics by Tree Growth in Korean Forests. Res. Rep. For. Res. Inst. 1994, 49, 73–80. [Google Scholar]
- Lee, C.-S.; Cho, H.-J.; Yi, H. Stand dynamics of introduced black locust (Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea. For. Ecol. Manag. 2004, 189, 281–293. [Google Scholar] [CrossRef]
- KFS. Statistical Yearbook of Forestry; Korea Forest Service: Daejeon, Korea, 2013. [Google Scholar]
- Richardson, D.M. Ecology and biogeography of Pinus; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Richardson, D.M. Pinus: A model group for unlocking the secrets of alien plant invasions? Preslia 2006, 78, 375–388. [Google Scholar]
- Calmon, M.; Brancalion, P.H.; Paese, A.; Aronson, J.; Castro, P.; da Silva, S.C.; Rodrigues, R.R. Emerging threats and opportunities for large-scale ecological restoration in the Atlantic Forest of Brazil. Restor. Ecol. 2011, 19, 154–158. [Google Scholar] [CrossRef]
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, rates, and consequences. Conserv. Boil. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Rands, M.R.; Adams, W.M.; Bennun, L.; Butchart, S.H.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P. Biodiversity conservation: Challenges beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B. Taking stock of forest carbon. Nat. Clim. Chang. 2011, 1, 346–347. [Google Scholar] [CrossRef]
- Metzger, J.P.; Lewinsohn, T.M.; Joly, C.A.; Verdade, L.M.; Martinelli, L.A.; Rodrigues, R.R. Brazilian law: Full speed in reverse? Science 2010, 329, 276–277. [Google Scholar] [CrossRef]
- Salemi, L.F.; Groppo, J.D.; Trevisan, R.; de Moraes, J.M.; de Paula Lima, W.; Martinelli, L.A. Riparian vegetation and water yield: A synthesis. J. Hydrol. 2012, 454, 195–202. [Google Scholar] [CrossRef]
- Anderson, P. Ecological restoration and creation: A review. Biol. J. Linn. Soc. 1995, 56, 187–211. [Google Scholar] [CrossRef]
- Lamb, D. Large-Scale Forest Restoration; Routledge: Abingdon, UK, 2014. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrotta, J.A.; Turnbull, J.W.; Jones, N. Catalyzing native forest regeneration on degraded tropical lands. For. Ecol. Manag. 1997, 99, 1–7. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Harris, J.A. Restoration ecology: Repairing the earth’s ecosystems in the new millennium. Restor. Ecol. 2001, 9, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Aronson, J.C.; Blatt, C.M.; Aronson, T.B. Restoring ecosystem health to improve human health and well-being: Physicians and restoration ecologists unite in a common cause. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; You, Y.H.; Robinson, G.R. Secondary succession and natural habitat restoration in abandoned rice fields of central Korea. Restor. Ecol. 2002, 10, 306–314. [Google Scholar] [CrossRef]
- Ruiz-Jaén, M.C.; Aide, T.M. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. For. Ecol. Manag. 2005, 218, 159–173. [Google Scholar] [CrossRef]
- Maestre, F.T.; Cortina, J.; Vallejo, R. Are ecosystem composition, structure, and functional status related to restoration success? A test from semiarid Mediterranean steppes. Restor. Ecol. 2006, 14, 258–266. [Google Scholar] [CrossRef]
- Marcos, J.; Marcos, E.; Taboada, A.; Tárrega, R. Comparison of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest. For. Ecol. Manag. 2007, 247, 35–42. [Google Scholar] [CrossRef]
- Ewel, J.J. Restoration is the ultimate test of ecological theory. In Restoration Ecology: A Synthetic Approach to Ecological Research; Cambridge University Press: Cambridge, UK, 1987; pp. 31–33. [Google Scholar]
- Andersen, A.N. Ants as indicators of restoration success at a uranium mine in tropical Australia. Restor. Ecol. 1993, 1, 156–167. [Google Scholar] [CrossRef]
- Aronson, J.; Floret, C.; Le Floc’h, E.; Ovalle, C.; Pontanier, R. Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restor. Ecol. 1993, 1, 8–17. [Google Scholar] [CrossRef]
- Aronson, J.; Floret, C.; Le Floc’h, E.; Ovalle, C.; Pontanier, R. Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. II. Case studies in Southern Tunisia, Central Chile and Northern Cameroon. Restor. Ecol. 1993, 1, 168–187. [Google Scholar] [CrossRef]
- Bradshaw, A. Restoration ecology as a science. Restor. Ecol. 1993, 1, 71–73. [Google Scholar] [CrossRef]
- Saunders, D.; Hobbs, R.J.; Ehrlich, P.R. Reconstruction of fragmented ecosystems: Problems and possibilities. Nat. Conserv. 1993, 3, 305–313. [Google Scholar]
- Hobbs, R.J.; Norton, D.A. Towards a conceptual framework for restoration ecology. Restor. Ecol. 1996, 4, 93–110. [Google Scholar] [CrossRef]
- Karr, J.R. Ecological Integrity and Ecological Health are Not the Same. Engineering within Ecological Constraints; National Academy Press: Washington, DC, USA, 1996; pp. 97–109. [Google Scholar]
- Majer, J.D. Animals in Primary Succession: The Role of Fauna in Reclaimed Lands; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Reay, S.D.; Norton, D.A. Phormium tenax, an unusual nurse plant. New Zea. J. Ecol. 1999, 23, 81–85. [Google Scholar]
- Palmer, M.A.; Bernhardt, E.; Allan, J.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad Shah, J. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Seebens, H.; Essl, F.; Dawson, W.; Fuentes, N.; Moser, D.; Pergl, J.; Pyšek, P.; van Kleunen, M.; Weber, E.; Winter, M. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Boil. 2015, 21, 4128–4140. [Google Scholar] [CrossRef] [Green Version]
- Mack, R.N.; Simberloff, D.; Mark Lonsdale, W.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. J. Ecol. 2005, 93, 5–15. [Google Scholar] [CrossRef]
- Thuiller, W.; Richardson, D.M.; Rouget, M.; Procheş, Ş.; Wilson, J.R. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology 2006, 87, 1755–1769. [Google Scholar] [CrossRef]
- Van der Putten, W.H.; Macel, M.; Visser, M.E. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2025–2034. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.M.; Pyšek, P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 2006, 30, 409–431. [Google Scholar] [CrossRef]
- Xu, H.; Qiang, S.; Han, Z.; Guo, J.; Huang, Z.; Sun, H.; He, S.; Ding, H.; Wu, H.; Wan, F. The status and causes of alien species invasion in China. Biodivers. Conserv. 2006, 15, 2893–2904. [Google Scholar] [CrossRef]
- Krumm, F.; Vítková, L. (Eds.) Introduced Tree Species in European Forests: Opportunities and Challenges; European Forest Institute: Freiburg, Germany, 2016. [Google Scholar]
- Higgins, S.I.; Richardson, D.M. Pine invasions in the southern hemisphere: Modelling interactions between organism, environment and disturbance. Plant Ecol. 1998, 135, 79–93. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pyšek, P.; Rejmánek, M.; Barbour, M.G.; Panetta, F.D.; West, C.J. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 2000, 6, 93–107. [Google Scholar] [CrossRef]
- Craine, S.I.; Orians, C.M. Pitch pine (Pinus rigida Mill.) invasion of Cape Cod pond shores alters abiotic environment and inhibits indigenous herbaceous species. Biol. Conserv. 2004, 116, 181–189. [Google Scholar] [CrossRef]
- Lee, C.S.; Chun, Y.M.; Lee, H.; Pi, J.H.; Lim, C.H. Establishment, Regeneration, and Succession of Korean Red Pine (Pinus densiflora S. et Z.) Forest in Korea. Conifers; IntechOpen: London, UK, 2018. [Google Scholar]
- Korea Meteorological Administration. Automatic Weather System (AWS). Available online: http://data.kma.go.kr/data/grnd/selectAwsRItmList.do?pgmNo=56 (accessed on 21 March 2020).
- Korea Forest Service. Forest Geographic Information System. Available online: http://www.forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/fgis/UI_KFS_5002_020200.html&mn=KFS_02_04_03_04_02&orgld=fgis (accessed on 21 March 2020).
- Korea Forest Service. Forest GIS Portal. Available online: http://www.forest.go.kr/newkfsweb/kfs/idx/SubIndex.do?orgId=fgis&mn=KFS_02_04/ (accessed on 13 February 2020).
- ESRI. ArcGIS Version 9.0; ESRI: Redlands, CA, USA, 2010. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1964. [Google Scholar]
- Lee, T. Illustrated Flora of Korea; Hyang Moon Sa: Seoul, Korea, 1985. [Google Scholar]
- Park, S.H. Colored Illustrations of Naturalized Plants of Korea; Ilchokak: Seoul, Korea, 1995. [Google Scholar]
- Arboretum, K.N. Korean Plant Names Index. Available online: http://www.nature.go.kr/main/Main.do (accessed on 13 February 2020).
- Curtis, J.T.; McIntosh, R.P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- Hill, M. DECORANA-a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Vegetatio 1979, 42, 47–58. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data, Version 4; Glenden Beach: Lincoln, OR, USA, 1999. [Google Scholar]
- Kent, M.; Coker, P. Vegetation Description and Analysis: A Practical Approach; John Wiley & Sons: Hoboken, NJ, USA, 1992. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Muller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Bin, Y.; Ye, W.; Muller-Landau, H.C.; Wu, L.; Lian, J.; Cao, H. Unimodal tree size distributions possibly result from relatively strong conservatism in intermediate size classes. PLoS ONE 2012, 7, e52596. [Google Scholar] [CrossRef] [Green Version]
- Harmon, M.E.; Pabst, R.J. Testing predictions of forest succession using long-term measurements: 100 yrs of observations in the O regon C ascades. J. Veg. Sci. 2015, 26, 722–732. [Google Scholar] [CrossRef]
- Peters, D.B. Methods of Soil Analysis; Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1973. [Google Scholar]
- Jackson, M. Soil Chemical Analysis; Prentice-Hall of India Private Limited: New Delhi, India, 1967. [Google Scholar]
- Lee, C.S.; Moon, J.S.; Cho, Y.C. Effects of soil amelioration and tree planting on restoration of an air-pollution damaged forest in south Korea. Water Air Soil Pollut. 2007, 179, 239–254. [Google Scholar] [CrossRef]
- Hill, M.O. DECORANA—A FORTRAN Program for Detrended Correspondence Analysis and Reciprocal Averaging; Cornell University Ithaca: New York, NY, USA, 1979. [Google Scholar]
- Hill, M.O.; Gauch, H.G. Detrended ordination analysis: An improved ordination technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Clements, F.E. Plant. Succession: An Analysis of the Development of Vegetation; Carnegie Institution of Washington: Washington, DC, USA, 1916. [Google Scholar]
- Odum, E.P. The Strategy of Ecosystem Development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Krestov, P.V.; Song, J.-S.; Nakamura, Y.; Verkholat, V.P. A phytosociological survey of the deciduous temperate forests of mainland Northeast Asia. Phytocoenologia 2006, 36, 77–150. [Google Scholar] [CrossRef]
- Wright, S.J.; Muller-Landau, H.C.; Condit, R.; Hubbell, S.P. Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 2003, 84, 3174–3185. [Google Scholar] [CrossRef]
- White, E.P.; Ernest, S.M.; Kerkhoff, A.J.; Enquist, B.J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 2007, 22, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, P.; Sundriyal, R. Tree regeneration and seedling survival patterns in old-growth lowland tropical rainforest in Namdapha National Park, north-east India. For. Ecol. Manag. 2008, 255, 3995–4006. [Google Scholar] [CrossRef]
- Kohira, M.; Ninomiya, I. Detecting tree populations at risk for forest conservation management: Using single-year vs. long-term inventory data. For. Ecol. Manag. 2003, 174, 423–435. [Google Scholar] [CrossRef]
- Westphal, C.; Tremer, N.; von Oheimb, G.; Hansen, J.; von Gadow, K.; Härdtle, W. Is the reverse J-shaped diameter distribution universally applicable in European virgin beech forests? For. Ecol. Manag. 2006, 223, 75–83. [Google Scholar] [CrossRef]
- Peet, R.K. Forest vegetation of the Colorado front range. Vegetatio 1981, 45, 3–75. [Google Scholar] [CrossRef]
- Dyakov, N.R. Successional Pattern, Stand Structure and Regeneration of Forest Vegetation According to Local Environmental Gradients. Ecol. Balk. 2013, 5, 69–85. [Google Scholar]
- Lykke, A.M. Assessment of species composition change in savanna vegetation by means of woody plants’ size class distributions and local information. Biodivers. Conserv. 1998, 7, 1261–1275. [Google Scholar] [CrossRef]
- Lee, C.S.; Cho, Y.C.; Shin, H.C.; Lee, C.H.; Lee, S.M.; Seol, E.S.; Oh, W.S.; Park, S.A. Ecological characteristics of Korean red pine (Pinus densiflora S. et Z.) forest on Mt. Nam as a Long Term Ecological Research (LTER) site. J. Ecol. Environ. 2006, 29, 593–602. [Google Scholar]
- Lee, C.S.; Cho, Y.C.; Lee, A.N. Restoration planning for the Seoul metropolitan area, Korea. In Ecology, Planning, and Management of Urban Forests; Springer: Berlin/Heidelberg, Germany, 2008; pp. 393–419. [Google Scholar]
- Connell, J.H.; Slatyer, R.O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 1977, 111, 1119–1144. [Google Scholar] [CrossRef]
- Karr, J. Measuring biological integrity. In Principles of Conservation Biology; Sinauer: Sunderland, MA, USA, 1997; pp. 483–485. [Google Scholar]
- SERI (Society Ecological Restoration International Science & Policy working Group). The SER International Primer on Ecological Restoration. 2004. Available online: www.ser.org (accessed on 18 February 2020).
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.; Gilmour, D. Rehabilitation and restoration of degraded forests. Rehabilitation Restoration of Degraded Forests; IUCN: Gland, Switzerland, 2003. [Google Scholar]
- Peterson, D.L.; Rolfe, G.L. Nutrient dynamics and decomposition of litter fall in floodplain and upland forest of Central Illinois. For. Sci. 1982, 28, 667–681. [Google Scholar]
- Miller, W.E. Decomposition rates of aspen bole and branch litter. For. Sci. 1983, 29, 351–356. [Google Scholar]
- Lee, C.Y. Erosion control effect by soil and vegetation transition in mountainous area after soil erosion measures were initiated. J. Kor. Insti. Land. Archi. 1986, 14, 7–16. [Google Scholar]
- Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manag. 2000, 133, 13–22. [Google Scholar] [CrossRef]
- Jourgholami, M.; Nasirian, A.; Labelle, E.R. Ecological Restoration of Compacted Soil Following the Application of Different Leaf Litter Mulches on the Skid Trail over a Five-Year Period. Sustainability 2018, 10, 2148. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Guidelines for the Restoration of Degraded Forests and Landscapes in Drylands: Building Resilience and Benefiting Livelihoods; FAO: Rome, Italy, 2015. [Google Scholar]
- Molin, P.G.; Chazdon, R.; Frosini de Barros Ferraz, S.; Brancalion, P.H. A landscape approach for cost-effective large-scale forest restoration. J. Appl. Ecol. 2018, 55, 2767–2778. [Google Scholar] [CrossRef]
- Hallett, S.G. Dislocation from coevolved relationships: A unifying theory for plant invasion and naturalization? Weed Sci. 2006, 54, 282–290. [Google Scholar] [CrossRef]
- Little, S. Effects of Fire on Temperate Forests: Northeastern United States; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Hur, T.-C.; Joo, S.-H.; Cho, H.-J. A comparison of the soil physicochemical properties of the forest stands in the Young-il Erosion Control District. J. Korean Soc. For. Sci. 2009, 98, 444–450. [Google Scholar]
- Todd, L.; Brickle, M.C.; Lookingbill, T.R.; Engelhardt, K.A. Proposing new barrens national natural landmarks. Georg. Wright Forum 2013, 30, 253–260. [Google Scholar]
- Edinger, G.J.; Evans, D.J.; Gebauer, S.; Howard, T.G.; Hunt, D.M. Ecological Communities of New York State, 2nd ed.; Olivero, A.M., Ed.; New York State Department of Environmental Conservation: New York, NY, USA, 2014. [Google Scholar]
- KFRI (Korea Forest Research Institute). Management Plan of Pitch Pine Forest; KFRI: Seoul, Korean, 2007. [Google Scholar]
- Rubin, Z.; Kondolf, G.M.; Rios-Touma, B. Evaluating Stream Restoration Projects: What Do We Learn from Monitoring? Water 2017, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Richardson, D.M. Forestry trees as invasive aliens. Conserv. Boil. 1998, 12, 18–26. [Google Scholar] [CrossRef]
Study Site | Stand Age (Years) | Aspect | Elevation (m) | Slope (°) | Mean Temperature (°C) | Mean Precipitation (mm) | Parent Rock | Soil |
---|---|---|---|---|---|---|---|---|
Mt. Chilbo | 33 | SW | 65 | 8 | 12.5 | 1330.2 | Granite | Brown forest |
Mt. Nam | 46 | SE | 161 | 10 | 11.7 | 1235.5 | Metamorphic | Brown forest |
Mt. Bulam | 48 | NW | 34 | 15 | 12.8 | 1441.3 | Granite | Brown forest |
Mt. Backwoon | 52 | SE | 154 | 20 | 13.4 | 1341.8 | Granite | Brown forest |
Mt. Soribong | 53 | NE | 154 | 20 | 10.2 | 1364.8 | Metamorphic | Brown forest |
Mt. Suri | 56 | S | 56 | 15 | 12.5 | 1330.2 | Metamorphic | Brown forest |
Mt. Deogyu | 86 | S | 713 | 20 | 11.6 | 1126.3 | Granite | Brown forest |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; An, J.H.; Shin, H.C.; Lee, C.S. Assessment of Restoration Effects and Invasive Potential Based on Vegetation Dynamics of Pitch Pine (Pinus rigida Mill.) Plantation in Korea. Forests 2020, 11, 568. https://doi.org/10.3390/f11050568
Lee H, An JH, Shin HC, Lee CS. Assessment of Restoration Effects and Invasive Potential Based on Vegetation Dynamics of Pitch Pine (Pinus rigida Mill.) Plantation in Korea. Forests. 2020; 11(5):568. https://doi.org/10.3390/f11050568
Chicago/Turabian StyleLee, Hansol, Ji Hong An, Hyun Chul Shin, and Chang Seok Lee. 2020. "Assessment of Restoration Effects and Invasive Potential Based on Vegetation Dynamics of Pitch Pine (Pinus rigida Mill.) Plantation in Korea" Forests 11, no. 5: 568. https://doi.org/10.3390/f11050568
APA StyleLee, H., An, J. H., Shin, H. C., & Lee, C. S. (2020). Assessment of Restoration Effects and Invasive Potential Based on Vegetation Dynamics of Pitch Pine (Pinus rigida Mill.) Plantation in Korea. Forests, 11(5), 568. https://doi.org/10.3390/f11050568