Sage Species Case Study on a Spontaneous Mediterranean Plant to Control Phytopathogenic Fungi and Bacteria
Abstract
:1. Introduction
Main Features of Some Sage Species (Salvia africana, Salvia rutilans, Salvia munzii, Salvia mellifera, Salvia greggii, Salvia officinalis “Icterina”, Salvia officinalis)
2. Sage Plants to Control Fungal and Bacterial Diseases
2.1. Solvent Sage Extracts
2.2. Sage Essential Oils
3. Sage Essential Oils: Experimental Part of the Case Study
4. Conclusions and Future Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Santini, A.; Novellino, E. Nutraceuticals: Beyond the diet before the drugs. Curr. Bioact. Compd. 2014, 10, 1–12. [Google Scholar] [CrossRef]
- Durazzo, A. Extractable and non-extractable polyphenols: An overview. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Perez-Jimenez, Eds.; RSC Publishing: Cambridge, UK, 2018; Volume 5, pp. 37–45. [Google Scholar]
- Durazzo, A.; Lucarini, M.; Kiefer, J.; Mahesar, S.A. State-of-the-art infrared applications in drugs, dietary supplements, and nutraceuticals. Hindawi J. Spectrosc. 2020. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. The State of science and innovation of bioactive research and applications, health and diseases. Front. Nutr. 2019, 6, 178. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Novellino, E. Nutraceuticals-shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the art of ready-to-use therapeutic food: A tool for nutraceuticals addition to foodstuff. Food Chem. 2013, 140, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-Boccia, G.; Souto, E.B.; Romani, A.; Lampe, A.; Ferrari Nicoli, S.; Gabrielli, P. Grape Seeds: Chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR spectroscopy. Foods 2020, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M.; Novellino, E.; Souto, E.B.; Daliu, P.; Santini, A. Abelmoschus esculentus (L.): Bioactive components’ beneficial properties—Focused on antidiabetic role—For sustainable health applications. Molecules 2019, 24, 38. [Google Scholar] [CrossRef] [Green Version]
- Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin. Ther. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bircher, J.; Hahn, E.G. Understanding the nature of health: New perspectives for medicine and public health. Improved Wellbeing at Lower Costs: New Perspectives for Medicine and Public Health: Improved Wellbeing at Lower Cost. F1000Research 2016, 5, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, A.W.K.; Souto, E.B.; Durazzo, A.; Lucarini, M.; Novellino, E.; Tewari, D.; Wang, D.; Atanasov, A.G.; Santini, A. Big impact of nanoparticles: Analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Curr. Res. Biotechnol. 2020, 2, 53–63. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Piccinelli, R.; Mantur-Vierendeel, A.; Marletta, L.; Finglas, P.; Turrini, A.; Sette, S. Development of dietary supplement label database in Italy: Focus of FoodEx2 coding. Nutrients 2020, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M. A current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. Extractable and non-extractable antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Cicero, N. Development of food chemistry, natural products, and nutrition research: Targeting new frontiers. Foods 2020, 9, 482. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Santini, A. Nutraceuticals in Human Health. Foods 2020, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). 2013. Available online: http://www.who.int/ (accessed on 18 May 2020).
- Cimmino, A.; Andolfi, A.; Troise, C.; Zonno, M.C.; Santini, A.; Tuzi, A.; Vurro, M.; Ash, G.; Evidente, A. Phomentrioloxin: A Novel Phytotoxic Pentasubstituted Geranylcyclohexentriol Produced by Phomopsis sp., a Potential Mycoherbicide for Carthamus lanathus Biocontrol. J. Nat. Prod. 2012, 75, 1130–1137. [Google Scholar] [CrossRef]
- Cimmino, A.; Andolfi, A.; Zonno, M.C.; Avolio, F.; Santini, A.; Tuzi, A.; Berestetskyi, A.; Vurro, M.; Evidente, A. Chenopodolin: A Phytotoxic Unrearranged ent-Pimaradiene Diterpene Produced by Phoma chenopodicola, a Fungal Pathogen for Chenopodium album Biocontrol. J. Nat. Prod. 2013, 76, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
- Mikušová, P.; Šrobárová, A.; Sulyok, M.; Santini, A. Fusarium fungi and associated metabolites presence on grapes from Slovakia. Mycotoxin Res. 2013, 29, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Salvo, A.; La Torre, G.L.; Mangano, V.; Casale, K.E.; Bartolomeo, G.; Santini, A.; Granata, T.; Dugo, G. Toxic inorganic pollutants in foods from agricultural producing areas of Southern Italy: 2 level and risk assessment. Ecotoxicol. Environ. Saf. 2018, 148, 114–124. [Google Scholar] [CrossRef]
- Carovic-Stanko, K.; Petek, M.; Martina, G.; Pintar, J.; Bedeković, D.; Custić, M.H.; Satovic, Z. Medicinal plants of the family lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Armstrong, L.; Rescigno, A.; Yeskaliyeva, B.; Seitimova, G.; Beyatli, A.; Sharmeen, J.; Mahomoodally, M.F.; Sharopov, F.; Durazzo, A.; et al. Lamium plants—A comprehensive review on health benefits and biological activities. Molecules 2019, 24, 1913. [Google Scholar] [CrossRef] [Green Version]
- Dweck, A.C. The folklore and cosmetic use of various Salvia species. In SAGE-The Genus Salvia; Kintzios, S.E., Ed.; Harwood Academic Publishers: Amsterdam, The Netherlands, 2000; pp. 1–25. [Google Scholar]
- Walker, J.B.; Sytsma, K.J. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Ann. Bot. 2007, 100, 375–391. [Google Scholar] [CrossRef]
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef]
- Poulios, E.; Giaginis, C.; Vasios, G.K. Current advances on the extraction and identification of bioactive components of sage (Salvia spp.). Curr. Pharm. Biotechnol. 2019, 20, 845–857. [Google Scholar] [CrossRef]
- Poulios, E.; Giaginis, C.; Vasios, G.K. Current state of the art on the antioxidant activity of sage (salvia spp.) and its bioactive components. Planta Med. 2020, 86, 224–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craft, J.D.; Satyal, P.; Setzer, W.N. The Chemotaxonomy of common sage (Salvia officinalis) based on the volatile constituents. Medicines 2017, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Pop, A.; Tofană, M.; Socaci, S.A.; Pop, C.; Rotar, A.M.; Salan¸tă, L. Determination of antioxidant capacity and antimicrobial activity of selected Salvia species. Bull. UASVM Food Sci. Technol. 2016, 73. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.; Goldblatt, P. Plants of the Greater Cape Floristic Region 1: The Core Cape Flora; South African National Biodiversity Institute: Pretoria, South Africa, 2012. [Google Scholar]
- Etsassala, N.G.E.R.; Badmus, J.A.; Waryo, T.T.; Marnewick, J.L.; Cupido, C.N.; Hussein, A.A.; Iwuoha, E.I. Alpha-glucosidase and alpha-amylase inhibitory activities of novel abietane diterpenes from Salvia africana-lutea. Antioxidants 2019, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Afonso, A.F.; Pereira, O.R.; Fernandes, A.; Calhelha, R.C.; Silva, A.M.S.; Ferreira, I.C.F.R.; Cardoso, S.M. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana aqueous extracts. Molecules 2019, 24, 4327. [Google Scholar] [CrossRef] [Green Version]
- De Martino, L.; Roscigno, G.; Mancini, E.; De Falco, E.; De Feo, V. Chemical composition and antigerminative activity of the essential oils from five Salvia species. Molecules 2010, 15, 735–746. [Google Scholar] [CrossRef]
- Adams, J.D.; Guhr, S.; Villaseñor, E. Salvia mellifera-how does it alleviate chronic pain? Medicines 2019, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, N.; Inoue, M.; Kawai, K.I.; Sekita, S.; Satake, M.; Goda, Y. Diterpenoid from Salvia greggii. Phytochemistry 2003, 63, 859–862. [Google Scholar] [CrossRef]
- Kawahara, N.; Tamura, T.; Inoue, M.; Hosoe, T.; Kawai, K.I.; Sekita, S.; Satake, M.; Goda, Y. Diterpenoid glucosides from Salvia greggii. Phytochemistry 2004, 65, 2577–2581. [Google Scholar] [CrossRef] [PubMed]
- Pereira, O.R.; Catarino, M.D.; Afonso, A.F.; Silva, A.M.S.; Cardoso, S.M. Salvia elegans, Salvia greggii and Salvia officinalis decoctions: Antioxidant activities and inhibition of carbohydrate and lipid metabolic enzymes. Molecules 2018, 23, 3169. [Google Scholar] [CrossRef] [Green Version]
- Mora, S.; Millán, R.; Lungenstrass, H.; Díaz-Véliz, G.; Morán, J.A.; Herrera-Ruiz, M.; Tortoriello, J. The hydroalcoholic extract of Salvia elegans induces anxiolytic- and antidepressant-like effects in rats. J. Ethnopharmacol. 2006, 106, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Ruiz, M.; Garcia-Beltran, Y.; Mora, S.; Diaz-Veliz, G.; Viana Glauce, S.B.; Tortoriello, J.; Ramirez, G. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J. Ethnopharmacol. 2006, 107, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Makino, T.; Ohno, T.; Iwbuchi, H. Aroma components of pineapple sage (Salvia elegans Vahl). Foods Food Ingred. J. Jpn. 1996, 169, 121–124. [Google Scholar]
- Neisess, K.R.; Scora, R.W.; Kumamoto, J. Volatile leaf oils of California salvias. J. Nat. Prod. 1987, 50, 515–517. [Google Scholar] [CrossRef]
- Gurjar, M.; Ali, S.; Akhtar, M.; Singh, K. Efficacy of plant extracts in plant disease management. Agric. Sci. 2012, 3, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Pane, C.; Villecco, D.; Zaccardelli, M. Combined use of Brassica carinata seed meal, thyme oil and a Bacillus amyloliquefaciens strain for controlling three soil-borne fungal plant diseases. J. Plant. Pathol. 2017, 99, 77–84. [Google Scholar]
- Marchev, A.; Haas, C.; Schulz, S.; Georgiev, V.; Steingroewer, J.; Bley, T.; Pavlov, A. Sage in vitro cultures: A promising tool for the production of bioactive terpenes and phenolic substances. Biotechnol. Lett. 2014, 36, 211–221. [Google Scholar] [CrossRef]
- Zeng, S.L.; Duan, L.; Chen, B.Z.; Li, P.; Liu, E.H. Chemicalome and metabolome profiling of polymethoxylated flavonoids in Citri Reticulatae Pericarpium based on an integrated strategy combining background subtraction and modified mass defect filter in a Microsoft Excel Platform. J. Chromatogr. A 2017, 1508, 106–120. [Google Scholar] [CrossRef]
- Kavoura, D.; Kyriakopoulou, K.; Papaefstathiou, G.; Spanidi, E.; Gardikis, K.; Louli, V.; Aligiannis, N.; Krokida, M.; Magoulas, K. Supercritical CO2 extraction of Salvia fruticose. J. Supercrit. Fluids 2019, 146, 159–164. [Google Scholar] [CrossRef]
- Šulniūtė, V.; Ragažinskienė, O.; Venskutonis, P.R. Comprehensive evaluation of antioxidant potential of 10 salvia species using high pressure methods for the isolation of lipophilic and hydrophilic plant fractions. Plant. Foods Hum. Nutr. 2016, 71, 64–71. [Google Scholar] [CrossRef]
- Nutrizio, M.; Kljusurić, J.G.; Sabolović, M.B.; Kovačević, D.B.; Šupljika, F.; Putnik, P.; Čakić, M.S.; Dubrović, I.; Vrsaljko, D.; Maltar-Strmečki, N.; et al. Valorization of sage extracts (Salvia officinalis L.) obtained by high voltage electrical discharges: Process control and antioxidant properties. Innov. Food Sci. Emerg. Technol. 2020, 60, 102284. [Google Scholar] [CrossRef]
- Abdelkaderm, M.; Ahcen, B.; Rachid, D.; Hakim, H. Phytochemical study and biological activity of sage (Salvia officinalis L.). Int. J. Sch. Sci. Res. Innov. 2014, 8, 1253–1287. [Google Scholar]
- Sotiropoulou, N.S.; Megremi, S.F.; Tarantilis, P. Evaluation of antioxidant activity, toxicity, and phenolic profile of aqueous extracts of chamomile (Matricaria chamomilla L.) and sage (Salvia officinalis L.) prepared at different temperatures. Appl. Sci. 2020, 10, 2270. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Foo, L.Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001, 75, 197–202. [Google Scholar] [CrossRef]
- Salari, S.; Bakhshi, T.; Sharififar, F.; Naseri, A.; Ghasemi Nejad Almani, P. Evaluation of antifungal activity of standardized extract of Salvia rhytidea Benth. (Lamiaceae) against various Candida isolates. J. Mycol. Méd. 2016, 26, 323–330. [Google Scholar] [CrossRef]
- Katanić Stanković, J.S.; Srećković, N.; Mišić, D.; Gašić, U.; Imbimbo, P.; Monti, D.M.; Mihailović, V. Bioactivity, biocompatibility and phytochemical assessment of lilac sage, Salvia verticillata L. (Lamiaceae)—A plant rich in rosmarinic acid. Ind. Crops Prod. 2020, 143, 111932. [Google Scholar] [CrossRef]
- Ahmad, H.; Matsubara, Y. Antifungal effect of Lamiaceae herb water extracts against Fusarium root rot in Asparagus. J. Plant. Dis. Prot. 2020, 127, 229–236. [Google Scholar] [CrossRef]
- Ahmad, H.; Matsubara, Y. Suppression of Fusarium wilt in cyclamen by using sage water extract and identification of antifungal metabolites. Australas. Plant. Pathol. 2020, 49, 213–220. [Google Scholar] [CrossRef]
- Exarchou, V.; Kanetis, L.; Charalambous, Z.; Apers, S.L.; Pieters, V.; Gekas, V.; Goulas, V. HPLC-SPE-NMR characterization of major metabolites in Salvia fruticosa Mill. extract with antifungal potential: Relevance of carnosic acid, carnosol, and hispidulin. J. Agric. Food Chem. 2015, 63, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.O.; Choi, G.J.; Jang, K.S.; Lim, H.K.; Cho, K.Y.; Kim, J.C. Antifungal activity of five plant essential oils as fumigant against postharvest and soilborne plant pathogenic fungi. Plant. Pathol. 2007, 23, 97–102. [Google Scholar] [CrossRef]
- Baka, Z.A.M. Antifungal activity of extracts from five Egyptian wild medicinal plants against late blight disease of tomato. Arch. Phytopathol. Plant. Prot. 2014, 47, 1988–2002. [Google Scholar] [CrossRef]
- Nkomo, M.M.; Katerere, D.D.R.; Vismer, H.H.; Cruz, T.T.; Balayssac, S.S.; Malet-Martino, M.M.; Makunga, N.N.P. Fusarium inhibition by wild populations of the medicinal plant Salvia africana-lutea L. linked to metabolomic profiling. BMC Complement. Altern. Med. 2014, 14, 99. [Google Scholar] [CrossRef] [Green Version]
- Yilar, M.; Kadioglu, I. Antifungal activities of some Salvia apecies extracts on Fusarium oxysporum f. sp. radicis-lycopersici (Forl) mycelium growth in-vitro. Egypt. J. Biol. Pest Control 2016, 26, 115–118. [Google Scholar]
- Yilar, M.; Izzet, K.; Telci, I. Chemical composition and antifungal activity of Salvia officinalis (L.), S. cryptantha (Montbret et aucher ex Benth.), S. tomentosa (Mill.) plant essential oils and extracts. Fresenius Environ. Bull. 2018, 27, 1695–1706. [Google Scholar]
- Goussous, S.J.; Abu el-Samen, F.M.; Tahhan, R.A. Antifungal activity of several medicinal plants extracts against the early blight pathogen (Alternaria solani). Arch. Phytopathol. Plant. Prot. 2010, 43, 1745–1757. [Google Scholar] [CrossRef]
- Kanetis, L.; Exarchou, V.; Charalambous, Z.; Goulas, V. Edible coating composed of chitosan and Salvia fruticosa Mill. extract for the control of grey mould of table grapes. J. Sci. Food Agric. 2017, 97, 452–460. [Google Scholar] [CrossRef]
- Goussous, S.J.; Mas’ad, I.S.; Abu El-Samen, F.M.; Tahhan, R.A. In vitro inhibitory effects of rosemary and sage extracts on mycelial growth and sclerotial formation and germination of Sclerotinia sclerotiorum. Arch. Phytopathol. Plant Prot. 2013, 46, 890–902. [Google Scholar] [CrossRef]
- Özcan, M.M.; AL Juhaimi, F.Y. Antioxidant and antifungal activity of some aromatic plant extracts. J. Med. Plant. Res. 2011, 5, 1361–1366. [Google Scholar]
- Nikolova, M.; Yordanov, P.; Slavov, S.; Berkov, S. Antifungal activity of plant extracts against phytopathogenic fungi. J. Biosci. Biotechnol. 2017, 6, 155–161. [Google Scholar]
- Pahlaviani, M.R.M.K.; Darsanaki, R.K.; Bidarigh, S. Antimicrobial activities of some plants extracts against phytopathogenic fungi and clinical isolates in Iran. J. Med. Bacteriol. 2018, 7, 5–16. [Google Scholar]
- Dagostin, S.; Formolo, T.; Giovannini, O.; Pertot, I. Salvia officinalis extract can protect grapevine against Plasmopara viticola. Plant. Dis. 2010, 94, 575–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pansera, M.R.; Pauletti, M.; Fedrigo, C.P.; Camatii Sartori, V.; Da Silva Ribeiro, R.T. Utilization of essential oil and vegetable extracts of Salvia officinalis L. in the control of rot Sclerotinia in lettuce. Braz. J. Appl. Technol. Agric. Sci. 2013, 6, 83–88. [Google Scholar]
- Scherf, A.; Schuster, C.; Marx, P.; Gärber, U.; Konstantinidou-Doltsinis, S.; Schmitt, A. Control of downy mildew (Pseudoperonospora cubensis) of greenhouse grown cucumbers with alternative biological agents. Commun. Agric. Appl. Biol. Sci. 2010, 75, 541–554. [Google Scholar] [PubMed]
- Dellavalle, P.D.; Cabrera, A.; Alem, D.; Larrañaga, P.; Ferreira, F.; Rizza, M.D. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil. J. Agric. Res. 2011, 71, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Chudasama, K.S.; Thaker, V.S. Biological control of phytopathogenic bacteria Pantoea agglomerans and Erwinia chrysanthemy using 100 essential oils. Arch. Phytopathol. Plant. Protect. 2014, 47, 2221–2232. [Google Scholar] [CrossRef]
- Khosravi, D.N.; Ostad, S.N. Cytotoxic activity of the essential oil of Salvia verticillata L. Res. J. Pharmacogn. 2014, 1, 7–33. [Google Scholar]
- Bayar, Y.; Yilar, M. The antifungal and phytotoxic effect of different plant extracts of Salvia virgata Jacq. Fresenius Environ. Bull. 2019, 28, 3492–3497. [Google Scholar]
- Dulger, B.; Hacioglu, N. Antifungal activity of endemic Salvia tigrina in Turkey. Trop. J. Pharm. Res. 2008, 7, 1051–1054. [Google Scholar] [CrossRef] [Green Version]
- Šrobárová, A.; Eged, S.; Teixeira Da Silva, J.; Ritieni, A.; Santini, A. The use of Bacillus subtilis for screening Fusaric Acid production by Fusarium spp. Czech J. Food Sci. 2009, 27, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Nesic, K.; Ivanovic, S.; Nesic, V. Fusarial toxins: Secondary metabolites of Fusarium fungi. Rev. Environ. Cont. Toxicol. 2014, 228, 101–120. [Google Scholar]
- Mikušová, P.; Sulyok, M.; Samtini, A.; Šrobárová, A. Aspergillus spp. and their secondary metabolite production in grape berries from Slovakia. Phytopathol. Mediterr. 2014, 53, 109–114. [Google Scholar]
- Samtini, A.; Mikušová, P.; Sulyok, M.; Krska, R.; Labuda, R.; Šrobárová, A. Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile. Mycotoxin Res. 2014, 30, 213–220. [Google Scholar]
- Sakhri, A.; Chaouche, N.K.; Catania, M.R.; Ritieni, A.; Santini, A. Chemical Composition of Aspergillus creber Extract and Evaluation of its Antimicrobial and Antioxidant Activities. Pol. J. Microbiol. 2019, 68, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Yuce, E.; Yildirim, N.; Yildirim, N.C.; Paksoy, M.Y.; Bagci, E. Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey. Cell. Mol. Biol. 2014, 60, 1–5. [Google Scholar]
- Ghaedi, M.; Naghiha, R.; Jannesar, R.; Dehghanian, N.; Mirtamizdoust, B.; Pezeshkpour, V. Antibacterial and antifungal activity of flower extracts of Urtica dioica, Chamaemelum nobile and Salvia officinalis: Effects of Zn[OH]−2 nanoparticles and Hp-2-minh on their property. J. Ind. Eng. Chem. 2015, 32, 353–359. [Google Scholar] [CrossRef]
- Salević, A.; Prieto, C.; Cabedo, L.; Nedović, V.; Lagaron, J.M. Physicochemical, antioxidant and antimicrobial properties of electrospun poly(ε-caprolactone) films containing a solid dispersion of sage (Salvia officinalis L.) extract. Nanomaterials 2019, 9, 270. [Google Scholar]
- Soković, M.; Grubišić, D.; Ristić, M. Chemical composition and antifungal activities of essential oils from leaves, calyx and corolla of Salvia brachyodon Vandas. J. Essent. Oil Res. 2005, 17, 227–229. [Google Scholar] [CrossRef]
- Karpiński, T.M. Essential oils of Lamiaceae family plants as antifungal. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-Bdour, T.H.; Salgueiro, L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. Biomed. Res. Int. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redondo-Blanco, S.; Fernández, J.; López-Ibáñez, S.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Plant phytochemicals in food preservation: Antifungal bioactivity: A review. J. Food Prot. 2020, 83, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Stappen, I.; Tabanca, N.; Ali, A.; Wanner, J.; Lal, B.; Jaitak, V.; Wedge, D.E.; Kaul, V.K.; Schmidt, E.; Jirovetz, L. Antifungal and repellent activities of the essential oils from three aromatic herbs from western Himalaya. Open Chem. 2018, 16, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Džamić, A.; Soković, M.; Ristić, M.; Grujić-Jovanović, S.; Vukojević, J.; Marin, P.D. Chemical composition and antifungal activity of Salvia sclarea (Lamiaceae) essential oil. Arch. Biol. Sci. 2008, 60, 233–237. [Google Scholar] [CrossRef]
- Pitarokili, D.; Tzakou, O.; Couladis, M.; Verykokidou, E. Composition and antifungal activity of the essential oil of Salvia pomifera subsp. calycina growing wild in Greece. J. Essent. Oil Res. 1999, 11, 655–659. [Google Scholar] [CrossRef]
- Glamočlija, J.; Soković, M.; Vukojević, J.; Milenković, I.; Van Griensven, L.J.L.D. Chemical composition and antifungal activities of essential oils of Satureja thymbra L. and Salvia pomifera ssp. calycina (Sm.) Hayek. J. Essent. Oil Res. 2006, 18, 115–118. [Google Scholar] [CrossRef]
- Ghasemi, E.; Sharafzadeh, S.; Amiri, B.; Alizadeh, A.; Bazrafshan, F. Variation in essential oil constituents and antimicrobial activity of the flowering aerial parts of Salvia mirzayanii Rech. & Esfand. Ecotypes as a folkloric herbal remedy in Southwestern Iran. J. Essent. Oil Bear. Plants 2020, 23, 51–64. [Google Scholar]
- Sokovic, M.; Griensven, L.J.L.D.V. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant. Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Pinto, E.; Salgueiro, L.R.; Cavaleiro, C.; Palmeira, A.; Gonçalves, M.J. In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Ind. Crops Prod. 2007, 26, 135–141. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Paparella, A. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018, 78, 61–71. [Google Scholar] [CrossRef]
- Souza, D.P.; Pimentel, R.B.Q.; Santos, A.S.; Albuquerque, P.M.; Fernandes, A.V.; Junior, S.D.; Oliveira, J.T.A.; Ramos, M.V.; Rathinasabapathi, B.; Gonçalvesa, J.F.C. Fungicidal properties and insights on the mechanisms of the action of volatile oils from Amazonian Aniba trees. Ind. Crops Prod. 2020, 143, 111914. [Google Scholar] [CrossRef]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Chen, C.J.; Li, Q.Q.; Zeng, Z.Y.; Duan, S.S.; Wang, W.; Xu, F.R.; Cheng, Y.X.; Dong, X. Efficacy and mechanism of Mentha haplocalyx and Schizonepeta tenuifolia essential oils on the inhibition of Panax notoginseng pathogens. Ind. Crops Prod. 2020, 145, 112073. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.; Zhou, H.; Zhao, C.; Lin, L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 2015, 56, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraternale, D.; Giamperi, L.; Bucchini, A.; Ricci, D.; Epifano, F.; Genovese, S.; Curini, M. Composition and antifungal activity of essential oil of Salvia sclarea from Italy. Chem. Nat. Comp. 2005, 41, 604–606. [Google Scholar] [CrossRef]
- Soković, M.D.; Brkić, D.D.; Džamić, A.M.; Ristić, M.S.; Marin, P.D. Chemical composition and antifungal activity of Salvia desoleana Atzei & Picci essential oil and its major components. Flavour Fragr. J. 2009, 24, 83–87. [Google Scholar]
- Morcia, C.; Malnati, M.; Terzi, V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit. Contam. Part A 2012, 29, 415–422. [Google Scholar]
- Silva, K.V.S.; Lima, M.I.O.; Cardoso, G.N.; Santos, A.S.; Silva, G.S.; Pereira, F.O. Inibitory effects of linalool on fungal pathogenicity of clinical isolates of Microsporum canis and Microsporum gypseum. Mycoses 2017, 60, 387–393. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Shao, X.; Xu, F.; Wang, H. Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. J. Appl. Microbiol. 2015, 119, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.J.; Yang, J.Y.; Lee, M.H.; Kim, H.W.; Kwon, H.J.; Park, M.; Kim, S.K.; Park, S.Y.; Kim, S.H.; d Kim, J.B. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo. Int. J. Mol. Sci. 2020, 21, 1008. [Google Scholar] [CrossRef] [Green Version]
- Digrak, M.; Alma, M.H.; Ilcim, A.; Sen, S. Antibacterial and antifungal effects of various commercial plant extracts. Pharm. Biol. 1999, 37, 216–220. [Google Scholar] [CrossRef]
- Peana, A.; Moretti, M.D.; Julidano, C. Chemical composition and antimicrobial action of the essential oils of Salvia desoleana and S. sclarea. Planta Med. 1999, 5, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Ferdes, M.; Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K. Inhibitory effect of some plant essential oils on growth of Aspergillus niger, Aspergillus oryzae, Mucor pusillus and Fusarium oxysporum. S. Afr. J. Bot. 2017, 113, 457–460. [Google Scholar] [CrossRef]
- Starovic, M.; Ristic, D.; Pavlovic, S.; Ristic, M.; Stevanovic, M.; Aljuhaimi, F.; Svetlana, N.; Ozcan, M.M. Antifungal activities of different essential oils against anise seeds mycopopulations. J. Food Saf. Food Qual. 2016, 67, 61–92. [Google Scholar]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. Michiganensis. Crop. Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Pitarokili, D.; Tzakou, O.; Loukis, A.; Harvala, C. Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J. Agric. Food Chem. 2003, 51, 3294–3301. [Google Scholar] [CrossRef] [PubMed]
- Kotan, R.; Kordali, S.; Cakir, A.; Kesdek, M.; Kaya, Y.; Kilic, H. Antimicrobial and insecticidal activities of essential oil isolated from Turkish Salvia hydrangea DC. ex Benth. Biochem. Syst. Ecol. 2008, 36, 360–368. [Google Scholar] [CrossRef]
- Cosic, J.; Vrandecic, K.; Postic, J.; Jurkovic, D.; Ravlic, M. In vitro antifungal activity of essential oils on growth of phytopathogenic fungi. Polyjoprivreda 2010, 16, 25–28. [Google Scholar]
- Lu, M.; Han, Z.; Xu, Y.; Yao, L. Effects of essential oils from Chinese indigenous aromatic plants on mycelial growth and morphogenesis of three phytopathogens. Flavour Fragr. J. 2013, 28, 84–92. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sakr, S.; Mang, S.M.; Belviso, S.; De Feo, V.; Camele, I. Antimicrobial activity and chemical composition of three essential oils extracted from mediterranean aromatic plants. J. Med. Food 2016, 19, 1–8. [Google Scholar] [CrossRef]
- Carta, C.; Moretti, M.D.L.; Peana, A.T. Activity of the oil of Salvia officinalis L. against Botrytis cinerea. J. Essent. Oil Res. 1996, 8, 399–404. [Google Scholar] [CrossRef]
- Arici, S.E.; Sanli, A. Effect of some essential oils against Rhizoctonia solani and Streptomycetes scabies on potato plants in field conditions. Annu. Res. Rev. Biol. 2014, 4, 2027–2036. [Google Scholar] [CrossRef]
- Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI J. 2017, 16, 160–173. [Google Scholar]
- Palfi, M.; Konjevoda, P.; Vrandečić, K.; Ćosić, J. Antifungal activity of essential oils on mycelial growth of Fusarium oxysporum and Bortytis cinerea. Emir. J. Food Agric. 2019, 31, 544–554. [Google Scholar] [CrossRef]
- Tanovic, B.; Potocnik, I.; Delibasic, G.; Ristic, M.; Kostic, M.; Markovic, M. In vitro effect of essential oils from aromatic and medicinal plants on mushroom pathogens: Verticillium fungicola var. fungicola, Mycogone perniciosa, and Cladobotryum sp. Arch. Biol. Sci. 2006, 61, 231–237. [Google Scholar] [CrossRef]
- Pawar, V.C.; Thaker, V.S. Evaluation of the anti-Fusarium oxysporum f. sp. cicer and anti-Alternaria porri effects of some essential oils. World J. Microbiol. Biotechnol. 2007, 23, 1099–1106. [Google Scholar] [CrossRef]
- Tomescu, A.; Sumalan, R.M.; Pop, G.; Alexa, E.; Poiana, M.A.; Copolovici, D.M.; Mihay, C.S.S.; Negrea, M.; Galuscan, A. Chemical composition and protective antifugal activity of Mentha Piperita L. and Salvia Officinalis L. essential oils against Fusarium Graminearum spp. Rev. Chem. 2015, 66, 1027–1030. [Google Scholar]
- Arsalan, M.; Dervis, S. Antifungal activity of essential oils against three vegetative compatibility groups of Verticillium dahlia. World J. Microbiol. Biotechnol. 2010, 26, 1813–1821. [Google Scholar] [CrossRef]
- Todorovic, B.; Potocnik, I.; Rekanovic, E.; Stepanovic, M.; Kostic, M.; Ristic, M.; Marcic, S.M. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms. J. Environ. Sci. Health B 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Salteh, S.A.; Arzani, K.; Omidbeige, R.; Safaie, N. Essential oils inhibit mycelial growth of Rhizopus stolonifer. Eur. J. Hort. Sci. 2010, 75, 278–282. [Google Scholar]
- Moretti, M.D.L.; Peana, A.T.; Franceschini, A.; Carta, C. In vivo activity of Salvia officinalis oil against Botrytis cinerea. J. Essent. Oil Res. 1998, 10, 157–160. [Google Scholar] [CrossRef]
- Bi, Y.; Jiang, H.; Hausbeck, M.K.; Hao, J.J. Inhibitory effects of essential oils for controlling Phytophthora capsici. Plant. Dis. 2012, 96, 797–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoseini, S.; Amini, J.; Rafei, J.N.; Khorshidi, J. Inhibitory effect of some plant essential oils against strawberry anthracnose caused by Colletotrichum nymphaeae under in vitro and in vivo conditions. Eur. J. Plant. Pathol. 2019, 155, 1287–1302. [Google Scholar] [CrossRef]
- Noscirvani, N.; Fasihi, H. Control of Aspergilus niger in vitro and in vivo by three Iranian essential oils. Int. Food Res. J. 2018, 25, 1745–1752. [Google Scholar]
- Lopez-Reyes, J.G.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour Fragr. J. 2010, 25, 171–177. [Google Scholar] [CrossRef]
- Lopez-Reyes, J.G.; Spadaro, D.; Prelle, A.; Garibaldi, A.; Gullino, M.L. Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vivo. J. Food Prot. 2013, 76, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Pane, C.; Villecco, D.; Roscigno, G.; De Falco, E.; Zaccardelli, M. Screening of plant-derived antifungal substances useful for the control of seedborne pathogens. Arch. Phytopathol. Plant. Prot. 2013, 46, 1533–1539. [Google Scholar] [CrossRef]
- Yilar, M.; Bayar, Y. Antifungal of essential oils of Salvia officinalis and Salvia Tomentosa plants on six different isolates of Aschochyta rabie (PASS) Labr. Fresenius Environ. Bull. 2019, 28, 2170–2175. [Google Scholar]
- Goswami, S.; Kanval, J.; Prakash, O.; Kumar, R.; Rawat, D.S.; Srivastava, R.M.; Pant, A.K. Chemical composition, antioxidant, antifungal and antifeedant activity of the Salvia reflexa Hornem essential oil. Asian J. Appl. Sci. 2019, 12, 185–191. [Google Scholar]
- Pitarokili, D.; Couladis, M.; Panayotarou, N.K.; Tzakou, O. Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. J. Agric. Food Chem. 2002, 50, 6688–6691. [Google Scholar] [CrossRef] [PubMed]
- Jularat, U.; Apinya, P.; Peerayot, K.K.; Pitipong, T. Antifungal properties of essential oils from Thai medial plants against rice phytopathogenic fungi. Asian J. Food Ag-Ind. 2009, 2, S24–S30. [Google Scholar]
- Bahman, H.; Alireza, E.; Seyed Mehdi, M. Fumigant toxicity of essential oil from ‘Salvia leriifolia’ (Benth) against two stored product insect pests. Aust. J. Crop. Sci. 2013, 7, 855–860. [Google Scholar]
- Zaccardelli, M.; Roscigno, G.; Pane, C.; De Falco, E. Antifungal activity of residues from aromatic waters distilled from thyme and sage. In Multidisciplinary Approaches for Studying and Combating Microbial Pathogens; Mendez-Vilas, A., Ed.; Universal-Publishers: Irvine, CA, USA, 2015; pp. 31–33. [Google Scholar]
- Feng, W.; Zheng, X. Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 2006, 18, 1126–1130. [Google Scholar] [CrossRef]
- Flores, F.C.; De Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.B.; Beck, R.C.R.; Bona da Silva, C. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia 2013, 175, 281–286. [Google Scholar] [CrossRef]
- Soliman, E.A.; El-Moghazy, A.Y.; Mohy El-Din, M.S.; Massoud, M.A. Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of antifungal activity. J. Encapsulation Adsorption Sci. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- Nasseri, M.; Golmohammadzadeh, S.; Arouiee, H.; Jaafari, M.R.; Neamati, H. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iran. J. Basic Med. Sci. 2016, 19, 1231–1237. [Google Scholar]
- Kodadová, A.; Vitková, Z.; Herdová, P.; Ťažký, A.; Oremusová, J.; Grančai, D.; Mikuš, P. Formulation of sage essential oil (Salvia officinalis, L.) monoterpenes into chitosan hydrogels and permeation study with GC-MS analysis. Drug Dev. Ind. Pharm. 2015, 41, 1080–1088. [Google Scholar] [CrossRef]
- Gharenaghadeh, S.; Karimi, N.; Forghani, S.; Nourazarian, M.; Gharehnaghadeh, S.; Jabbari, V.; Sowtikhiabani, M.; Kafil, H.S. Application of Salvia multicaulis essential oil-containing nanoemulsion against food-borne pathogens. Food Biosci. 2017, 19, 128–133. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Mancini, E.; Campanile, F.; De Feo, E.; De Falco, E. Identification of bio-active coumpounds in essential oils of medicinal plants toxic for phytopathogenic fungi and bacteria. J. Plant. Pathol. 2007, 89, 3. [Google Scholar]
- Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part II—Production scales and clinically compliant production methods. Nanomater 2020, 10, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jampílek, J.; Kráľová, K. Nanobiopesticides in agriculture: State of the art and future opportunities. In Nano-Biopesticides Today and Future Perspectives; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 17; pp. 397–447. [Google Scholar] [CrossRef]
- Sagiri, S.S.; Anis, A.; Pal, K. Review on encapsulation of vegetable oils: Strategies, preparation methods, and applications. Polym. Plast. Technol. 2016, 55, 291–311. [Google Scholar] [CrossRef]
- De Matos, S.P.; Lucca, L.G.; Koester, L.S. Essential oils in nanostructured systems: Challenges in preparation and analytical methods. Talanta 2019, 195, 204–214. [Google Scholar] [CrossRef]
Sage Species (Salvia spp.) | Extraction Methods | Target Phytopatogens | Efficacy on Bioassay | Reference |
---|---|---|---|---|
S. aegyptiaca | Ethanol and water extraction | Phyphtora infestans | In vitro and in vivo on tomato | [67] |
S. africana-lutea | Dichloromethane: Methanol extraction | Fusarium verticillioides and F. proliferatum | In vitro determination of MICand MFC | [68] |
S. cryptantha, S. officinalis, S. tomentosa | Water, ethanol and methanol extraction | Fusarium oxysporum f. sp. radicis | In vitro mycelial growth inhibition | [69] |
S. cryptantha S. officinalis, S. tomentosa | Methanol and ethanol extraction | Botrytis cinerea, Monilia laxa, Aspergillus niger, and Penicillum sp. | In vivo on apple | [70] |
S. fruticosa | Crude water extraction | Alternaria solani | In vitro mycelial growth inhibition | [71] |
S. fruticosa | Extraction in semi-automated Soxlet system | B. cinerea | In vivo on grape | [72] |
S. fruticosa | Ethanol extraction | Sclerotinia sclerotorium | In vitro mycelial growth inhibition | [73] |
S. officinalis | Extracted in 90% methanol + 9% water + 1% acetic acid | Alternaria alternata, A. niger, and A. parasiticus | In vitro mycelial growth inhibition | [74] |
S. officinalis | Metanolic extraction | A. alternata, B. cinerea, Phytophtora cambivora, and F. oxysporum | In vitro mycelial growth inhibition | [75] |
S. officinalis | Ethanol and methanol extraction | A. alternata, A. solani, Fusarium solani, F. oxysporum f.sp. lycopersici, P. infestans, Rhizoctonia solani, B. cinerea, Colletotrichum coccoides, Verticillum albo-atrum | In vitro determination of MIC and MFC | [76] |
S. officinalis | Ethanol extraction | Plasmopora viticola | In vivo on grape | [77] |
S. officinalis | Water extraction | F. oxysporum f.sp. asparagi | In vitro on conidia germination | [63] |
S. officinalis | Hydroethanol, ethanol and water infusion | S. sclerotiorum | In vitro and in vivo on lettuce | [78] |
S. officinalis | Water extraction | F. oxysporum f.sp. cyclaminis | In vitro density of conidia | [64] |
S. officinalis | Ethanol extraction | Pseudoperonospora cubensis | In vivo on cucumber | [79] |
S. officinalis, S. sclarea | Aqueous, saline Buffer and acid extraction | Alternaria spp. | In vitro determination of MIC and MFC | [80] |
S. officinalis, S. sclarea | Pantoea agglomerans, Erwinia chrysanthemy | In vitro growth inhibition | [81] | |
S. verticillata | Methanol extraction | F. oxysporum, A. alternata, Aureobasidium pillulans, Trichoderma harzianum, Penicillum canescens | In vitro determination of MIC and MFC | [82] |
S. virgata | Methanol and n-hexane extraction | R. solani, A. solani, F. oxysporum f.sp. radicis, lycopersici, Verticillum dalhiae | In vitro mycelial growth inhibition | [83] |
S. tigrina | Ethanol extraction | B. cinerea, F. oxysporum, A. alternata | In vitro determination of MIC and MFC | [84] |
Sage Species (Salvia spp.) | Major Components | Target Phytopatogens | Efficacy on Bioassay | Reference |
---|---|---|---|---|
S. aucheeri var. aucheri | Alternaria alternata, Penicillium italicum, Fusarium equiseti | In vitro mycelial growth inhibition | [115] | |
S. cryptantha, S. officinalis, S. tomentosa | Eucalyptol, Camphor, α-pinetene, β-thujone, borneol, camphor, 3-thujonene | Botrytis cinerea, Monilia laxa, Aspergillus niger, Penicillum sp. | In vivo on apple | [70] |
S. cryptantha, S. officinalis, S. tomentosa | Fusarium oxysporum f.sp. radicis-lycopersici | In vitro mycelial growth inhibition | [69] | |
S. desoleana | 1,8-cineole | A. niger, A. ochraceus, A. versicolor, A. flavus, A. terreus, A. alternata, Penicillium ochrocholon, P. funiculosum, Cladosporium cladosporoides, Trichoderma viride, Fusarium tricinctum, Phomopsis helianthi | In vitro determination of MIC and MFC | [116] |
S. fruticosa | A. niger, A. oryza, Mucor pusillus, F. oxysporum | In vitro mycelial growth inhibition | [117] | |
S. fruticosa | 1,8-Cineole, Camphor | Bipolaris/Drechslera sorociniana, Fusarium subglutinans, F. vertricilioides, F. oxysporum, F. tricinctum, F. sporotrichioides, F. equiseti, F. incarnatum, F. proliferatum, Macrophomina phaseolina | In vitro determination of MIC and MFC | [118] |
S. fruticosa | Eucalyptol, Camphor | B. cinerea, Fusarium solani var. coeruleum, Clavibacter michiganensis subsp. michiganensis | In vitro mycelial growth inhibition | [119] |
S. fruticosa | Hispidulin, salvigenin, cirsimaritin, carnosic acid, carnosol, and 12-methoxycarnosic acid | Aspergillus tubingensis, B. cinerea, P. digitatum | In vitro determination of MIC and MFC | [65] |
S. fruticosa | 1,8-cineole, α-thujone, β-thujone, camphor, (E) caryophyllene | F. oxysporum f.sp. dianthi, F. proliferatum, Rhizoctonia solani, Sclerotium sclerotiorum, F. solani f. sp. cucurbitae | In vitro mycelial growth inhibition | [120] |
S. hydrangea | A. alternata, A. solani, Aspergillus sp., Botrytis sp., Colletotrichum sp., Drechslera sp., Fusarium acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. graminearum, F. incarnatum, F. nivale, F. oxysporum, F. proliferatum, F. sambucinum, F. scirpi, F. semitectum, F. solani, F. tabacinum, F. verticillioides, Nigrospora sp., Penicillium jensenii, Phoma sp., Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, S. sclerotiorum, Sclerotinia sp., Trichothecium sp., Verticillium albo-atrum, V. dahliae, V.tenerum | In vitro microbial growth inhibition | [121] | |
S. lavenduulfolia, S. sclarea | B. cinerea, C. gloeosporioides, F. oxysporum, P. ultimum, R. solani | In vitro mycelial growth inhibition | [66] | |
S. officinalis | F. graminearum, F. verticilloides, F. subglutinans, F. oxysporum, F. avenaceum, Diaporthe phaseolarum var. caulivora, Phomopsis viticola, Helminthosporium sativum, Colletotrichum coccodes, Thanatephorus cucumeris | In vitro mycelial growth inhibition | [122] | |
S. officinalis | A. alternata, Colletotrichum destructivum, Phytophthora parasitica | In vitro determination of MIC and MFC | [123] | |
S. officinalis | Monoterpene | Colletotrichum acutatum, B. cinerea, Clavibacter michiganensis, Xanthomonas campestris, Pseudomonas savastanoi, P. syringae pv. phaseolicola | In vitro determination of MIC and MFC | [124] |
S. officinalis | α-p-thujone, 1,8-cineole and camphor | B. cinerea | In vitro mycelial growth inhibition | [125] |
S. officinalis | R.solani, Streptomycetes scabies | In vivo on potato | [126] | |
S. officinalis | Camphor, α-thujone, 1,8-cineole, viridiflorol, β-thujone, β-caryophyllene, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging, linoleic acid peroxidation, ferric reducing assays | B. cinerea, R. solani, F. oxysporum, A. alternata | In vitro determination of MIC and MFC | [127] |
S. officinalis | F. oxysporum, B. cinerea | In vitro mycelial growth inhibition | [128] | |
S. officinalis | Verticillium fungicola var. fungicola, Cladobotryum sp. | In vitro determination of MIC and MFC | [129] | |
S. officinalis | F. oxysporum f. sp. cicer, Alternaria porri | In vitro mycelial growth inhibition | [130] | |
S. officinalis | Camphor, camphene, eucalyptol | Fusarium graminearum | In vitro determination of MIC and MFC | [131] |
S. officinalis | 1,8-cineole, β-thujone, L-camphor | Verticillum dalhie | In vitro mycelial growth inhibition | [132] |
S. officinalis | Xanthomonas campestris pv. phaseoli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas tolaasii | In vitro determination of MIC and MFC | [133] | |
S. officinalis | Thujone, camphor | Rhizopus stolonifer | In vitro mycelial growth inhibition | [134] |
S. officinalis | Camphor, α-thujone | V. fungicola, Trichoderma harzianum | In vitro mycelial growth inhibition | [102] |
S. officinalis | A. alternata | In vitro and in vivo on tomato | [125] | |
S. officinalis | S. sclerotiorum | In vitro and in vivo on lettuce | [78] | |
S. officinalis | C. cinerea | In vivo on tomato | [135] | |
S. officinalis | Cis-thujone, camphor | P. italicum, Aspergillus sp., Cladosporium cladosporioides, Fusaarium moniliforme | In vitro determination of MIC and MFC | [103] |
S. officinalis | Phytophthora capsici | In vitro and in vivo on zucchini | [136] | |
S. officinalis | Colletotrichum nymphaeae | In vitro and in vivo on strawberry | [137] | |
S. officinalis | Aspergillus niger | In vitro and in vivo on tomato paste | [138] | |
S. officinalis | B. cinerea, P. expansum | In vivo on apples | [139] | |
S. officinalis | Monilinia laxa, B. cinerea, | In vivo on apricot, peach and almond | [140] | |
S. officinalis | F. oxysporum f. sp. lycopersici, R. solani, S. minor | In vitro mycelial growth inhibition | [52] | |
S. officinalis | Alternaria dauci, A. radicina, C. lindemuthianum, Ascochyta rabiei | In vitro mycelial growth inhibition | [141] | |
S. officinalis, S. tomentosa | A. rabiei | In vitro mycelial growth inhibition | [142] | |
S. pomifera sp. calycina | α-thujone, β-thujone | Mycogone perniciosa | In vitro determination of MIC and MFC | [100] |
S. pomifera subsp. calycina | α-thujone, β thujone, myrcene | F. oxysporumf. sp. dianthus, F. solani f.sp. cucurbitae, F. proliferatum, S. slerotiorum, R. solani, V. dahliae, P. exspansum | In vitro mycelial growth inhibition | [99] |
S. pomifera subsp. calycina | α-thujone, β-thujone, myrcene | F. oxysporum f.sp. dianthy, F. solani f.sp. cucurbitae, F. proliferatum, S. sclerotium, R. solani, V. dalhie, P. expansum | In vitro mycelial growth inhibition | [100] |
S. reflexa | Phenols, diterpenes, fatty acids, Palmitic acid, phytol (E)caryophyllene, caryophyllene oxide, hexahydrofarnezylacetone, phytol isomer, β-asarone, α-copaene, δ-cadinene | Curvularia lunata, Helmenusathosporium maydis | In vitro mycelial growth inhibition | [143] |
S. sclarea | Linalyl acetate, linalool, α-terpineol, α-pinene, 1.8-cineole, limonene, β-caryophyllene, β-terpineol | A. alternata, C. cladosporioides, C. fulvum, F. tricinctum, F. sporotrichoides, Phoma macdonaldii, Phomopsis helianthi, Trichoderma viride | In vitro determination of MIC and MFC | [98] |
S. sclarea | Linalyl acetate, linalool, geranyl acetate, R-terpineol, | F. oxysporumf. sp. dianthi, S.sclerotiorum, Sclerotium cepivorum | In vitro determination of MIC and MFC | [144] |
S. sclarea | Linalool, linalyl acetate, geranyl acetate, β-ocimene, caryophylleneoxide | F. oxysporum, B. cinerea, R. solani, A. solani | In vitro determination of MIC and MFC | [109] |
S. sclarea | Caryophyllene oxide, sclareol, spathulenol, 1H-naphtho, pyran, β-caryophyllene | Epicoccum nigrum, Colletotrichum coccodes | In vitro mycelial growth inhibition | [90] |
S. officinalis, S. sclarea | Pantoea agglomerans, Erwinia chrysanthemy | In vitro inhibition measurement | [145] |
Salvia spp. | Xanthomonas campestris pv. campestris | Pectobacterium carotovorum subsp. carotovorum |
---|---|---|
S. africana | 0 | - |
S. rutilans | - | - |
S. munzii | 0 | 0 |
S. mellifera | +/− | - |
S. greggii | +/− | 0 |
S. officinalis “Icterina” | 0 | 0 |
S. officinalis | - | - |
Salvia spp. | Alternaria alternata | Botrytis cinerea | Sclerotinia minor | Fusarium oxysporum | Fusarium sambucinum | Fusarium semitectum | Fusarium solani | Rhizoctonia solani |
---|---|---|---|---|---|---|---|---|
S. africana | 0 | −31.2 | +50.0 | +3 | −5.4 | −12.5 | −20.0 | +20.0 |
S. rutilans | −55.5 | −50.0 | −100.0 | −5.6 | +8.1 | −21.9 | −4.0 | +20.0 |
S. munzii | 0 | 0 | +33.3 | −22.7 | −9.9 | −100.0 | −40.0 | −100.0 |
S. mellifera | −11.1 | −50.0 | −33.3 | −14.1 | +8.1 | −35.5 | −40.0 | −24.0 |
S. greggii | −100.0 | −50.0 | −100.0 | −18.5 | +3.6 | −25.0 | −32.0 | −100.0 |
S. officinalis “Icterina” | −33.3 | −50.0 | −50.0 | −7.3 | −1 | −21.9 | +8.0 | +8.0 |
S. officinalis | −100.0 | −100.0 | −100.00 | 0 | 0 | −50.0 | 0 | −50.0 |
Molecules | S. mellifera | S. africana | S. rutilans | S. munzii | S. greggii | S. officinalis “Icterina” | S. officinalis |
---|---|---|---|---|---|---|---|
Thujone (cis*trans) | 38.7 | 33.3 | 43.4 | 34.6 | 37.9 | ||
1,8-Cineole | 38.8 | 4.6 | 4.2 | ||||
Camphor | 12.2 | 4.7 | 27.2 | 4.2 | 7.5 | 13.9 | |
δ-Cadinene | 3.8 | 11.5 | 8.9 | 14.0 | |||
α-Pinene | 9.2 | 4.4 | |||||
p-Menthadiene | 2.3 | ||||||
Limonene | 2.2 | 1.4 | |||||
Isobornyl acetate | 5.0 | ||||||
Camphene | 4.6 | 4.1 | |||||
p-Cymene | 17.7 | 1.2 | |||||
γ-Terpinene | 12.9 | ||||||
Epizonareme | 11.3 | ||||||
Cubebol | |||||||
Geranyl acetate | 6.9 | 8.7 | |||||
Geraniol | 2.3 | 6.5 | 4.0 | 3.4 | |||
(Z)-β-Ocimene | 5.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccardelli, M.; Pane, C.; Caputo, M.; Durazzo, A.; Lucarini, M.; Silva, A.M.; Severino, P.; Souto, E.B.; Santini, A.; De Feo, V. Sage Species Case Study on a Spontaneous Mediterranean Plant to Control Phytopathogenic Fungi and Bacteria. Forests 2020, 11, 704. https://doi.org/10.3390/f11060704
Zaccardelli M, Pane C, Caputo M, Durazzo A, Lucarini M, Silva AM, Severino P, Souto EB, Santini A, De Feo V. Sage Species Case Study on a Spontaneous Mediterranean Plant to Control Phytopathogenic Fungi and Bacteria. Forests. 2020; 11(6):704. https://doi.org/10.3390/f11060704
Chicago/Turabian StyleZaccardelli, Massimo, Catello Pane, Michele Caputo, Alessandra Durazzo, Massimo Lucarini, Amélia M. Silva, Patrícia Severino, Eliana B. Souto, Antonello Santini, and Vincenzo De Feo. 2020. "Sage Species Case Study on a Spontaneous Mediterranean Plant to Control Phytopathogenic Fungi and Bacteria" Forests 11, no. 6: 704. https://doi.org/10.3390/f11060704
APA StyleZaccardelli, M., Pane, C., Caputo, M., Durazzo, A., Lucarini, M., Silva, A. M., Severino, P., Souto, E. B., Santini, A., & De Feo, V. (2020). Sage Species Case Study on a Spontaneous Mediterranean Plant to Control Phytopathogenic Fungi and Bacteria. Forests, 11(6), 704. https://doi.org/10.3390/f11060704