Costs and Carbon Sequestration Assessment for REDD+ in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description and Processing
3. Results and Discussion
3.1. Land Use Changes
3.2. Carbon Emissions and Net Present Values
3.3. Opportunity Costs
3.4. Sensitivity Analysis
4. Policy Implications
4.1. The Contribution of Carbon Sequestration from Plantations Is Limited on the Opportunity Costs of Avoided Deforestation
4.2. The Opportunity Cost of Avoided Deforestation in Southeast Asia Will Increase Due to Future Oil Palm Expansion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Sagar, R.; Li, G.Y.; Singh, J.S.; Wan, S. Carbon fluxes and species diversity in grazed and fenced typical steppe grassland of Inner Mongolia, China. J. Plant. Ecol. 2019, 12, 10–22. [Google Scholar] [CrossRef]
- Wang, X.; Fu, S.; Li, J.; Zou, X.; Zhang, W.; Xia, H.; Lin, Y.; Tian, Q.; Zhou, L. Forest soil profile inversion and mixing change the vertical stratification of soil CO2 concentration without altering soil surface CO2 flux. Forests 2019, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ding, J. Global change sharpens the double-edged sword effect of aquatic alien plants in China and beyond. Front. Plant. Sci. 2019, 10, 787. [Google Scholar] [CrossRef] [Green Version]
- Edenhofer, O.; Pichs-Madryga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K. Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 511–597. [Google Scholar]
- Solomon, S. IPCC: Climate Change The Physical Science Basis; AGU Fall Meeting Abstracts; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Meiyappan, P.; Jain, A.K.; House, J.L. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 2015, 29, 1524–1548. [Google Scholar] [CrossRef]
- Houghton, R.A. The emissions of carbon from deforestation and degradation in the tropics: Past trends and future potential. Carbon Manag. 2013, 4, 539–546. [Google Scholar] [CrossRef]
- Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Baker, T.R.; Ojo, L.O.; Comiskey, J.A. Increasing carbon storage in intact African tropical forests. Nature 2009, 457, 1003–1006. [Google Scholar] [CrossRef]
- Malhi, Y.; Aragão, L.E.O.C.; Metcalfe, D.B.; Paiva, R.; Quesada, C.A.; Almeida, S.; Costa, A.C.L.D. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Chang. Biol. 2009, 15, 1255–1274. [Google Scholar] [CrossRef]
- Houghton, R.A. Emissions (and sinks) of carbon from land-use change. In Report to the World Resources Institute from the Woods Hole Research Center; Woods Hole Research Center: Falmouth, MA, USA, 2003. [Google Scholar]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; Defries, R.S.; Chansen, M.C.; Quere, C.L.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Xia, J.; Wan, S. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188, 187–198. [Google Scholar] [CrossRef]
- Liang, J.; Xia, J.; Liu, L.; Wan, S. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. J. Plant Ecol. 2013, 6, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Graham, V.; Laurance, S.G.; Grech, A.; McGregor, A.; Venter, O. A comparative assessment of the financial costs and carbon benefits of REDD+ strategies in Southeast Asia. Environ. Res. Lett. 2016, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bond, I.; Grieg-Gran, M.; Wertz-Kanounnikoff, S.; Hazlewood, P.; Wunder, S.; Angelsen, A. Incentives to Sustain Forest Ecosystem Services: A Review and Lessons for REDD; Natural Resource Issues No. 16; International Institute for Environment and Development: London, UK; CIFOR: Bogor, Indonesia; World Resources Institute: Washington, WA, USA, 2009. [Google Scholar]
- Gregersen, H.; El Lakany, H.; Karsenty, A.; White, A. Does the Opportunity Cost Approach Indicate the Real Cost of REDD+? Rights and Realities of Paying for REDD+. Available online: http://rightsandresources.org/wp-content/exported-pdf/reddbriefdraftjune28.pdf (accessed on 12 January 2018).
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, G.P.; Andrew, R.M.; Canadell, J.G.; Fuss, S.; Jackson, R.B.; Korsbakken, J.I.; Nakicenovic, N. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Chang. 2017, 7, 118–122. [Google Scholar] [CrossRef]
- REDD Monitor. The Warsaw Framework for REDD Plus: The Decision on Summary of Information on Safeguards. Available online: http://rightsandresources.org/wp-content/exported-pdf/reddbriefdraftjune28.pdf (accessed on 12 January 2020).
- Pelletier, J.; Gélinas, N.; Skutsch, M. The place of community forest management in the REDD+ landscape. Forests 2016, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Chhatre, A.; Lakhanpal, S.; Larson, A.M.; Nelson, F.; Ojha, H.; Rao, J. Social safeguards and co-benefits in REDD+: A review of the adjacent possible. Current opinion in environmental. Sustainability 2012, 4, 654–660. [Google Scholar]
- Lamade, E.; Bouillet, J. Carbon storage and global change: The role of oil palm. Ocl-ol. Corps Gras Lipides 2005, 12, 154–160. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Environment Malaysia. Malaysia Second National Communication to the UNFCCC. 2011, p. 154. Available online: https://www.tl.undp.org/content/timor_leste/en/home/all-projects/Second-National-Communication-UNFCCC.html (accessed on 1 July 2020).
- Busch, J.; Godoy, F.; Turner, W.R.; Harvey, C.A. Biodiversity co-benefits of reducing emissions from deforestation under alternative reference levels and levels of finance. Conserv. Lett. 2011, 4, 101–115. [Google Scholar] [CrossRef]
- Pana, A.C.; Gheyssens, J. Baseline choice and performance implications for REDD. J. Environ. Econ. Policy 2016, 5, 79–124. [Google Scholar] [CrossRef] [Green Version]
- Verbury, P.H.; Kok, K.; Pontius, R.G. Veldkamp. Modeling Land-Use and Land-Cover Change; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135. [Google Scholar]
- Knowlton, J.L.; Zayas, E.E.M.; Ripley, A.J.; Valenzuela-Cordova, B.; Collado-Torres, R. Mammal diversity in oil palm plantations and forest fragments in a highly modified landscape in southern Mexico. Front. For. Glob. Chang. 2019, 2, 67. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T.; Moran, D.; Schmidt, S.; Wood, R. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Chang. Hum. Policy Dimens. 2019, 56, 1–10. [Google Scholar] [CrossRef]
- Sharma, B.P.; Cho, S.-H. Using portfolio theory in spatial targeting of forest carbon payments: An effective strategy to address spatiotemporal variation in land use opportunity costs? Can. J. For. Res. 2020, 50, 170–184. [Google Scholar] [CrossRef]
- Sheng, J.; Hong, Q.; Han, X. Neoliberal conservation in REDD+: The roles of market power and incentive designs. Land Use Policy 2019, 89, 104215. [Google Scholar] [CrossRef]
- Cho, S.-H.; Sharma, B.P. Optimal spatial budget distribution of forest carbon payments that balances the returns and risks associated with conservation costs. Environ. Dev. Sustain. 2019. [Google Scholar] [CrossRef]
- Ji, Y.; Ranjan, R. A global climate-economy model including the REDD option. J. Environ. Manag. 2019, 247, 342–355. [Google Scholar] [CrossRef]
- Smith, K. Discounting, Risk and Uncertainty in Economic Appraisals of Climate Change Policy: Comparing Nordhaus, Garnaut and Stern; Commissioned Work. Garnaut Climate Change Review; Department of Climate Change and Energy Efficiency: Canberra, Australia, 2011. [Google Scholar]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Garnaut Review. Weighing the Costs and Benefits of Climate Change Action; Garnaut Climate Change Review; Garnaut Review: Canberra, Australia, 2011. [Google Scholar]
- FAO (Food and Agriculture Organization). State of the World’s Forests 2009; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- Miettinen, J.; Shi, C.; Liew, S.C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Chang. Biol. 2011, 17, 61–70. [Google Scholar] [CrossRef]
- Suwarno, A.; Hein, L.; Sumarga, E. Governance, decentralisation and deforestation: The case of central Kalimantan province, Indonesia. Q. J. Int. Agric. 2015, 54, 77–100. [Google Scholar]
- Broich, M.; Hansen, M.C.; Potapov, P.; Adusei, B.; Lindquist, E.J.; Stehman, S.V. Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 277–291. [Google Scholar] [CrossRef]
- Kanninen, M.; Murdiyarso, D.; Seymour, F.; Angelsen, A.; Wunder, S.; German, L. Do Trees Grow on Money? The Implications of Deforestation Research for Policies to Promote REDD; Center for International Forestry Research: Bogor, Indonesia, 2007; pp. 1–61. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction, 2nd ed.; Springer: Berlin, Germany, 1993. [Google Scholar]
- FAO. State of the World’s Forests 2001; Food and Agriculture Organization: Rome, Italy, 2001. [Google Scholar]
- Yamamoto, Y.; Takeuchi, K. Estimating the break-even price for forest protection in Central Kalimantan. Environ. Econ. Policy Stud. 2012, 14, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Puyravaud, J.P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- IPCC. Agriculture, forestry and other land use. In IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Kanagawa, Japan, 2006. [Google Scholar]
- Ramankutty, N.; Gibbs, H.K.; Achard, F.; DeFries, R.S.; Foley, J.A.; Houghton, R.A. Challenges to estimating carbon emissions from tropical deforestation. Glob. Chang. Biol. 2007, 13, 51–66. [Google Scholar] [CrossRef]
- Rahajoe, J. Managing Ecosystems Services in Asia: A Critical Review of Experiences. Final Report (ARCP2009–06CMY-Braimoh) for APN Project. Japan, 2009. Available online: https://www.apn-gcr.org/resources/items/show/1557 (accessed on 1 July 2020).
- Wauters, J.; Coudert, S.; Grallien, E.; Jonard, M.; Ponette, Q. Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). For. Ecol. Manag. 2008, 255, 2347–2361. [Google Scholar] [CrossRef]
- Khasanah, N.; Noordwijk, M.V.; Ningsih, H. Aboveground carbon stocks in oil palm plantations and the threshold for carbon-neutral vegetation conversion on mineral soils. Congent Environ. Sci. 2015, 1, 1119964. [Google Scholar] [CrossRef]
- Jorgensen, S.E. Fundamental of Ecological Modellnig; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Grieg-Gran, M. The Cost of Avoiding Deforestation: The Report Prepared for the Stern Review of the Economics of Climate Change; International Institute for Environment and Development: London, UK, 2008. [Google Scholar]
- Wilson, K.A.; Pressey, R.L.; Newton, A.C.; Burgman, M.A.; Possingham, H.P.; Weston, C.J. Measuring and incorporating vulnerability into conservation planning. Environ. Manag. 2005, 35, 527–543. [Google Scholar] [CrossRef] [PubMed]
- Feintrenie, L.; Chong, W.; Levang, P. Why do farmers prefer oil palm? Lessons learnt from Bungo district, Indonesia. Small Scale. For. 2010, 9, 379–396. [Google Scholar] [CrossRef]
- Investing in Oil Palm: An Analysis of Independent Smallholder Oil Palm Adoption in Sumatra, Indonesia. Available online: http://www.worldagroforestry.org (accessed on 5 July 2012).
- Silva, F.F.; Perrin, R.K.; Fulginiti, L.E. The opportunity cost of preserving the Brazilian Amazon forest. Agric. Econ. 2019, 50, 219–227. [Google Scholar] [CrossRef]
- Brofeldt, S.; Theilade, I.; Burgess, N.D.; Danielsen, F.; Poulsen, M.K.; Adrian, T.; Bang, T.N.; Budiman, A.; Jensen, J.; Jensen, A.E.; et al. Community monitoring of carbon stocks for REDD+: Does accuracy and cost change over time? Forests 2014, 5, 1834–1854. [Google Scholar] [CrossRef] [Green Version]
- Thuy, P.T.; Moeliono, M.; Locatelli, B.; Brockhaus, M.; Gregorio, M.D.; Mardiah, S. Integration of adaptation and mitigation in climate change and forest policies in Indonesia and Vietnam. Forests 2014, 5, 2016–2036. [Google Scholar] [CrossRef] [Green Version]
- Fujisaki, T.; Hyakumura, K.; Scheyvens, H.; Cadman, T. Does REDD+ ensure sectoral coordination and stakeholder participation? A comparative analysis of REDD+ national governance structures in countries of Asia-Pacific region. Forests 2016, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Sarker, P.K.; Giessen, L. The forest policies of Asean and Montréal process: Comparing highly and weakly formalized regional regimes. Forests 2019, 10, 929. [Google Scholar] [CrossRef] [Green Version]
- Carlson, K.M.; Curran, L.M.; Asner, G.P.; Pittman, A.M.; Trigg, S.N.; Adeney, J.M. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat. Clim. Chang. 2013, 3, 283–287. [Google Scholar] [CrossRef]
- Neudert, R.; Olschofsky, K.; Kübler, D.; Prill, L.; Köhl, M.; Wätzold, F. Opportunity costs of conserving a dry tropical forest under REDD+: The case of the spiny dry forest in southwestern Madagascar. For. Policy Econ. 2018, 95, 102–114. [Google Scholar] [CrossRef]
- Gronau, S.; Winter, E.; Grote, U. Papyrus, forest resources and rural livelihoods: A village computable general equilibrium analysis from Northern Zambia. Nat. Resour. 2018, 9, 268–296. [Google Scholar] [CrossRef] [Green Version]
- West, T.A.P.; Grogan, K.A.; Swisher, M.E.; Caviglia-Harris, J.L.; Sills, E.; Harris, D.; Roberts, D.; Putz, F.E. A hybrid optimization-agent-based model of REDD+ payments to households on an old deforestation frontier in the Brazilian Amazon. Environ. Model. Softw. 2018, 100, 159–174. [Google Scholar] [CrossRef]
- Ickowitz, A.; Sills, E.; de Sassi, C. Estimating smallholder opportunity costs of REDD+: A pantropical analysis from households to carbon and back. World Dev. 2017, 95, 15–26. [Google Scholar] [CrossRef]
- Nakajima, T.; Shiraishi, N.; Kanomata, H.; Matsumoto, M. Development and analysis of an opportunity cost simulation accounting for the spatial distributions of local forest management. Ann. For. Res. 2017, 60, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Merger, E.; Dutschke, M.; Verchot, L. Options for REDD+ voluntary certification to ensure net GHG benefits, poverty alleviation, sustainable management of forests and biodiversity conservation. Forests 2011, 2, 550–577. [Google Scholar] [CrossRef] [Green Version]
- Mulyani, M.; Jepson, P. Does the ‘One map initiative’ represent a new path for forest mapping in Indonesia? Assessing the contribution of the REDD+ initiative in effecting forest governance reform. Forests 2017, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Sunderlin, W.D.; De Sassi, C.; Ekaputri, A.D.; Light, M.; Pratama, C.D. REDD+ contribution to well-being and income is marginal: The perspective of local stakeholders. Forests 2017, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- IMF Primary Commodity Prices. Available online: http://www.imf.org/external/np/res/commod/index.asp (accessed on 19 April 2020).
- Butler, R.; Koh, L.P.; Ghazoul, J. REDD in the red: Palm oil could undermine carbon payment schemes. Conserv. Lett. 2009, 2, 67–73. [Google Scholar] [CrossRef]
- The Cost of Avoiding Deforestation Update of the Report prepared for the Stern Review of the Economics of Climate Change. Available online: https://digital.library.unt.edu/ark:/67531/metadc13712/ (accessed on 18 April 2020).
- The Costs of REDD: Lessons from Amazonas. Available online: http://www.iied.org (accessed on 19 April 2020).
- Venter, O.; Meijaard, E.; Possingham, H.P.; Dennis, R.; Sheil, D.; Wich, S.A.; Hovani, L.; Wilson, K.A. Carbon payments as a safeguard for threatened tropical mammals. Conserv. Lett. 2009, 2, 123–129. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Liu, Q.; Song, M.; Chen, J.; Zhang, C.; Meng, X.; Zhao, J.; Lu, H. Costs and Carbon Sequestration Assessment for REDD+ in Indonesia. Forests 2020, 11, 770. https://doi.org/10.3390/f11070770
Liu G, Liu Q, Song M, Chen J, Zhang C, Meng X, Zhao J, Lu H. Costs and Carbon Sequestration Assessment for REDD+ in Indonesia. Forests. 2020; 11(7):770. https://doi.org/10.3390/f11070770
Chicago/Turabian StyleLiu, Guifang, Qing Liu, Mengxiao Song, Junsheng Chen, Chuanrong Zhang, Xing Meng, Jincai Zhao, and Heli Lu. 2020. "Costs and Carbon Sequestration Assessment for REDD+ in Indonesia" Forests 11, no. 7: 770. https://doi.org/10.3390/f11070770
APA StyleLiu, G., Liu, Q., Song, M., Chen, J., Zhang, C., Meng, X., Zhao, J., & Lu, H. (2020). Costs and Carbon Sequestration Assessment for REDD+ in Indonesia. Forests, 11(7), 770. https://doi.org/10.3390/f11070770