Physical and Mechanical Properties of Fast Growing Polyploid Acacia Hybrids (A. auriculiformis × A. mangium) from Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acacia Hybrid Polyploid Clones and Sampling
2.2. Air-Dry Moisture Content and Basic Density
2.3. Mechanical Testing
2.4. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content and Basic Density
3.2. Bending Test
3.3. Compression Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bueren, M. Van Acacia Hybrids in Vietnam; Impact Assessment Serie Report; Australian Centre for International Agricultural Research: Canberra, Australia, 2004.
- Do, T.; Thuyet, D.; Thang, N.; Trung, P.; Huyen, L.; Phuong, N.; Ha, D.; Tuan, N.; Hanh, L.; Nhung, H.; et al. Effect of Planting Density on Production of Acacia Plantations in Northeast Vietnam. Asian J. Soil Sci. Plant. Nutr. 2018, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Griffin, A.R.; Chi, N.Q.; Harbard, J.L.; Son, D.H.; Harwood, C.E.; Price, A.; Vuong, T.D.; Koutoulis, A.; Thinh, H.H. Breeding polyploid varieties of tropical acacias: Progress and prospects. South. For. J. For. Sci. For. J. For. Sci. 2015, 77, 41–50. [Google Scholar] [CrossRef]
- Griffin, A.R.; Nambiar, E.S.; Harwood, C.E.; See, L.S. Sustaining the future of Acacia plantation forestry—A synopsis. South. For. J. For. Sci. 2015, 77, v–viii. [Google Scholar] [CrossRef]
- Hai, P.H. Genetic Improvement of Plantation-Grown Acacia Auriculiformis for Sawn Timber Production. Ph.D Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2009. [Google Scholar]
- Hung, T.T. Productivity and Sustainability of Acacia Plantaions in Vietnam. Ph.D Thesis, University of Tasmania, Tasmania, Australia, 2016. [Google Scholar]
- Ismail, J.; Farawahida, A.Z. Physical and Mechanical Properties of Acacia Mangium x Acacia Auriculiformis Hybrid (Acacia Hybrid) and Acacia Mangium Superbulk Planted in Sarawak. In Proceedings of the Conference on Forestry & Forest Products Research 2007, Kota Samarahan, Malaysia, 27–29 November 2007; pp. 270–278. [Google Scholar]
- Nambiar, E.S.; Harwood, C.E.; Kien, N.D. Acacia plantations in Vietnam: Research and knowledge application to secure a sustainable future. South. For. J. For. Sci. 2015, 77, 1–10. [Google Scholar] [CrossRef]
- Nor Asmah, H.; Nor Hasnida, H.; Noraliza, A.; NZNA; NSN. In vitro propagation of Acacia hybrid through alginate-encapsulated shoots and axillary buds. Afr. J. Biotechnol. 2012, 11, 12814–12817. [Google Scholar] [CrossRef] [Green Version]
- Pinso, C.; Nasit, R. The Potential Use of Acacia mangium x Acacia auriculiformis Hybrid in Sabah. In Proceedings of the Breeding Technologies for Tropical Acacias, Sabah, Malaysia, 1–4 July 1991; International Agricultural Research: Canberra, Australia, 1991; Volume 37, pp. 101–109 132. [Google Scholar]
- Turnbull, J.W.; Midgley, S.J.; Cossalter, C. Tropical acacias planted in Asia: An overview. In Proceedings of the Recent developments in acacia planting: Proceedings of an international workshop, Hanoi, Vietnam, 27–30 October 1997; pp. 14–28. [Google Scholar]
- Nirsatmanto, A.; Sunarti, S.; Praptoyo, H. Wood Anatomical Structures of Tropical Acacias and its Implication to Tree Breeding. Int. J. Hortic. 2017, 3, 9–16. [Google Scholar]
- Vozzo, J.A. Tropical Tree Seed Manual; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2002.
- Kha, L.D. Studies on natural hybrids of Acacia mangium and A. auriculiformis in Vietnam. J. Trop. Sci. 2000, 12, 794–803. [Google Scholar]
- Jusoh, I.; Zaharin, F.A.; Adam, N.S. Wood quality of Acacia hybrid and second-generation Acacia mangium. BioResources 2014, 9, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Rokeya, U.K.; Hossain, M.A.; Ali, M.R.; Paul, S.P. Physical and mechanical properties of hybrid Acacia. J. Bangladesh Acad. Sci. 2010, 34, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Shukla, S.R.; Sujatha, M. Physical and mechanical evaluation of 8-years-old acacia hybrid (a. mangium x a. auriculiformis) clones for various end uses. Indones. J. Res. 2018, 5, 95–102. [Google Scholar] [CrossRef]
- Kim, N.T.; Ochiishi, M.; Matsumura, J.; Oda, K. Variation in wood properties of six natural acacia hybrid clones in northern Vietnam. J. Wood Sci. 2008, 54, 436–442. [Google Scholar] [CrossRef]
- Kim, N.T.; Matsumura, J.; Oda, K. Effect of growing site on the fundamental wood properties of natural hybrid clones of Acacia in Vietnam. J. Wood Sci. 2011, 57, 87–93. [Google Scholar] [CrossRef]
- Aimin, A.A.S.; Abdullah, M.Z.; Muhammad, N.; Ratnam, W. Early growth performance of full-sib Acacia auriculiformis x Acacia mangium F1 hybrid progenies at three different sites. In Proceedings of the 2014 Ukm Fst Postgraduate Colloquium, Selangor, Malaysia, 9–11 April 2014; AIP Publishing: Melville, NY, USA, 2014; pp. 769–771. [Google Scholar]
- Kha, L.D.; Harwood, C.E.; Duc Kien, N.; Baltunis, B.S.; Hai, N.D.; Thinh, H.H. Growth and wood basic density of acacia hybrid clones at three locations in Vietnam. N. For. 2012, 43, 13–29. [Google Scholar]
- Paiman, B.; Lee, S.H.; Zaidon, A. Machining properties of natural regeneration and planted Acacia Mangium X A. Auriculiformis hybrid. J. Trop. Sci. 2018, 30, 135–142. [Google Scholar]
- Yahya, R.; Sugiyama, J.; Silsia, D.; Gril, J. Some anatomical features of an Acacia hybrid, A. mangium and A. auriculiformis grown in indonesia with regard to pulp yield and paper strength. J. Trop. Sci. 2010, 22, 343–351. [Google Scholar]
- Sharma, S.K.; Shukla, S.R.; Sujatha, M. Radial variation of anatomical properties in 8-year-old clones of Acacia hybrid (A. mangium x A. auriculiformis). Afr. J. Wood Sci. 2016, 4, 238–246. [Google Scholar]
- Haque, M.; Iqbal Aziz, M.; Sharif Hossain, M.; Quaiyyum, M.A.; Zahangir Alam, M.; Sarwar Jahan, M. Pulping of hybrid acacia planted in a social forestry program in Bangladesh. Cellul. Chem. Technol. 2019, 53, 739–745. [Google Scholar] [CrossRef]
- Kha, L.D.; Ha, H.T. Research and development of acacia hybrids for commercial planting in Vietnam. Vietnam J. Sci. Technol. Eng. 2017, 59, 36–42. [Google Scholar]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, C.Q.; Griffin, R.A.; Harbard, J.L.; Harwood, C.E.; Le, S.; Nguyen, K.D.; Van Pham, B. Reduced fertility in triploids of Acacia auriculiformis and its hybrid with A. mangium. Euphytica 2018, 214. [Google Scholar]
- Griffin, A.R.; Twayi, H.; Braunstein, R.; Downes, G.M.; Son, D.H.; Harwood, C.E. A comparison of fibre and pulp properties of diploid and tetraploid acacia mangium grown in Vietnam. Appita J. 2014, 67, 43–49. [Google Scholar]
- Bon, P.; Harwood, C.; Chi, N.; Thinh, H.; Kien, N. Comparing wood density, heartwood proportion and bark thickness of diploid and triploid acacia hybrid clones in Vietnam. J. Trop. Sci. 2020, 32. [Google Scholar]
- ISO 13061-3. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 3: Determination of Ultimate Strength in Static Bending; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- ISO 13061-4. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 4: Determination of Modulus of Elasticity in Static Bending; ISO: Geneva, Switzerland, 2014. [Google Scholar]
- ISO 13061-17. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel to Grain; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Hernández, R.E. Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci. 2007, 39, 132–145. [Google Scholar]
- Mottonen, V.; Herajarvi, H.; Koivunen, H.; Lindblad, J. Influence of felling season, drying method and within-tree location on the brinell hardness and equilibrium moisture content of wood from 27–35-year-old Betula pendula. Scand. J. Res. 2004, 19, 241–249. [Google Scholar] [CrossRef]
- Peng, H.; Jiang, J.; Zhan, T.; Lu, J. Influence of Density and Equilibrium Moisture Content on the Hardness Anisotropy of Wood. Prod. J. 2016, 66, 443–452. [Google Scholar] [CrossRef]
- Metsa-Kortelainen, S.; Antikainen, T.; Viitaniemi, P. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz Als Roh—Und Werkstoff 2006, 64, 192–197. [Google Scholar] [CrossRef]
- Sjökvist, T.; Blom, Å. The influence of coating color, heartwood and sapwood, on moisture content and growth of microorganisms on the surface during outdoor exposure of Norway spruce boards. J. Coat. Technol. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Sjökvist, T.; Wålinder, M.E.; Blom, Å. Liquid sorption characterisation of Norway spruce heartwood and sapwood using a multicycle Wilhelmy plate method. Int. Wood Prod. J. 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, M.; Lindgren, O. End grain water absorption and redistribution in slow-grown and fast-grown Norway spruce (Picea abies (L.) Karst.) heartwood and sapwood. Wood Mater. Sci. Eng. 2013, 8, 242–252. [Google Scholar] [CrossRef]
- Sivertsen, M.S.; Vestøl, G.I. Liquid water absorption in uncoated Norway spruce (Picea abies) claddings as affected by origin and wood properties. Wood Mater. Sci. Eng. 2010, 5, 181–193. [Google Scholar] [CrossRef]
- Sjökvist, T.; Blom, Å.; Wålinder, M.E. The influence of heartwood, sapwood and density on moisture fluctuations and crack formations of coated Norway spruce in outdoor exposure. J. Wood Sci. 2019, 65. [Google Scholar] [CrossRef] [Green Version]
- Ball, R.D.; Simpson, I.G.; Pang, S. Measurement, modelling and prediction of equilibrium moisture content in Pinus radiata heartwood and sapwood. Holz Als Roh—Und Werkstoff 2001, 59, 457–462. [Google Scholar] [CrossRef]
- Hai, P.H.; Hannrup, B.; Harwood, C.; Jansson, G.; Van Ban, D. Wood stiffness and strength as selection traits for sawn timber in Acacia auriculiformis. Can. J. Res. 2010, 40, 322–329. [Google Scholar] [CrossRef]
- Chowdhury, M.Q.; Ishiguri, F.; Hiraiwa, T.; Takashima, Y.; Iizuka, K.; Yokota, S.; Yoshizawa, N. Radial variation of bending property in plantation grown acacia auriculiformis in Bangladesh. For. Sci. Technol. 2012, 8, 135–138. [Google Scholar]
- Gérard, J.; Guibal, D.; Paradis, S.; Cerre, J.-C. Tropical Timber Atlas: Technological Characteristics and Uses; Editions Quae: Versailles, France, 2017; ISBN 9782759227709. [Google Scholar]
- Zobel, B.J.; Buijtenen, J.P.v. Wood Variation: Its Causes and Control; Springer-Verlag: Berlin, Germany, 1989; ISBN 9788578110796. [Google Scholar]
- Makino, K.; Ishiguri, F.; Wahyudi, I.; Takashima, Y.; Iizuka, K.; Yokota, S.; Yoshizawa, N. Wood properties of young acacia mangium trees planted in Indonesia. Prod. J. 2012, 62, 102–106. [Google Scholar]
- Walker, J.C.F. Primary Wood Processing: Principals and Practice, 2nd ed.; Springer: Dordrecht, The Netherlands, 2006; ISBN 9781402043925. [Google Scholar]
- Machado, J.S.; Louzada, J.L.; Santos, A.J.A.; Nunes, L.; Anjos, O.; Rodrigues, J.; Simões, R.M.S.; Pereira, H. Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mater. Des. 2014, 56, 975–980. [Google Scholar] [CrossRef]
- Lim, S.; Gan, K. Some physical properties and anatomical features of 14-year-old Acacia mangium. J. Trop. Prod. 2000, 6, 206–213. [Google Scholar]
- Nakada, R.; Fujisawa, Y.; Hirakawa, Y. Effects of clonal selection by microfibril angle on the genetic improvement of stiffness in Cryptomeria japonica D. Don. Holzforschung 2003, 57, 553–560. [Google Scholar] [CrossRef]
- Zhu, J.; Tadooka, N.; Takata, K.; Koizumi, A. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture (II). Juvenile/mature wood determination of aged trees. J. Wood Sci. 2005, 51, 95–101. [Google Scholar] [CrossRef]
- Cave, I.D.; Walker, J.C.F. Stiffness of Wood in Fast-Grown Plantation Softwoods—the Influence of Microfibril Angle. Prod. J. 1994, 44, 43–48. [Google Scholar]
- Machado, J.S.; Cruz, H.P. Within stem variation of Maritime Pine timber mechanichal properties. Holz Als Roh—Und Werkstoff 2005, 63, 154–159. [Google Scholar] [CrossRef]
- Yang, J.L.; Evans, R. Prediction of MOE of eucalypt wood from microfibril angle and density. Holz Als Roh—Und Werkstoff 2003, 61, 449–452. [Google Scholar] [CrossRef]
- Ross, R.J. Wood Handbook—Wood as an Engineering Material. General Technical Report FPL-GTR-190; Centennial; Department of Agriculture, USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; ISBN 978-1484859704.
- Harwood, C.E.; Hardiyanto, E.B.; Yong, W.C. Genetic improvement of tropical acacias: Achievements and challenges. South. For. J. For. Sci. 2015, 1, 11–18. [Google Scholar] [CrossRef]
Taxa | Clone/Tree ID | Ploidy | Parental Information | No. of Ramets/Trees Sampled | DBH (cm) | Height (m) | Stem Volume (m3) |
---|---|---|---|---|---|---|---|
Acacia hybrid | BV10 | 2x | Commercial diploid AH clones | 5 | 13.0 | 16.0 | 0.21 |
BV16 | 2x | 5 | 12.6 | 15.0 | 0.19 | ||
Acacia hybrid | X101 | 3x | Controlled pollination (CP) between diploid AA and tetraploid AM | 5 | 15.0 | 17.9 | 0.32 |
X102 | 3x | 5 | 14.4 | 16.6 | 0.27 | ||
A. auriculiformis | AA | 4x | Colchicine-induced tetraploid trees of AA | 3 | 11.8 | 10.1 | 0.11 |
A. mangium | AM | 4x | Colchicine-induced tetraploid trees of AM | 3 | 17.9 | 13.2 | 0.33 |
Acacia hybrid | AH | 4x | Colchicine-induced tetraploid clones of AH | 3 | 11.6 | 14.7 | 0.16 |
MC (%) | BD (g/cm3) | MOR (MPa) | MOE (GPa) | σ (N/mm2) | E (GPa) | |
---|---|---|---|---|---|---|
BV10 | 5.1 c (0.2) | 0.47 b (0.06) | 71 ab (17) | 8.7 bc (1.1) | 46.0 a (6.7) | 9.6 bc (1.3) |
BV16 | 5.1 c (0.3) | 0.44 cd (0.07) | 75 ab (15) | 8.6 bc (0.8) | 44.6 a (5.4) | 9.2 c (1.5) |
X101 | 5.4 b (0.3) | 0.45 c (0.07) | 79 a (14) | 9.7 a (1.2) | 45.3 a (5.5) | 9.9 ab (1.3) |
X102 | 5.9 a (0.4) | 0.43 d (0.07) | 70 b (12) | 8.5 bc (1.3) | 44.4 a (5.8) | 9.3 c (1.3) |
AA-4x | 4.5 d (0.2) | 0.50 a (0.05) | 72 ab (11) | 8.2 c (1.2) | 44.0 a (6.0) | 8.9 cd (1.7) |
AM-4x | 4.6 d (0.4) | 0.37 e (0.10) | 56 c (11) | 7.2 d (0.9) | 38.1 b (5.6) | 8.2 d (1.3) |
AH-4x | 4.6 d (0.3) | 0.42 d (0.06) | 71 ab (11) | 9.2 ab (0.9) | 46.5 a (3.8) | 10.3 a (1.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc Viet, D.; Ma, T.; Inagaki, T.; Tu Kim, N.; Quynh Chi, N.; Tsuchikawa, S. Physical and Mechanical Properties of Fast Growing Polyploid Acacia Hybrids (A. auriculiformis × A. mangium) from Vietnam. Forests 2020, 11, 717. https://doi.org/10.3390/f11070717
Duc Viet D, Ma T, Inagaki T, Tu Kim N, Quynh Chi N, Tsuchikawa S. Physical and Mechanical Properties of Fast Growing Polyploid Acacia Hybrids (A. auriculiformis × A. mangium) from Vietnam. Forests. 2020; 11(7):717. https://doi.org/10.3390/f11070717
Chicago/Turabian StyleDuc Viet, Dang, Te Ma, Tetsuya Inagaki, Nguyen Tu Kim, Nghiem Quynh Chi, and Satoru Tsuchikawa. 2020. "Physical and Mechanical Properties of Fast Growing Polyploid Acacia Hybrids (A. auriculiformis × A. mangium) from Vietnam" Forests 11, no. 7: 717. https://doi.org/10.3390/f11070717
APA StyleDuc Viet, D., Ma, T., Inagaki, T., Tu Kim, N., Quynh Chi, N., & Tsuchikawa, S. (2020). Physical and Mechanical Properties of Fast Growing Polyploid Acacia Hybrids (A. auriculiformis × A. mangium) from Vietnam. Forests, 11(7), 717. https://doi.org/10.3390/f11070717