Application of the InVEST Model to Quantify the Water Yield of North Korean Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Tools
2.2. Model Input Parameters
2.2.1. Average Annual Precipitation
2.2.2. Average Annual Reference Evapotranspiration
2.2.3. Root Restricting Layer Depth
2.2.4. Plant Available Water Content (PAWC)
2.2.5. Land Use and Land Cover (LULC)
2.2.6. Watershed
2.2.7. Biophysical Parameters
2.2.8. Z Parameter
3. Results
3.1. Annual Water Yield in the North Korean Forest
3.2. Monthly and Regional Water Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, C.S.; Shin, Y.K. Payment for Environmental Services on Watershed Conservation Forest; KREI: Singapore, 2007. [Google Scholar]
- Lee, M.K. Opportunity Cost for Increasing Watershed Conservation Function of Forest—A Case Study of Sueo Dam Catchment Area in Mt. Baekun Jeollanamdo. Master’s Thesis, Seoul National University, Seoul, Korea, 2007. [Google Scholar]
- Rehabilitation North Korea’s Forests. 2019. Available online: https://www.newsecuritybeat.org/2019/10/rehabilitating-north-koreas-forests-struggle-balance-conservation-livelihoods/ (accessed on 28 November 2019).
- Cho, H.W.; Song, C.H.; Jeon, S.W.; Kim, J.S.; Lee, W.K. Evaluation of the spatial distribution of water yield service based on precipitation and population. J. Korean Assoc. Geogr. Inf. 2016, 19, 1–15. [Google Scholar] [CrossRef]
- Song, C.H.; Lee, W.K.; Choi, H.A.; Jeon, S.W.; Kim, J.U.; Kim, J.S.; Kim, J.T. Application of InVEST water yield model for assessing forest water provisioning ecosystem service. J. Korean Assoc. Geogr. Inf. Stud. 2015, 18, 120–134. [Google Scholar] [CrossRef]
- Kim, G.S.; Lim, C.H.; Kim, S.J.; Lee, J.Y.; Son, Y.W.; Lee, W.K. Effect of national-scale afforestation on forest water supply and soil loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.K.; Ojha, C.S.P.; Mijic, A.; Buytaert, W.; Pathak, S.; Garg, R.D.; Shukla, S. Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin. Hydrol. Earth Syst. Sci. 2018, 22, 4745–4770. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Gu, J.; Zhang, N. Evaluation on water source conservation capacity of West Liaohe River Basin based on InVEST model. In Proceedings of the 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), Xiangtan, China, 10–11 August 2019; pp. 443–447. [Google Scholar]
- Zhang, C.; Li, W.; Zhang, B.; Liu, M. Water yield of Xitiaoxi river basin based on InVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar]
- Yang, X.; Chen, R.; Meadows, M.; Ji, G.; Xu, J. Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply 2020, in press. [Google Scholar] [CrossRef]
- Yin, G.; Wang, X.; Zhnag, X.; Fu, Y.; Hao, F.; Hu, Q. InVEST model-based estimation of water yield in North China and its sensitivities to climate variables. Water 2020, 12, 1692. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Scordo, F.; Lavender, T.M.; Seitz, C.; Perillo, V.L.; Rusak, J.A.; Piccolo, M.C.; Perillo, G.M.E. Modeling water yield: Assessing the role of site and region-specific attributes in determining model performance of the InVEST seasonal water yield model. Water 2018, 10, 1496. [Google Scholar] [CrossRef] [Green Version]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Geography of North Korea. Available online: https://en.wikipedia.org/wiki/Geography_of_North_Korea (accessed on 12 July 2020).
- Natural Capital Project Website. Available online: https://naturalcapitalproject.stanford.edu/ (accessed on 5 May 2018).
- Worldclim Website. Available online: https://www.worldclim.org (accessed on 12 June 2018).
- Global Aridity and PET Database. Available online: https://cgiarcsi.community/data/global-aridity-and-pet-database/ (accessed on 3 August 2018).
- Kim, R.H.; Kim, H.W.; Lee, J.H.; Lee, S.H. Estimation of Land Cover and Vegetation Change in North Korea Using Satellite Data; KRIHS: Yeongi-gun, Korea, 2017; Volume 90, pp. 117–128. [Google Scholar]
- Cha, S.Y.; Seo, D.J.; Park, C.H. Monitoring vegetation phenology using MODIS in northern plateau region. Korean J. Remote Sens. 2009, 5, 399–409. [Google Scholar]
- Yeom, J.M.; Han, K.S.; Lee, C.S.; Park, Y.Y.; Kim, Y.S. A detection of vegetation variation over North Korea using SPOT/VEGETATION NDVI. J. Korean Assoc. Geogr. Inf. Stud. 2008, 11, 28–37. [Google Scholar]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Gregoire, J. Detecting vegetation leaf water content using reflectance in the optical domain. RSE 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote sensing of leaf water content in the near infrared. RSE 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Jeong, S.G.; Park, J.H.; Park, C.H.; Lee, D.K. Terrace fields classification in North Korea using MODIS multi-temporal image data. J. Korean Environ. Res. Technol. 2016, 19, 73–83. [Google Scholar]
- USGS Earthexplorer Home. Available online: https://earthexplorer.usgs.gov (accessed on 25 June 2018).
- Jeong, S.G.; Park, C.H.; Kim, S.W. Land cover classification of the Korean Peninsula using linear spectral mixture analysis of MODIS multi-temporal data. Korean J. Remote Sens. 2006, 22, 553–563. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Pan, X.Z.; Uchida, S.; Liang, Y.; Hirano, A.; Sun, B. Discriminating different landuse types by using multitemporal NDXI in a rice planting area. Int. J. Remote Sens. 2010, 31, 585–596. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. RSE 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.6.0 User’s Guide. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/InVEST_3.6.0_Documentation.pdf (accessed on 24 June 2020).
- Trading Economics. Available online: https://tradingeconomics.com (accessed on 3 December 2019).
- Lim, C.H.; Kim, D.M.; Shin, Y.S.; Lee, W.K. Assessment of drought severity on cropland in Korea Peninsula using normalized precipitation evapotranspiration index (NPEI). JCCR 2015, 6, 223–231. [Google Scholar] [CrossRef]
Spectral Indices | Equation |
---|---|
NDVI (Normalized Difference Vegetation Index) | NDVI = (NIR − Red)/(NIR + Red) |
NDSI (Normalized Difference Snow Index) | NDSI = (SWIR − NIR)/(SWIR + NIR) |
NDWI (Normalized Difference Water Index) | NDWI = (RED − SWIR)/(RED + SWIR) |
Lucode | Description | Kc | LULC | Root_Depth | LULC_Veg |
---|---|---|---|---|---|
1 | Built-up | 0.5 | 1 | 700 | 0 |
2 | Rice paddies | 0.7 | 71 | 2000 | 1 |
3 | Fields | 0.6 | 82 | 700 | 1 |
4 | Terraced fields | 0.5 | 39 | 500 | 0 |
5 | Unstocked forest | 0.85 | 42 | 1500 | 1 |
6 | Forest | 1 | 54 | 7000 | 1 |
7 | Plateau vegetation | 0.85 | 51 | 1700 | 1 |
8 | Water bodies | 1 | 89 | 1000 | 0 |
Administration | Pixels | Water Yield (t) |
---|---|---|
Pyongyang | 8915 | 6804,561 |
Nampo | 1074 | 758,972 |
Kaesung | 6167 | 5,657,589 |
Hwanghaebuk-do | 57,245 | 46,239,243 |
Hwanghaenam-do | 30,238 | 22,081,433 |
Pyunganbuk-do | 97,677 | 64,532,206 |
Pyungannam-do | 98,703 | 69,192,194 |
Kangwon-do | 129,361 | 108,519,183 |
Jagang-do | 229,949 | 129,904,600 |
Yanggang-do | 212,206 | 95,361,861 |
Hamgyongbuk-do | 203,288 | 78,494,901 |
Hamgyongnam-do | 237,802 | 132,598,377 |
TOTAL | 760,145,120 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-w.; Jung, Y.-y. Application of the InVEST Model to Quantify the Water Yield of North Korean Forests. Forests 2020, 11, 804. https://doi.org/10.3390/f11080804
Kim S-w, Jung Y-y. Application of the InVEST Model to Quantify the Water Yield of North Korean Forests. Forests. 2020; 11(8):804. https://doi.org/10.3390/f11080804
Chicago/Turabian StyleKim, Sang-wook, and Yoon-young Jung. 2020. "Application of the InVEST Model to Quantify the Water Yield of North Korean Forests" Forests 11, no. 8: 804. https://doi.org/10.3390/f11080804
APA StyleKim, S. -w., & Jung, Y. -y. (2020). Application of the InVEST Model to Quantify the Water Yield of North Korean Forests. Forests, 11(8), 804. https://doi.org/10.3390/f11080804