Macrobiological Degradation of Esterified Wood with Sorbitol and Citric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Treatments
2.2. Termite Exposure
2.3. Exposure to the Marine Environment
3. Results
3.1. Resistance against Subterranean Termites
3.2. Resistance against Wood Borers in the Marine Environment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cragg, S.M.; Beckham, G.T.; Bruce, N.C.; Bugg, T.D.H.; Distel, D.L.; Dupree, P.; Etxabe, A.G.; Goodell, B.S.; Jellison, J.; McGeehan, J.E.; et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 2015, 29, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Duarte, S.; Nobre, T.; Borges, P.A.V.; Nunes, L. Symbiotic flagellate protists as cryptic drivers of adaptation and invasiveness of the subterranean termite Reticulitermes grassei Clément. Ecol. Evol. 2018, 8, 5242–5253. [Google Scholar] [CrossRef] [PubMed]
- BS EN 335:2013. Durability of Wood and Wood-Based Products Use Classes: Definitions, Application to Solid Wood and Wood-Based Products; European Standards; European Committee for Standardization CEN: Brussels, Switzerland, 2013. [Google Scholar]
- Emmerich, L.; Militz, H.; Brischke, C. Long-term performance of DMDHEU-treated wood exposed in ground above ground and marine. In Proceedings of the IRG Annual Meeting, IRG 18-40825, Honey Harbour, ON, Canada, 17–22 May 1987. [Google Scholar]
- Clement, J.L.; Bagneres, A.G.; Uva, P.; Wilfert, L.; Quintana, A.; Reinhard, J.; Dronnet, S. Biosystematics of Reticulitermes termites in Europe: Morphological, chemical and molecular data. Insectes Sociaux 2001, 48, 202–215. [Google Scholar] [CrossRef]
- Jenkins, T.M.; Dean, R.E.; Verkerk, R.; Forschler, B.T. Phylogenetic analyses of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy, and introduction dynamics. Mol. Phylogenet. Evol. 2001, 20, 286–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, L. Termite infestation risk in Portuguese historic buildings. In Proceedings of the Wood Science for Conservation of Cultural Heritage, Braga, Portugal, 5–7 November 2008; Firenze University Press: Florence, Italy, 2010; pp. 117–122. [Google Scholar]
- Evans, T.A.; Forschler, B.T.; Grace, J.K. Biology of Invasive Termites: A Worldwide Review. Annu. Rev. Entomol. 2013, 58, 455–474. [Google Scholar] [CrossRef] [Green Version]
- Austin, J.W.; Szalanski, A.L.; Myles, T.G.; Borges, P.A.V.; Nunes, L.; Scheffrahn, R.H. First Record of Reticulitermes flavipes (Isoptera: Rhinotermitidae) from Terceira Island (Azores, Portugal). Fla. Entomol. 2012, 95, 196–198. [Google Scholar] [CrossRef] [Green Version]
- Nobre, T.; Nunes, L.; Bignell, D.E. Tunneling patterns of the subterranean termite species Reticulitermes grassei (Isoptera: Rhinotermitidae). In Proceedings of the IRG 38th Annual Meeting of the International Research Group on Wood Protection, IRG/WP 07-10619, Jackson Lake, WY, USA, 20–24 May 2007; p. 12. [Google Scholar]
- Crossman, M.; Simm, J. Manual on the Use of Timber in Coastal and River Engineering; Thomas Telford Ltd.: London, UK, 2004. [Google Scholar]
- Treu, A.; Zimmer, K.; Brischke, C.; Larnoy, E.; Gobakken, L.R.; Aloui, F.; Cragg, S.M.; Flaete, P.O.; Humar, M.; Westin, M.; et al. Durability and Protection of Timber Structures in Marine Environments in Europe: An Overview. Bioresources 2019, 14, 10161–10184. [Google Scholar] [CrossRef]
- Westin, M.; Larsson Brelid, P.; Nilsson, T.; Rapp, A.O.; Dickerson, J.P.; Lande, S.; Cragg, S.M. Marine Borer Resistance of Acetylated and Furfurylated Wood—Results from up to 16 years of Field Exposure. In Proceedings of the IRG Annual Meeting, IRG/WP 16-40756, Lisbon, Portugal, 15–19 May 2016. [Google Scholar]
- Klüppel, A.; Mai, C.; Militz, H.; Cragg, S.M. Performance of some wood modification treatments against marine borers. In Proceedings of the IRG Annual Meeting, IRG/WP 14-40668, Queenstown, New Zealand, 8–12 May 2011. [Google Scholar]
- Santhakumaran, L.N.; Sneli, J.A. Natural resistance of different species of timber to marine borer attack in the Trondheimsfjord (Western Norway). In Proceedings of the IRG Annual Meeting, Proceedings IRG/WP 435, Peebles, UK, 18–22 September 1978. [Google Scholar]
- Borges, L.M.S.; Merckelbach, L.M.; Cragg, S.M. Biogeography of Wood-Boring Crustaceans (Isopoda: Limnoriidae) Established in European Coastal Waters. PLoS ONE 2014, 9, e109593. [Google Scholar] [CrossRef] [Green Version]
- Borges, L.M.S.; Merckelbach, L.M.; Sampaio, Í.; Cragg, S.M. Diversity, environmental requirements, and biogeography of bivalve wood-borers (Teredinidae) in European coastal waters. Front. Zool. 2014, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Sandberg, D.; Kutnar, A. A Review of Wood Modification across Europe as Part of COST FP1407. In Proceedings of the 9th European Conference on Wood Modification, Arnhem, The Netherlands, 17–18 September 2018. [Google Scholar]
- Bateson, R.G. Sorbitol in wood treatment: Further experiments on shrinkage and swelling behavior. Chem. Trade J. Chem. Eng. 1938, 102, 26–27. [Google Scholar]
- Larnøy, E.; Karaca, A.; Gobakken, L.R.; Hill, C.A.S. Polyesterification of wood using sorbitol and citric acid under aqueous conditions. Int. Wood Prod. J. 2018, 9, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Essoua, G.G.E.; Blanchet, P.; Landry, V.; Beauregard, R. Pine Wood Treated with a Citric Acid and Glycerol Mixture: Biomaterial Performance Improved by a Bio-byproduct. Bioresources 2016, 11, 3049–3072. [Google Scholar] [CrossRef] [Green Version]
- L’Hostis, C.; Thevenon, M.F.; Fredon, E.; Gerardin, P. Improvement of beech wood properties by in situ formation of polyesters of citric and tartaric acid in combination with glycerol. Holzforschung 2018, 72, 291–299. [Google Scholar] [CrossRef]
- Berube, M.A.; Schorr, D.; Ball, R.J.; Landry, V.; Blanchet, P. Determination of In Situ Esterification Parameters of Citric Acid-Glycerol Based Polymers for Wood Impregnation. J. Polym. Environ. 2018, 26, 970–979. [Google Scholar] [CrossRef]
- Guo, W.J.; Xiao, Z.F.; Wentzel, M.; Emmerich, L.; Xie, Y.J.; Militz, H. Modification of Scots Pine with Activated Glucose and Citric Acid: Physical and Mechanical Properties. Bioresources 2019, 14, 3445–3458. [Google Scholar] [CrossRef]
- Amirou, S.; Pizzi, A.; Delmotte, L. Citric acid as waterproofing additive in butt joints linear wood welding. Eur. J. Wood Wood Prod. 2017, 75, 651–654. [Google Scholar] [CrossRef]
- Vukusic, S.B.; Katovic, D.; Schramm, C.; Trajkovic, J.; Sefc, B. Polycarboxylic acids as non-formaldehyde anti-swelling agents for wood. Holzforschung 2006, 60, 439–444. [Google Scholar] [CrossRef]
- Ou, R.X.; Wang, Q.W.; Wolcott, M.P.; Sui, S.J.; Xie, Y.J. Rheological Behavior and Mechanical Properties of Wood Flour/High Density Polyethylene Blends: Effects of Esterification of Wood with Citric Acid. Polym. Compos. 2016, 37, 553–560. [Google Scholar] [CrossRef]
- EN 117:2012. Wood Preservatives—Determination of Toxic Values against Reticulitermes Species (European Termites) (Laboratory Method); European Committee for Standardization CEN: Brussels, Switzerland, 2012. [Google Scholar]
- BS EN 275:1992. Wood Preservatives—Determination of the Protective Effectiveness against Marine Borers; European Committee for Standardization CEN: Brussels, Switzerland, 1992. [Google Scholar]
- Leitch, M.A. Hardness Values for Thermally Treated Black Ash. Wood Fiber Sci. 2009, 41, 440–446. [Google Scholar]
- Candelier, K.; Thevenon, M.F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, M. Control of wood thermal treatment and its effects on decay resistance: A review. Ann. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Franke, T.; Volkmer, T. Treatment of European beech with a new wood fire retardant agent based on in situ deposition of calcium oxalate. Holzforschung 2019, 73, 1047–1050. [Google Scholar] [CrossRef]
- Rust, M.K.; Smith, J.L. Toxicity and Repellency of Components in Formulated Termiticides Against Western Subterranean Termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. 1993, 86, 1131–1135. [Google Scholar] [CrossRef]
- Bongers, F.; Kutnik, M.; Paulmier, I.; Alexander, J.; Militz, H. Termite and insect resistance of acetylated wood. In Proceedings of the IRG Annual Meeting, IRG/WP 15-40703, Viña del Mar, Chile, 10–14 May 2015. [Google Scholar]
- Imamura, Y.; Nishimoto, K. Resistance of Acetylated Wood to Attack by Subterranean Termites. Wood Res. 1986, 72, 37–44. [Google Scholar]
- Duarte, S.; Duarte, M.; Borges, P.A.V.; Nunes, L. Dietary-driven variation effects on the symbiotic flagellate protist communities of the subterranean termite Reticulitermes grassei Clément. J. Appl. Entomol. 2017, 141, 300–307. [Google Scholar] [CrossRef]
- Alfredsen, G.; Larnøy, E.; Beck, G.; Bjørnstad, J.; Gobakken, L.R.; Hill, C.A.S.; Treu, A. A summary of decay performance with citric acid and sorbitol modification. In Proceedings of the IRG Annual Meeting, IRG/WP 20-40898, Online Webinar, 10–11 June 2020. [Google Scholar]
- Nobre, T.; Nunes, L.; Bignell, D.E. Tunnel geometry of the subterranean termite Reticulitermes grassei (Isoptera: Rhinotermitidae) in response to sand bulk density and the presence of food. Insect Sci. 2007, 14, 511–518. [Google Scholar] [CrossRef]
- Beck, G. Leachability and Decay Resistance of Wood Polyesterified with Sorbitol and Citric Acid. Forests 2020, 11, 650. [Google Scholar] [CrossRef]
- Lande, S.; Eikenes, M.; Westin, M. Chemistry and Ecotoxicology of Furfurylated Wood. Scand. J. Forest Res. 2004, 19, 14–21. [Google Scholar] [CrossRef]
- Westin, M.; Rapp, A.; Nilsson, T. Field test of resistance of modified wood to marine borers. Wood Mater. Sci. Eng. 2006, 1, 34–38. [Google Scholar] [CrossRef]
WPG Group | Wood Species | Average WPG (%) | SD | Type of Test |
---|---|---|---|---|
SCA WPG25% | Picea abies | 26.8 | 6.0 | Marine application |
SCA WPG25% | Pinus sylvestris sapwood | 25.1 | 0.8 | |
SCA WPG34% | P. sylvestris sapwood | 33.8 | 3.6 | |
SCA WPG38% | P. abies | 37.9 | 10.6 | |
SCA WPG50% | P. abies | 56.7 | 17.7 | |
SCA WPG50% | P. sylvestris sapwood | 52.9 | 1.2 | |
SCA WPG70% | P. abies | 74.4 | 7.4 | |
SCA WPG70% | P. sylvestris sapwood | 70.2 | 3.5 | |
SCA WPG84% | P. sylvestris sapwood | 83.9 | 18.0 | |
SCA WPG90% | P. abies | 92.9 | 12.9 | |
SCA WPG90% | P. sylvestris sapwood | 88.9 | 13.6 | |
SCA WPG25% | P. sylvestris sapwood | 25.1 | 3.0 | Termite exposure |
SCA WPG70% | P. sylvestris sapwood | 71.6 | 3.9 | |
SCA WPG100% | P. sylvestris sapwood | 100.4 | 4.1 |
Short Name | Treatment | Wood Species | Test Site | Number of Samples per Treatment Level |
---|---|---|---|---|
SCA | Modification with citric acid and sorbitol, different concentrations (see Table 1) | P. abies, P. sylvestris (sapwood) | Drøbak, Moss harbor | 3 |
Acetylation | Modification with acetic anhydride | Pinus radiata | Moss harbor | 6 |
CA oxalate | Precipitation of calcium oxalate CaOx in the wood and the reaction by-product potassium chloride (KCl). The treatment is initiated by the reactants potassium oxalate monohydrate (KOx) and calcium chloride hexahydrate (CaCl2) | P. sylvestris (sapwood) | Drøbak, Moss harbor | 3 |
Thermal modification | Thermal modification of ash wood | Fraxinus excelsior | Drøbak, Moss harbor | 3 and 6 |
Spruce | Untreated | P. abies | Drøbak, Moss harbor | 3 and 6 |
Scots pine sapwood | Untreated | P. abies | Drøbak, Moss harbor | 6 |
Sessile oak | Untreated | Quercus petraea (Matt.) | Drøbak, Moss harbor | 3 and 6 |
Sipo | Untreated | Entandrophragma utile (Dawe & Sprague) | Moss harbor | 6 |
Beech | Untreated | Fagus sylvatica L. | Moss harbor | 6 |
Radiata pine | Untreated | P. radiata | Moss harbor | 6 |
Aspen | Untreated | Populus tremula L. | Moss harbor | 6 |
Treatment | Test Method | Final MC (%) | SR (%) |
---|---|---|---|
SCA100% | no-choice test | 36.7 ± 6.7 | 0.0 |
SCA70% | 36.1 ± 5.1 | 0.0 | |
SCA25% | 40.1 ± 2.6 | 0.0 | |
untreated Pinus pinaster | 50.0 ± 12.0 | 65.8 ± 9.8 | |
untreated P. sylvestris | 106.2 ± 25.2 | 44.5 ± 15.7 | |
SCA100% | two-choice test | 45.1 ± 7.7 | 58.0 ± 14.7 |
untreated control (100) | 90.6 ± 15.4 | ||
SCA70% | 47.4 ± 8.0 | 67.7 ± 10.9 | |
untreated control (70) | 109.4 ± 44.4 | ||
SCA25% | 61.4 ± 23.9 | 58.2 ± 24.8 | |
untreated control (25) | 97.6 ± 39.7 | ||
untreated P. sylvestris | 87.0 ± 31.4 | 64.5 ± 5.3 |
Treatment | Wood Species | Test Station | N | Attack Rating (0–4) | SD |
---|---|---|---|---|---|
Ca oxalate | P. sylvestris sapwood | Drøbak | 3 | 2 | 0 |
SCA WPG25% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG34% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG50% | P. abies | 2 | 0 | ||
SCA WPG50% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG70% | P. abies | 3 | 0 | 0 | |
SCA WPG70% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG84% | P. sylvestris sapwood | 4 | 0 | 0 | |
SCA WPG90% | P. abies | 2 | 0 | 0 | |
SCA WPG90% | P. sylvestris sapwood | 3 | 0 | 0 | |
thermal modification | F. excelsior | 3 | 2.6 | 2.3 | |
untreated | P. abies | 3 | 2.6 | 0.6 | |
untreated | P. sylvestris sapwood | 10 | 2.1 | 0.3 | |
untreated | P. tremula | 1 | 2 | ||
untreated | Q. petraea | 2 | 1 | 0 | |
Acetylation | P. radiata | Moss harbor | 6 | 0 | 0 |
Ca oxalate | P. sylvestris sapwood | 3 | 2.7 | 0.6 | |
SCA WPG25% | P. abies | 2 | 0 | 0 | |
SCA WPG25% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG34% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG38% | P. abies | 2 | 0 | 0 | |
SCA WPG50% | P. abies | 2 | 0 | 0 | |
SCA WPG50% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG70% | P. abies | 2 | 0 | 0 | |
SCA WPG70% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG84% | P. sylvestris sapwood | 3 | 0 | 0 | |
SCA WPG90% | P. abies | 2 | 0 | 0 | |
SCA WPG90% | P. sylvestris sapwood | 3 | 0 | 0 | |
thermal modification | F. excelsior | 6 | 0.2 | 0.4 | |
untreated | E. utile | 6 | 0.2 | 0.4 | |
untreated | F. sylvatica | 6 | 2.3 | 0.5 | |
untreated | P. abies | 6 | 3 | 0 | |
untreated | P. radiata | 6 | 4 | 0 | |
untreated | P. sylvestris sapwood | 6 | 3 | 0.6 | |
untreated | P. tremula | 6 | 3.3 | 0.8 | |
untreated | Q. petraea | 6 | 1.5 | 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treu, A.; Nunes, L.; Larnøy, E. Macrobiological Degradation of Esterified Wood with Sorbitol and Citric Acid. Forests 2020, 11, 776. https://doi.org/10.3390/f11070776
Treu A, Nunes L, Larnøy E. Macrobiological Degradation of Esterified Wood with Sorbitol and Citric Acid. Forests. 2020; 11(7):776. https://doi.org/10.3390/f11070776
Chicago/Turabian StyleTreu, Andreas, Lina Nunes, and Erik Larnøy. 2020. "Macrobiological Degradation of Esterified Wood with Sorbitol and Citric Acid" Forests 11, no. 7: 776. https://doi.org/10.3390/f11070776
APA StyleTreu, A., Nunes, L., & Larnøy, E. (2020). Macrobiological Degradation of Esterified Wood with Sorbitol and Citric Acid. Forests, 11(7), 776. https://doi.org/10.3390/f11070776