Norway Spruce Survival Rate in Two Forested Landscapes, 1975–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crookston, N.L.; Rehfeldt, G.E.; Dixon, G.E.; Weiskittel, A.R. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For. Ecol. Manag. 2010, 260, 1198–1211. [Google Scholar] [CrossRef]
- Bugmann, H. Forests in a greenhouse atmosphere Predicting the unpredictable? In Forests and Global Change; Coomes, D.A., Burslem, D.F.R.P., Simonson, W.D., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 359–380. [Google Scholar] [CrossRef]
- Pabst, R.J.; Goslin, M.N.; Garman, S.L.; Spies, T.A. Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range. For. Ecol. Manag. 2008, 256, 958–972. [Google Scholar] [CrossRef]
- Fontes, L.; Bontemps, J.; Bugmann, H.; van Oijen, M.; Gracia, C.A.; Kramer, K.; Lindner, M.; Rotzer, T.; Skovsgaard, J.P. Models for supporting forest management in a changing environment. For. Syst. 2011, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Kimmins, J.P.; Welham, C.; Seely, B.; Meitner, M.; Rempel, R.; Sullivan, T. Science in forestry: Why does it sometimes disappoint or even fail us? For. Chron. 2005, 81, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Rennolls, K.; Tome, M.; Mcroberts, R.E.; Vanclay, J.K.; Lemay, V.; Guan, B.T.; Gertner, G.Z. Potential Contributions of Statistics and Modelling to Sustainable Forest Management: Review and Synthesis. In Sustainable Forestry: From Monitoring and Modelling to Knowledge Management & Policy Science; Reynolds, K.M., Thomson, A.J., Kohl, M., Shannon, M.A., Ray, D., Rennolls, K., Eds.; CABI Publishing: Boston, MA, USA, 2007; pp. 314–341. [Google Scholar] [CrossRef]
- Peng, C. Growth and yield models for uneven-aged stands: Past, present and future. For. Ecol. Manag. 2000, 132, 259–279. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Mladenoff, D.J.; Boyce, M.S. The changing relation of landscape patterns and jack pine budworm populations during an outbreak. Oikos 2000, 90, 417–430. [Google Scholar] [CrossRef]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.; Gillet, F.; Jonsson, A.M.; Merganicova, K.; Netherer, S.; Arpaci, A.; Bontemps, J.; Bugmann, H.; et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Model. 2011, 222, 903–924. [Google Scholar] [CrossRef] [Green Version]
- Waring, R.H.; Running, S.W. Forest EcosystemsAnalysis at Multiple Scales; Elsevier Academic Press: San Diego, CA, USA, 2007; Volume 63. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garciagonzalo, J.; Gardiner, B.; Gonzalezolabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Keane, R.E.; Austin, M.P.; Field, C.B.; Huth, A.; Lexer, M.J.; Peters, D.P.C.; Solomon, A.M.; Wyckoff, P.H. Tree mortality in gap models: Application to climate change. Clim. Chang. 2001, 51, 509–540. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L.; Golukov, A.S.; Ranson, K.J. Climate-induced mortality of spruce stands in Belarus. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Lischke, H.; Zimmermann, N.E.; Bolliger, J.; Rickebusch, S.; Löffler, T.J. TreeMig: A forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol. Model. 2006, 199, 409–420. [Google Scholar] [CrossRef]
- Rasche, L.; Fahse, L.; Bugmann, H. Key factors affecting the future provision of tree-based forest ecosystem goods and services. Clim. Chang. 2013, 118, 579–593. [Google Scholar] [CrossRef]
- Perera, A.H.; Sturtevant, B.R.; Buse, L.J. Simulation Modeling of Forest Landscape Disturbances; Springer International Publishing: Geneva, Switzerland, 2015; pp. 1–321. [Google Scholar] [CrossRef]
- Hülsmann, L.; Bugmann, H.; Brang, P. How to predict tree death from inventory data lessons from a systematic assessment of European tree mortality models. Can. J. For. Res. 2017, 47, 890–900. [Google Scholar] [CrossRef] [Green Version]
- Spiecker, H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—Temperate zone. J. Environ. Manag. 2003, 67, 55–65. [Google Scholar] [CrossRef]
- Schlyter, P.; Stjernquist, I.; Bärring, L.; Jönsson, A.M.; Nilsson, C. Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce. Clim. Res. 2006, 31, 75–84. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Nabuurs, G.J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Gardiner, B.; Blennow, K. Destructive Storms in European Forests: Past and Forthcoming Impacts. 2010. Available online: http://www.cabdirect.org/abstracts/20113168903.html (accessed on 24 February 2015).
- Möykkynen, T.; Miina, J. Optimizing the management of a butt-rotted Picea abies stand infected by Heterobasidion annosum from the previous rotation. Scand. J. For. Res. 2002, 17, 47–52. [Google Scholar] [CrossRef]
- Nikolov, C.; Konôpka, B.; Kajba, M.; Galko, J.; Kunca, A.; Janský, L. Post-disaster Forest Management and Bark Beetle Outbreak in Tatra National Park, Slovakia. Mt. Res. Dev. 2014, 34, 326–335. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc. Ecol. 2017, 32, 1485–1498. [Google Scholar] [CrossRef] [Green Version]
- Krisans, O.; Saleniece, R.; Rust, S.; Elferts, D.; Kapostins, R.; Jansons, A.; Matisons, R. Effect of bark-stripping on mechanical stability of Norway Spruce. Forests 2020, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H.; Nöjd, P.; Mielikäinen, K. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees Struct. Funct. 2001, 15, 177–185. [Google Scholar] [CrossRef]
- Solberg, S. Summer drought: A driver for crown condition and mortality of Norway spruce in Norway. For. Pathol. 2004, 34, 93–104. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [Green Version]
- Libiete, Z.; Zalitis, P. Determining the growth potential for even-aged stands of Norway spruce (Picea abies (L.) karst.). Balt. For. 2007, 13, 2–9. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Bergstedt, J.; Milberg, P. The impact of logging intensity on field-layer vegetation in swedish boreal forests. For. Ecol. Manag. 2001, 154, 105–115. [Google Scholar] [CrossRef]
- Fridman, J.; Ståhl, G. A three-step approach for modelling tree mortality in Swedish forests. Scand. J. For. Res. 2001, 16, 455–466. [Google Scholar] [CrossRef]
- Hefti, R.; Schmid-Haas, P.; Buhler, U. Zustand Und Gefahrdung Der Davoser Waldungen; MAB-Schlussberichte, 23; Bundesamt fur Umweltschutz: Bern, Switzerland, 1986. [Google Scholar]
- Orazio, C.; Montoya, R.C.; Régolini, M.; Borges, J.G.; Garcia-Gonzalo, J.; Barreiro, S.; Botequim, B.; Marques, S.; Sedmák, R.; Smrecek, R.; et al. Decision support tools and strategies to simulate forest landscape evolutions integrating forest owner behaviour: A review from the case studies of the European project, INTEGRAL. Sustainability 2017, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T.; Laiho, O.; Lähde, E. Continuous cover management reduces wind damage. For. Ecol. Manag. 2016, 372, 120–127. [Google Scholar] [CrossRef]
- Zeng, H.; Peltola, H.; Talkkari, A.; Strandman, H.; Venalainen, A.; Wang, K.; Kellomaki, S. Simulations of the influence of clear-cutting on the risk of wind damage on a regional scale over a 20-year period. Can. J. For. Res. 2006, 36, 2247–2258. [Google Scholar] [CrossRef]
- Blennow, K.; Sallnäs, O. WINDA—A system of models for assessing the probability of wind damage to forest stands within a landscape. Ecol. Model. 2004, 175, 87–99. [Google Scholar] [CrossRef]
- Baders, E.; Jansons, A.; Matisons, R.; Elferts, D.; Desaine, I. Landscape diversity for reduced risk of insect damage: A case study of spruce bud scale in Latvia. Forests 2018, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Hanewinkel, M.; Breidenbach, J.; Neeff, T.; Hanewinkel, E.K.M. Seventy-seven years of natural disturbances in a mountain forest area—The influence of storm, snow, and insect damage analysed with a long-term time series. Can. J. For. Res. 2008, 38, 2249–2261. [Google Scholar] [CrossRef]
- Miezite, O.; Okmanis, M.; Indriksons, A. Assessment of sanitary conditions in stands of Norway spruce (Picea abies Karst.) damaged by spruce bud scale (Physokermes piceae Schrnk.). iForest 2013, 6, 73–78. [Google Scholar] [CrossRef]
- Bengtsson, A.; Nilsson, C. Extreme value modelling of storm damage in Swedish forests. Nat. Hazards Earth Syst. Sci. 2007, 7, 515–521. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Hummel, S.; Albrecht, A. Assessing natural hazards in forestry for risk management: A review. Eur. J. For. Res. 2011, 130, 329–351. [Google Scholar] [CrossRef]
- Vitali, V.; Büntgen, U.; Bauhus, J. Silver Fir and Douglas Fir Are More Tolerant to Extreme Droughts than Norway Spruce in South-Western Germany; The Physical Science Basis. Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Lazdina, D.T.; Stals, S.C. Experimental forest regeneration after selected initially highly productive, but later withered spruce stand on peat land (Oxalidosa turf. mel.). In Forest and Earth Entrails Resources: Research and Sustainable Utilization—New Products and Technologies (ResProd); National Research Programme, 2014–2018, Proceedings; Latvian State Institute of Wood Chemistry: Rīga, Latvia, 2018; pp. 37–43. [Google Scholar]
- Zeng, H.; Pukkala, T.; Peltola, H. The use of heuristic optimization in risk management of wind damage in forest planning. For. Ecol. Manag. 2007, 241, 189–199. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Väisänen, H.; Ikonen, V.P. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 1999, 29, 647–661. [Google Scholar] [CrossRef]
- Terauds, A.; Brumelis, G.; Nikodemus, O. Seventy-year changes in tree species composition and tree ages in state-owned forests in Latvia. Scand. J. For. Res. 2011, 26, 446–456. [Google Scholar] [CrossRef]
- Piri, T. The spreading of the S type of Heterobasidion annosum from Norway spruce stumps to the subsequent tree stand. Eur. J. For. Pathol. 1996, 26, 193–204. [Google Scholar] [CrossRef]
- Arhipova, N.; Gaitnieks, T.; Donis, J.; Stenlid, J.; Vasaitis, R. Butt rot incidence, causal fungi, and related yield loss in Picea abies stands in Latvia. Can. J. For. Res. 2011, 41, 2337–2345. [Google Scholar] [CrossRef]
- Bušs, K. Mežu Ekosistēmu Daudzveidība Un Stabilitāte [Forest Ecosystem Diversity and Stability]; Mežsaimniecība un mežrūpniecība: Rīga, Latvija, 1984. [Google Scholar]
- Zālītis, P. Mežkopības Priekšnosacījumi [Prerequisites Offorest Silviculture]; SIA et Cetera: Rīga, Latvija, 2006. [Google Scholar]
- Thorsen, B.J.; Helles, F. Optimal stand management with endogenous risk of sudden destruction. For. Ecol. Manag. 1998, 108, 287–299. [Google Scholar] [CrossRef]
- Katrevičs, J.; Džeriņa, B.; Neimane, U.; Desaine, I.; Bigača, Z.J.Ā. Production and profitability of low density Norway spruce (Picea abies (L.) Karst.) plantation at 50 years of age: Case study from eastern Latvia. Agron. Res. 2018, 16. [Google Scholar] [CrossRef]
- Donis, J.; Saleniece, R.; Krisans, O.; Dubrovskis, E.; Kitenberga, M.; Jansons, A. A Financial Assessment of Windstorm Risks for Scots Pine Stands in Hemiboreal Forests. Forests 2020, 11, 566. [Google Scholar] [CrossRef]
- Samariks, V.; Krisans, O.; Donis, J.; Silamikele, I.; Katrevics, J. Cost-Benefit Analysis of Measures to Reduce Windstorm Impact in Pure Norway Spruce (Picea abies L. Karst.) Stands in Latvia. Forests 2020, 11, 576. [Google Scholar] [CrossRef]
- Subramanian, N.; Bergh, J.; Johansson, U.; Nilsson, U.; Sallnäs, O. Adaptation of forest management regimes in southern Sweden to increased risks associated with climate change. Forests 2016, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Eerikäinen, K.; Valkonen, S.; Saksa, T. Ingrowth, survival and height growth of small trees in uneven-aged picea abies stands in southern Finland. For. Ecosyst. 2014, 1, 5. [Google Scholar] [CrossRef] [Green Version]
Landscape | Latitude | Longitude | Species | Area, ha | Area, % | Mean Annual Precipitation, mm | Mean Annual Temperature, °C |
---|---|---|---|---|---|---|---|
Vane | 56°53′ N | 22°38′ E | Picea abies ((L.) Karst.) | 1307.1 | 37% | 650 | 6.2 |
Pinus sylvestris L. | 784.2 | 22% | |||||
Non-forest | 764.8 | 22% | |||||
Betula pendula Roth | 513.7 | 15% | |||||
Populus tremula L. | 101.0 | 3% | |||||
Alnus glutinosa (L.) Gaertn. | 9.9 | 0% | |||||
Alnus incana (L.) | 9.9 | 0% | |||||
Total area | 3490.5 | ||||||
Dviete | 56°08′ N | 26°15′ E | Pinus sylvestris L. | 3086.3 | 43% | 713 | 5.9 |
Betula pendula Roth | 1534.7 | 21% | |||||
Picea abies (L.) Karst.) | 1404.0 | 20% | |||||
Non-forest | 709.4 | 10% | |||||
Alnus glutinosa (L.) Gaertn. | 420.9 | 6% | |||||
Populus tremula L. | 26.1 | 0% | |||||
Alnus incana (L.) | 8.0 | 0% | |||||
Total area | 7189.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bāders, E.; Krišāns, O.; Donis, J.; Elferts, D.; Jaunslaviete, I.; Jansons, Ā. Norway Spruce Survival Rate in Two Forested Landscapes, 1975–2016. Forests 2020, 11, 745. https://doi.org/10.3390/f11070745
Bāders E, Krišāns O, Donis J, Elferts D, Jaunslaviete I, Jansons Ā. Norway Spruce Survival Rate in Two Forested Landscapes, 1975–2016. Forests. 2020; 11(7):745. https://doi.org/10.3390/f11070745
Chicago/Turabian StyleBāders, Endijs, Oskars Krišāns, Jānis Donis, Didzis Elferts, Ieva Jaunslaviete, and Āris Jansons. 2020. "Norway Spruce Survival Rate in Two Forested Landscapes, 1975–2016" Forests 11, no. 7: 745. https://doi.org/10.3390/f11070745
APA StyleBāders, E., Krišāns, O., Donis, J., Elferts, D., Jaunslaviete, I., & Jansons, Ā. (2020). Norway Spruce Survival Rate in Two Forested Landscapes, 1975–2016. Forests, 11(7), 745. https://doi.org/10.3390/f11070745