Estimating Land Use and Land Cover Change in North Central Georgia: Can Remote Sensing Observations Augment Traditional Forest Inventory Data?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LULC Change Observations
2.2.1. FIA Observations
2.2.2. ICE Observations
2.2.3. TimeSync Observations
2.2.4. Thematic Detail
2.3. Statistical Estimators
2.3.1. Status
2.3.2. Net Change
2.3.3. Transitional Change
2.3.4. Moving Average
2.4. Alternative Estimators
2.5. Computational Issues
2.6. Outline of Analyses
3. Results
3.1. Agreement between Observations at Plot Level
3.2. Estimates of LULC Status
3.2.1. FIA Annual Estimates
3.2.2. Considering Remotely Sensed Observations
3.3. Change Estimates
3.3.1. Net Change
3.3.2. Transitional Change
3.4. Enhancing Detectability of Significant Change through Post-Stratification
3.5. Compilation of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Land Use | FIA | TimeSync | ICE |
---|---|---|---|
Forest | 1 Timberland | Forest | 110 Forest |
2 Other forest | |||
Agriculture | 10 Agriculture | Agriculture | 310 Farmland |
11 Crop | Row crop | 320 Agricultural woody cropland | |
12 Pasture | Orchard/tree Farm/vineyard | ||
13 Idle farmland | 330 Windbreak/shelterbelt | ||
14 Orchard | Rangeland/pasture | 500 Rangeland | |
15 Christmas tree | |||
16 Maintained wildlife openings | |||
17 Windbreak/shelterbelt | |||
20 Rangeland | |||
Developed | 30 Developed | Developed Mining | 410 Cultural |
31 Cultural | 420 Right-of-way | ||
32 Right-of-way | 430 Recreation | ||
33 Recreation | 440 Mines/quarries/gravel pits | ||
34 Mining | |||
Other non-forest | 40 Other non-forest | Other | 120 Wetland/riparian |
41 Non-veg | Non-forest wetland | 121 Wetland/riparian | |
42 Wetland | 130 Non-forest chaparral | ||
43 Beach | 210 Non-census water | ||
44 Chaparral | 220 Census water | ||
91 Census water | 323 Windbreak/shelterbelt | ||
92 Non-census water | 900 Other non-vegetated | ||
No data | 99 Non-sampled | 999 Uninterpretable |
Land Cover | FIA | TimeSync | ICE |
---|---|---|---|
Tree | 01 Treeland | Trees | 110 Tree—live |
120 Tree—standing dead | |||
150 Down and dead woody debris | |||
Shrub and | 02 Shrubland | Shrubs | 130 Shrub |
Other vegetation | 03 Grassland | Grass/forbs/herbs | 140 Other vegetation |
04 Non-vascular vegetation | |||
05 Mixed vegetation | |||
06 Agricultural vegetation | |||
07 Developed vegetated | |||
Barren and | 08 Barren | Barren | 210 Barren |
Impervious | 09 Developed | Impervious | 220 Impervious |
Water | 10 Water | Snow/ice | 310 Water |
Water | 320 Ice and snow | ||
No data | 99 Non-sampled | 999 Uninterpretable |
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Bechtold, W.A.; Patterson, P.L. (Eds.) The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures; Gen. Tech. Rep. SRS-80; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2005; p. 85.
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- LaBau, V.J.; Bones, J.T.; Kingsley, N.P.; Lund, H.G.; Smith, W.B. A history of the forest survey in the United States: 1830–2004; FS-877; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2007; p. 82.
- Gillespie, A.J.R. Rationale for a national annual forest inventory program. J. For. 1999, 97, 16–20. [Google Scholar]
- Oswalt, S.N.; Smith, W.B.; Miles, P.D.; Pugh, S.A. Forest Resources of the United States, 2017: A technical document supporting the Forest Service 2020 RPA Assessment; Gen. Tech. Rep. WO-97; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2019; p. 223.
- Nelson, M.D.; Riitters, K.H.; Coulston, J.W.; Domke, G.M.; Greenfield, E.J.; Langner, L.L.; Nowak, D.J.; O’Dea Claire, B.; Oswalt, S.N.; Reeves, M.C.; et al. Defining the United States land base: A technical document supporting the USDA Forest Service 2020 RPA assessment; Gen. Tech. Rep. NRS-191; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2020; p. 70.
- Schroeder, T.A.; Healey, S.P.; Moisen, G.G.; Frescino, T.S.; Cohen, W.B.; Huang, C.; Kennedy, R.E.; Yang, Z. Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data. Remote Sens. Environ. 2014, 154, 61–73. [Google Scholar] [CrossRef]
- Gray, A.N.; Cohen, W.B.; Yang, Z.; Pfaff, E. Integrating TimeSync disturbance detection and repeat forest inventory to predict carbon flux. Forests 2019, 10, 984. [Google Scholar] [CrossRef] [Green Version]
- Lister, A.; Lister, T.; Weber, T. Semi-automated sample-based forest degradation monitoring with photointerpretation of high-resolution imagery. Forests 2019, 10, 896. [Google Scholar] [CrossRef] [Green Version]
- Pengra, B.W.; Stehman, S.V.; Horton, J.A.; Dockter, D.J.; Schroeder, T.A.; Yang, Z.; Cohen, W.B.; Healey, S.P.; Loveland, T.R. Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. Rem. Sens. Envr. 2020, 238. [Google Scholar] [CrossRef]
- Webb, J.; Brewer, C.K.; Daniels, N.; Maderia, C.; Hamilton, R.; Finco, M.; Megown, K.A.; Lister, A.J. Image-based change estimation for land cover and land use monitoring. In Moving from Status to Trends: Forest Inventory and Analysis (FIA) Symposium 2012; Morin, R.S., Liknes, G.C., Eds.; Gen. Tech. Rep. NRS-P-105; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2012; pp. 46–53. [Google Scholar]
- Frescino, T.S.; Moisen, G.G.; Megown, K.A.; Nelson, V.J.; Freeman, E.A.; Patterson, P.L.; Finco, M.; Brewer, K.; Menlove, J. Nevada Photo-Based Inventory Pilot (NPIP) photo sampling procedures; Gen. Tech. Rep. RMRS-GTR-222; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2009; p. 30.
- Patterson, P.L. Photo-based estimators for the Nevada photo-based inventory; Res. Pap. RMRS-RP-92; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2012; p. 14.
- Cohen, W.B.; Yang, Z.Q.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync -- Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- Edwards, L. Environmental history of Georgia: Overview. New Georgia Encycl. 2018. Available online: https://www.georgiaencyclopedia.org/articles/geography-environment/environmental-history-georgia-overview (accessed on 20 July 2020).
- Hart, J.F. Land use change in a Piedmont county. Ann. Assoc. Am. Geogr. 1980, 70, 492–527. [Google Scholar] [CrossRef]
- Cowell, C.M. Historical change in vegetation and disturbance on the Georgia Piedmont. Am. Midl. Nat. 1998, 140, 78–89. [Google Scholar] [CrossRef]
- Miller, M.D. The impact of Atlanta’s urban sprawl on forest cover and fragmentation. Appl. Geogr. 2012, 34, 171–179. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Georgia’s Land: Its Use and Condition, 4th ed.; Natural Resources Conservation Service, Athens, GA, and Center for Survey Statistics and Methodology, Iowa State University: Ames, IA, USA, 2016.
- Sheffield, R.M.; Knight, H.A. Georgia’s Forests; Resour. Bull. SE-73; U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1984; p. 92.
- Brandeis, T.J.; McCollum, J.M.; Hartsell, A.J.; Brandeis, C.; Rose, A.K.; Oswalt, S.N.; Vogt, J.T.; Vega, H.M. Georgia’s Forests 2014; Resour. Bull. SRS-209; U.S. Department of Agriculture, Forest Service, Southern Research Station: Ashville, NC, USA, 2016; p. 78.
- Schleeweis, K.G.; Moisen, G.G.; Schroeder, T.A.; Toney, C.; Freeman, E.A.; Goward, S.N.; Huang, C.; Dungan, J.L. US National Maps Attributing Forest Change: 1986–2010. Forests 2020, 11, 653. [Google Scholar] [CrossRef]
- Reams, G.A.; Smith, W.D.; Hansen, M.H.; Bechtold, W.A.; Roesch, F.A.; Moisen, G.G. The forest inventory and analysis sampling frame. In The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures; Bechtold, W.A., Patterson, P.L., Eds.; Gen. Tech. Rep. SRS-80; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2005; pp. 11–26. [Google Scholar]
- NAIP Imagery. Available online: http://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/index (accessed on 6 March 2017).
- Van Deusen, P.C. Modeling trends with annual survey data. Can. J. For. Res. 1999, 29, 1824–1828. [Google Scholar] [CrossRef]
- Van Deusen, P.C. Alternatives to the moving average. In Proceedings of the 2nd annual Forest Inventory and Analysis Symposium, Salt Lake City, UT, USA, 17–18 October 2000; Reams, G.A., McRoberts, R.E., Van Deusen, P.C., Eds.; Gen. Tech. Rep. SRS-47; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2001; pp. 90–93. [Google Scholar]
- McConville, K.S.; Moisen, G.G.; Frescino, T.S. A Tutorial on Model-Assisted Estimation with Application to Forest Inventory. Forests 2020, 11, 244. [Google Scholar] [CrossRef] [Green Version]
- Horvitz, D.G.; Thompson, D.J. A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 1952, 47, 663–685. [Google Scholar] [CrossRef]
- Särndal, C.E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer: New York, NY, USA, 1992. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available online: https://www.R-project.org/ (accessed on 20 July 2020).
- McConville, K.S.; Tang, B.; Zhu, G.; Cheung, S.; Li, S. Mase: Model-Assisted Survey Estimators. 2018. Available online: https://cran.r-project.org/web/packages/mase (accessed on 1 June 2020).
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Czaplewski, R.L.; Patterson, P.L. Classification accuracy for stratification with remotely sensed data. For. Sci. 2003, 49, 402–408. [Google Scholar]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How similar are forest disturbance maps derived from different Landsat time series algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int. J. Remote Sens. 2002, 23, 1775–1798. [Google Scholar] [CrossRef]
- Turner, M.G.; Ruscher, C.L. Changes in landscape patterns in Georgia, USA. Landsc. Ecol. 1988, 1, 241–251. [Google Scholar] [CrossRef]
LU | LC | |||
---|---|---|---|---|
Percent Agreement | Timespan | Percent Agreement | Timespan | |
All | 82.4 | 2010, 2013, 2015 | 69.7 | 2013, 2015 |
FIA-ICE | 87.0 | 2010, 2013, 2015 | 75.8 | 2013, 2015 |
imeSync | 88.5 | 2000–2016, annually | 75.5 | 2013–2016, annually |
ICE-TimeSync | 87.4 | 2010, 2013, 2015 | 84.6 | 2010, 2013, 2015 |
Truth Predicted | 1 | 2 | Total |
---|---|---|---|
1 | |||
2 | |||
Total | n |
Source | Interpretable Proportion | Significant Net Change | Significant Transitional Change |
---|---|---|---|
FIA—panel | X | X | X X |
FIA—moving average | ✓ | X | X |
ICE | ✓ | ✓- | X |
TS—three-year interval | ✓ | ✓- | ✓ |
TS—five-year interval | ✓ | ✓ | ✓ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moisen, G.G.; McConville, K.S.; Schroeder, T.A.; Healey, S.P.; Finco, M.V.; Frescino, T.S. Estimating Land Use and Land Cover Change in North Central Georgia: Can Remote Sensing Observations Augment Traditional Forest Inventory Data? Forests 2020, 11, 856. https://doi.org/10.3390/f11080856
Moisen GG, McConville KS, Schroeder TA, Healey SP, Finco MV, Frescino TS. Estimating Land Use and Land Cover Change in North Central Georgia: Can Remote Sensing Observations Augment Traditional Forest Inventory Data? Forests. 2020; 11(8):856. https://doi.org/10.3390/f11080856
Chicago/Turabian StyleMoisen, Gretchen G., Kelly S. McConville, Todd A. Schroeder, Sean P. Healey, Mark V. Finco, and Tracey S. Frescino. 2020. "Estimating Land Use and Land Cover Change in North Central Georgia: Can Remote Sensing Observations Augment Traditional Forest Inventory Data?" Forests 11, no. 8: 856. https://doi.org/10.3390/f11080856
APA StyleMoisen, G. G., McConville, K. S., Schroeder, T. A., Healey, S. P., Finco, M. V., & Frescino, T. S. (2020). Estimating Land Use and Land Cover Change in North Central Georgia: Can Remote Sensing Observations Augment Traditional Forest Inventory Data? Forests, 11(8), 856. https://doi.org/10.3390/f11080856