Form Factors of an Economically Valuable Sal Tree (Shorea robusta) of Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Sampling Protocol
2.3. Volume Estimation
2.4. Form Factor Calculation
2.5. Form Factor Models and Diameter-Height Function
3. Results
3.1. Overview of Measured Trees
3.2. Form Factors for Stem and Wood with Diameter >10 cm, over and under Bark
3.3. Relationship of the Form Factors with DBH and Height of Tree
3.4. Form Factors Estimation
3.5. Comparison of Form Factor
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baral, S.; Gautam, A.P.; Harald, V.H. Ecological and economical sustainability assessment of community forest management in Nepal: A reality check. J. Sustain. For. 2018, 37, 820–841. [Google Scholar] [CrossRef]
- Poudel, N.R.; Fuwa, N.; Otsuka, K. The Impacts of a Community Forestry Program on Forest Conditions, Management Intensity and Revenue Generation in the Dang District of Nepal; Discussion Paper: 13–24; National Graduate Institute for Policy Studies: Tokyo, Japan, 2014. [Google Scholar]
- Adekunle, V.; Nair, K.; Srivastava, A.; Singh, N. Models and form factors for stand volume estimation in natural forest ecosystems: A case study of Katarniaghat Wildlife Sanctuary (KGWS), Bahraich District, India. J. Res. 2013, 24, 217–226. [Google Scholar] [CrossRef]
- Cháidez, J.N. Allometric equations and expansion factors for tropical dry forest trees of Eastern Sinaloa, Mexico. Trop. Subtrop. Agroecosyst. 2009, 10, 45–52. [Google Scholar]
- Tenzin, J.; Wangchuk, T.; Hasenauer, H. Form factor functions for nine commercial tree species in Bhutan. Forestry 2017, 90, 359–366. [Google Scholar] [CrossRef]
- Hasenauer, H.; Petritsch, R.; Zhao, M.; Boisvenue, C.; Running, S.W. Reconciling satellite with ground data to estimate forest productivity at national scales. Ecol. Manag. 2012, 276, 196–208. [Google Scholar] [CrossRef]
- Brooks, J.R.; Jiang, L.; Ozçelik, R. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. For. Ecol. Manag. 2008, 256, 147–151. [Google Scholar] [CrossRef]
- Neumann, M.; Moreno, A.; Mues, V.; Härkönen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Achten, W.M.; Thivolle-Cazat, A.; Bronisz, K.; et al. Comparison of carbon estimation methods for European forests. For. Ecol. Manag. 2016, 361, 397–420. [Google Scholar] [CrossRef]
- Colgan, M.S.; Swemmer, T.; Asner, G.P. Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees 2014, 28, 91–102. [Google Scholar] [CrossRef]
- Ikonen, V.-P.; Kellomäki, S.; Väisänen, H.; Peltola, H. Modelling the distribution of diameter growth along the stem in Scots pine. Trees 2006, 20, 391–402. [Google Scholar] [CrossRef]
- West, P.W. Tree and Forest Measurement; Springer: Berlin, Germany, 2009; pp. 1–190. [Google Scholar]
- Basnyat, B. Commodifying the community forestry: A case from scientific forestry practices in Western Hills of Nepal. J. For. Res. 2020, 25, 69–75. [Google Scholar] [CrossRef]
- Baral, S.; Khadka, C.; Vacik, H. Using MCA tools for evaluating community-managed forests from a green economy perspective: Lessons from Nepal. Int. J. Sustain. Dev. World Ecol. 2019, 26, 672–683. [Google Scholar] [CrossRef]
- FenFIT. Federation of Forest-Based Industry and Trade, Nepal. 2015. Available online: https://www.fenfitnepal.org.np/en_US/ (accessed on 29 April 2020).
- Poudel, M.; Kafle, G.; Khanal, K.; Dhungana, S.; Oli, B.N.; Dhakal, A.; Acharya, U. Linking land use and forestry transition with depopulation in rural Nepal. Banko Janakari 2018, 27, 130–143. [Google Scholar] [CrossRef]
- Haack, B.N.; Rafter, A. Urban growth analysis and modeling in the Kathmandu Valley, Nepal. Habitat Int. 2006, 30, 1056–1065. [Google Scholar] [CrossRef]
- Department of Forests (DoF). Community Forest Inventory Guideline; Ministry of Forests and Soil Conservation: Kathmandu, Nepal, 2004.
- Sharma, E.R.; Pukkala, T. Volume Equations and Biomass Prediction of Forest trees of Nepal. Surv. Stat. Div. 1990, 47, 18. [Google Scholar]
- Subedi, T. Volume models for Sal (Shorea robusta Gaertn.) in far-western Terai of Nepal. Banko Janakari 2017, 27, 3–11. [Google Scholar] [CrossRef]
- Gautam, S.; Thapa, H. Volume equation for Populus deltoides plantation in western Terai of Nepal. Banko Janakari 2007, 17, 70–73. [Google Scholar] [CrossRef]
- Thakur, R.B. Determination of Form Factor of Major Tree Species of Parbat District (Sal, Chilaune, Katus, Salla & Miscellaneous Species); Livelihoods & Forestry Program: Parbat, Nepal, 2006. [Google Scholar]
- Shrestha, H.L.; Kafle, M.R.; Khanal, K.; Mandal, R.A.; Khanal, K. Developing local volume tables for three important tree species in Nawalparasi and Kapilvastu districts. Banko Janakari 2018, 27, 84–91. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Rautiainen, O. Growth Dynamics and Management of Shorea Robusta Forests in Southern Nepal. Ph.D. Thesis, Faculty of Forestry, University of Joensuu, Joensuu, Finland, 1999; 42p. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Baral, S.; Gaire, N.P.; Aryal, S.; Pandey, M.; Rayamajhi, S.; Vacik, H. Growth Ring Measurements of Shorea robusta Reveal Responses to Climatic Variation. Forests 2019, 10, 466. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, K.P.; Mandal, T.N. Variation in carbon stock in litterfall, fine root and soil in Sal (Shorea robusta Gaertn.) forests of eastern Nepal. Our Nat. 2018, 16, 68–73. [Google Scholar] [CrossRef] [Green Version]
- André, F.; Jonard, M.; Ponette, Q. Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. Sci. Total Environ. 2010, 408, 2285–2294. [Google Scholar]
- Turner, J.; Lambert, M.J. Nutrient cycling in age sequences of two Eucalyptus plantation species. Ecol. Manag. 2008, 255, 1701–1712. [Google Scholar] [CrossRef]
Variable | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|---|
DBH | 10.8 | 34.2 | 48.7 | 48.7 | 61.8 | 112.7 |
Height | 9.6 | 21.0 | 25.1 | 24.2 | 28.1 | 36.5 |
Crown length | 3.0 | 11.8 | 15.1 | 14.6 | 17.5 | 24.7 |
Crown width | 2.0 | 5.8 | 8.5 | 8.4 | 10.9 | 17.3 |
Variables | Form Factor | |||||
---|---|---|---|---|---|---|
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | |
Stem over bark | 0.133 | 0.307 | 0.342 | 0.336 | 0.380 | 0.483 |
Stem under bark | 0.098 | 0.242 | 0.281 | 0.271 | 0.305 | 0.435 |
Wood over bark | 0.133 | 0.372 | 0.409 | 0.407 | 0.453 | 0.620 |
Wood under bark | 0.098 | 0.300 | 0.335 | 0.322 | 0.365 | 0.475 |
Form Factor | Diameter Class | |||
---|---|---|---|---|
10–30 cm DBH | 30–50 cm DBH | 50–70 cm DBH | >70 cm DBH | |
Stem over bark | 0.312 ± 0.0785 | 0.354 ± 0.0415 | 0.350 ± 0.0550 | 0.299 ± 0.0468 |
Stem under bark | 0.225 ± 0.0644 | 0.285 ± 0.0367 | 0.291 ± 0.0476 | 0.260 ± 0.0435 |
Wood over bark | 0.332 ± 0.0975 | 0.430 ± 0.0666 | 0.436 ± 0.0527 | 0.394 ± 0.0655 |
Wood under bark | 0.240 ± 0.0790 | 0.340 ± 0.0531 | 0.353 ± 0.0438 | 0.332 ± 0.0526 |
Number observations | n = 21 | n = 30 | n = 35 | n = 14 |
Average tree height (m) | 16.6 | 23.9 | 26.4 | 30.5 |
Form Factor | Diameter at Breast Height (DBH) | Tree Height (H) | ||||
---|---|---|---|---|---|---|
Function | R2 | p | Function | R2 | p | |
Stem over bark | FF = 0.2302 + 4.927 × 10−3 DBH − 4.753 × 10−5 DBH2 | 0.230 | <0.001 | FF = 0.03069 + 0.02806 H − 0.000604 H2 | 0.205 | <0.001 |
Stem under bark | FF = 0.1366 + 5.404 × 10−3 DBH − 4.573 × 10−5 DBH2 | 0.327 | <0.001 | FF = −0.02295 + 0.02437 H − 0.000479 H2 | 0.250 | <0.001 |
Wood over bark | FF = 0.1818 + 8.999 × 10−3 DBH − 7.579 × 10−5 DBH2 | 0.416 | <0.001 | FF = −0.0877 + 0.04166 H − 0.000832 H2 | 0.310 | <0.001 |
Wood under bark | FF = 0.1018 + 8.325 × 10−3 DBH − 6.573 × 10−5 DBH2 | 0.518 | <0.001 | FF = −0.1058 + 0.03385 H − 0.000633 H2 | 0.357 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baral, S.; Neumann, M.; Basnyat, B.; Gauli, K.; Gautam, S.; Bhandari, S.K.; Vacik, H. Form Factors of an Economically Valuable Sal Tree (Shorea robusta) of Nepal. Forests 2020, 11, 754. https://doi.org/10.3390/f11070754
Baral S, Neumann M, Basnyat B, Gauli K, Gautam S, Bhandari SK, Vacik H. Form Factors of an Economically Valuable Sal Tree (Shorea robusta) of Nepal. Forests. 2020; 11(7):754. https://doi.org/10.3390/f11070754
Chicago/Turabian StyleBaral, Sony, Mathias Neumann, Bijendra Basnyat, Kalyan Gauli, Sishir Gautam, Shes Kanta Bhandari, and Harald Vacik. 2020. "Form Factors of an Economically Valuable Sal Tree (Shorea robusta) of Nepal" Forests 11, no. 7: 754. https://doi.org/10.3390/f11070754
APA StyleBaral, S., Neumann, M., Basnyat, B., Gauli, K., Gautam, S., Bhandari, S. K., & Vacik, H. (2020). Form Factors of an Economically Valuable Sal Tree (Shorea robusta) of Nepal. Forests, 11(7), 754. https://doi.org/10.3390/f11070754