Geographic Variations of the Wood Density and Fiber Dimensions of the Persian Oak Wood
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Sampling
2.2. Preparation of Samples
2.3. Physical Properties
2.4. Wood Fiber Properties
2.5. Statistical Analysis
3. Results
3.1. Oven-Dry Density
3.2. Volumetric Swelling
3.3. Fiber Length
3.4. Fiber Diameter
3.5. Cell Wall Thickness
3.6. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Willis, J.C.A. Dictionary of the Flowering Plants and Ferns, 6th ed.; CUP Archive; Cambridge University Press: Cambridge, UK, 1978; pp. 1–245. [Google Scholar]
- Panahi, P.; Jamzad, Z.; Pourmajidian, M.R.; Fallah, A.; Pourhashemi, M. Folliar Epidermis Morphology in Quercus (Subgenus Quercus, Section Quercus) in Iran. Acta Bot. Croat. 2012, 71, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Sagheb-Talebi, K.; Sajedi, T.; Yazdian, F. Forests of Iran. Research Institute of Forests and Rangelands. Forest Res. Div. 2004, 339, 28. [Google Scholar]
- McPherson, B.A.; Mori, S.R.; Wood, D.L.; Kelly, M.; Storer, A.J.; Svihra, P.; Standiford, R.B. Responses of Oaks and Tanoaks to the Sudden Oak Death Pathogen after 8y of Monitoring in Two Coastal California Forests. J. Environ. Econ. Manag. 2010, 259, 2248–2255. [Google Scholar] [CrossRef]
- Olfat, O.A.; Pourtahmasi, K. Anatomical characters in three oak species (Q. libani, Q. brantii and Q. infectoria) from Iranian Zagros Mountains. Aust. J. Basic Appl. Sci. 2010, 4, 3230–3237. [Google Scholar]
- Gava, J.L.; Goncalves, J.L.M. Soil attributes and wood quality for pulp production in plantations of Eucalyptus grandis clone. J. Agric. Sci. 2008, 65, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.; Brownlie, R.; Kimberley, M.; Beets, P. Impacts of forest harvesting related soil disturbance on end-of-rotation wood quality and quantity in a New Zealand Radiata Pine Forest. Silva Fenn. 2009, 43, 147–160. [Google Scholar] [CrossRef] [Green Version]
- De Micco, V.; Campelo, F.; De Luis, M.; Bräuning, A.; Grabner, M.; Battipaglia, G.; Cherubini, P. Intra-annual density fluctuations in tree rings: How, when, where, and why? IAWA J. 2010, 37, 232–259. [Google Scholar] [CrossRef]
- Rigatto, P.A.; Dedecek, R.A.; Monteiro de Matos, J.L. Influence of soil attributes on quality of Pinus taeda wood for cellulose Kraft production. Rev. Arvore. 2004, 28, 267–273. [Google Scholar] [CrossRef]
- Topaloglu, E.; Ay, N.; Altun, L.; Serdar, B. Effect of altitude and aspect on various wood properties of Oriental beech (Fagus orientalis Lipsky) wood. Turk. J. Agric. For. 2016, 40, 397–406. [Google Scholar] [CrossRef]
- Kiaei, M.; Moosavi, V.; Ebadi, S.E. Effects of altitude on density and biometric properties of hornbeam wood (Carpinus betulus). Forest Syst. 2019, 28, e011. [Google Scholar] [CrossRef] [Green Version]
- Sousa, V.B.; Louzada, J.L.; Pereira, H. Variation of ring width and wood density in two unmanaged stands of the Mediterranean Oak Quercus faginea. Forests 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Cairo, E.; Krause, C.; Deslauriers, A. Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Ann. For. Sci. 2015, 72, 77–87. [Google Scholar] [CrossRef]
- King, D.A.; Davies, S.J.; Tan, S.; Noor, N.S.M. The role of wood density and stem support costs in the growth and mortality of tropical trees. J. Ecol. 2016, 94, 670–680. [Google Scholar] [CrossRef]
- Kiaei, M.; Kord, B.; Chehalmardian, A.; Moya, R.; Farsi, M. Mineral content in relation to radial position, altitude, chemical properties and density of Persian ironwood. Maderas Cienc. Tecnol. 2015, 17, 657–672. [Google Scholar] [CrossRef] [Green Version]
- Govorcin, S.; Sinkovic, T.; Trajkovic, J. Some physical and mechanical properties of beech wood grown in Croatia. Wood. Res. Slovak. 2003, 48, 39–52. [Google Scholar]
- Barij, N.; Stokes, A.; Bogaard, T.; Van Beek, R. Does growing on a slope affect tree xylem structure and water relations? Tree Physiol. 2007, 27, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Noshiro, S.; Joshi, L.; Suzuki, M. Ecological wood anatomy of Alnus nepalensis (Betulaceae) in east Nepal. J. Plant Res. 1995, 108, 1–9. [Google Scholar] [CrossRef]
- Yılmaz, M.; Serdar, B.; Altun, L.; Usta, A. Relationship between environmental parameters and wood anatomy of Quercus pontica C. Koch (Fagaceae). Fresenius Environ. Bull. 2008, 17, 902–910. [Google Scholar]
- Liu, J.; Noshiro, S. Lack of latitudinal trends in wood anatomy of Dodonaea viscosa (Sapindaceae), a species with a worldwide distribution. Am. J. Bot. 2003, 90, 532–539. [Google Scholar] [CrossRef]
- Pande, P.K.; Chauhan, L.; Singh, M. Wood anatomical variations within the genus Castanopsis. J. Trop. For. Sci. 2005, 17, 366–371. [Google Scholar]
- Hernandez, R.E.; Restrepo, G. Natural variation in wood properties of Alnus acuminate H.B.K. grown in Colombia. Wood Fiber Sci. 1995, 27, 41–48. [Google Scholar]
- Kaygin, B.; Esnaf, S.; Aydemir, D. The effect of altitude difference on physical and mechanical properties of Scots Pine wood grown in Turkey-Sinop province. Drvna. Ind. 2016, 67, 393–397. [Google Scholar] [CrossRef]
- Berges, L.; Nepveu, G.; Franc, A. Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. For. Ecol. Manag. 2008, 567–579. [Google Scholar] [CrossRef]
- Bahmani, M.; Saeedi, S.; Humar, M.; Kool, F. Effect of tree diameter classes on the properties of Persian oak (Quercus brantii lindl.) wood. Wood Res. Slovak. 2018, 63, 755–762. [Google Scholar]
- Chaharmahal and Bakhtiari Meteorological Administration. Koohrang Synoptic Meteorological Station. Partly. 2020. Available online: http://www.chbmet.ir/st_koohrang.asp (accessed on 15 June 2020).
- International Organization for Standardization. ISO 13061-14. In Determination of Volumetric Shrinkage; International Organization for Standardization: Geneva, Switzerland, 2016; p. 5. [Google Scholar]
- Franklin, G.L. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 1945, 155, 51. [Google Scholar] [CrossRef]
- Zobel, B.J.; Van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: Berlin, Germany, 1989. [Google Scholar] [CrossRef]
- Preston, K.A.; Cornwell, W.K.; De Noyer, J.L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 2006, 170, 807–818. [Google Scholar] [CrossRef]
- Wagenführ, R.; Scheiber, C. Holzatlas. 2nd edition 720 p, 850 figs., 59 tab. Leipzig, VEB Fachbuchverlag. Cloth DM 18. -W. Liese. Wood Sci. Technol. 1985, 21, 110. [Google Scholar]
- Pásztory, Z.; Börcsök, Z.; Ronyecz, I.; Mohácsi, K.; Molnár, S.; Kis, S. Oven dry density of sessile oak, turkey oak and hornbeam in different region of Mecsek Mountain. Wood Res. Slovak. 2014, 59, 683–694. [Google Scholar]
- Zeidler, A.; Borůvka, V. Wood density of northern red oak and pedunculate oak grown in former brown coal mine in the Czech Republic. Bioresource 2016, 11, 9373–9385. [Google Scholar] [CrossRef] [Green Version]
- Guilley, E.; Hervé, J.C.; Nepveu, G. The influence of site quality, silviculture and region on wood density mixed model in Quercus petraea Liebl. For. Ecol. Manag. 2004, 189, 111–121. [Google Scholar] [CrossRef]
- Sopushynskyy, I.; Vintoniv, I.; Teischinger, A.; Michalak, R. The influence of site factors on wood density and moisture content of beech in the Ukrainian Carpathians. Wood Res. Slovak. 2005, 50, 43–49. [Google Scholar]
- Guler, C.; Copur, Y.; Akgul, M.; Buyuksari, U. Some chemical, physical and mechanical properties of juvenile wood from black pine (Pinus nigra Arnold) plantations. J. Appl. Sci. 2007, 7, 755–758. [Google Scholar] [CrossRef] [Green Version]
- Kiaei, M. Effect of site and altitude on wood density and shrinkage and their relationships in Carpinus betulus. Forest Stud. China 2012, 14, 229–234. [Google Scholar] [CrossRef]
- Panshin, A.J.; Zeeuw, C.D. Textbook of wood technology. In Volume I. Structure, Identification, Uses, and Properties of the Commercial Woods of the United States and Canada, 3rd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Gryc, V.L.; Vavrčík, H.A. Effect of the position in a stem on the length of tracheids in spruce (Picea abies [L.] Karst.) with the occurrence of reaction wood. J. For. Sci. 2005, 51, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, E.A.; Baas, P.; Gasson, P.E. IAWA list of microscopic features for hardwood identification. In IAWA Bulletin n.s. 10 (3): 219–332 [4th Printing 2007]; International Association of Wood Anatomists at the National Herbarium of the Netherlands: Leiden, The Netherlands, 1989; pp. 219–332. [Google Scholar]
- Leal, S.; Sousa, V.B.; Pereira, H. Within and between-tree variation in the biometry of wood rays and fibres in cork oak (Quercus suber L.). Wood Sci. Technol. 2006, 40, 585–597. [Google Scholar] [CrossRef]
- Horn, R.A. Morphology of Pulp Fiber from Hardwoods and Influence on Paper Strength [Research Paper FPL 312]; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1978. [Google Scholar]
- Atchison, J.E. Data on Non-Wood Plant Fibers. In The Secondary Fibers and Non-Wood Pulping; Hamilton, F., Leopold, B., 3rd, Eds.; TAPPI Press: Atlanta, GA, USA, 1987. [Google Scholar]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood Formation in Trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef]
- Bahmani, M.; Fathi, L.; Koch, G.; Kool, F.; Aghajani, H.; Humar, M. Heartwood and sapwood features of Sorbus torminalis grown in Iranian forests. Wood Res. Slovak. 2020, 65, 195–204. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, C.L.; Kharkongor, B.M.; Carter, M.J. Wood anatomical variations in some species of Quercus of Meghalaya. J. Indian Acad. Wood Sci. 2011, 8, 152–157. [Google Scholar] [CrossRef]
- Van Der Maaten-Theunissen, M.; Boden, S.; Van Der Maaten, E. Wood density variations of Norway spruce (Picea abies L. Karst.) under contrasting climate conditions in southwestern Germany. Ann. For. Sci. 2013, 56, 91–103. [Google Scholar] [CrossRef]
Ecosites | E1S1 | E1S2 | E1S3 | E2S1 | E2S2 | E2S3 | E3S1 | E3S2 | E3S3 | |
---|---|---|---|---|---|---|---|---|---|---|
Latitude (N) m | 3,558,132 | 3,558,227 | 3,558,354 | 3,558,250 | 3,558,120 | 3,558,137 | 3,556,272 | 3,556,280 | 3,556,299 | |
Longitude (W) m | 416,662 | 416,867 | 416,680 | 418,209 | 418,248 | 418,284 | 419,180 | 419,165 | 419,138 | |
Altitude (m a.s.l) | 1717 | 1726 | 1742 | 1980 | 1987 | 1968 | 2280 | 2244 | 2232 | |
Mean annual precipitation (mm) | 331 | 330 | 329 | 330 | 329 | 328 | 329 | 330 | 330 | |
Mean annual temperature (°C) | 15.3 | 15.2 | 15.3 | 14.5 | 13.9 | 13.0 | 12.8 | 12.9 | 12.9 | |
Tree-Level variables | Height (m) | 11.34 (2.15) | 10.14 (0.06) | 8.28 (0.60) | 6.63 (0.68) | 8.89 (0.24) | 6.91 (1.04) | 11.28 (0.11) | 7.98 (3.20) | 6.44 (2.74) |
1 DBH (cm) | 105.00 (8.00) | 73.00 (7.00) | 75.00 (1.00) | 65.67 (2.52) | 108.00 (16.00) | 83.00 (9.54) | 157.33 (2.52) | 119.00 (41.00) | 82.67 (20.65) | |
2 ABH (year) | 1164 (148) | 767 (30) | 649 (17) | 755 (15) | 1089 (80) | 847 (177) | 1417 (4) | 1146 (386) | 813 (257) | |
Stem basal area (m2) | 0.87 (0.13) | 0.42 (0.08) | 0.44 (0.01) | 0.34 (0.03) | 0.93 (0.28) | 0.55 (0.12) | 1.95 (0.06) | 1.20 (0.77) | 0.56 (0.25) | |
Stem volume (m3) | 5.02 (1.68) | 2.13 (0.40) | 1.83 (0.09) | 1.12 (0.20) | 4.15 (1.32) | 1.86 (0.36) | 10.99 (0.25) | 5.60 (5.14) | 2.03 (1.38) | |
Crown basal area (m2) | 22.22 (10.07) | 19.71 (3.14) | 27.24 (7.31) | 20.38 (0.36) | 13.04 (0.48) | 24.03 (6.60) | 14.89 (0.31) | 13.71 (1.48) | 21.73 (14.79) | |
3 Crown diameter (m) | 5.23 (1.23) | 5.00 (0.40) | 5.86 (0.80) | 5.10 (0.05) | 4.08 (0.08) | 5.50 (0.74) | 4.36 (0.05) | 4.18 (0.23) | 5.07 (1.73) | |
4 MADI (mm) | 0.91 (0.05) | 0.95 (0.06) | 1.16 (0.02) | 0.87 (0.02) | 0.99 (0.08) | 1.01 (0.21) | 1.11 (0.02) | 1.04 (0.01) | 1.04 (0.10) | |
Stand-Level variables | Basal Area (m2) | 109.89 | 72.23 | 57.70 | 89.24 | 103.34 | 109.95 | 110.66 | 69.52 | 113.23 |
Stand Density (N/ha) | 160 | 120 | 120 | 90 | 115 | 77 | 150 | 105 | 123 | |
5 QMD (cm) | 93.54 | 87.57 | 78.26 | 112.39 | 106.99 | 135.17 | 96.94 | 91.84 | 108.14 |
Wood Properties | Altitude (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1730 m (Low) | 1980 m (Intermediate) | 2250 m (High) | |||||||
Slope <30% | Slope 30–45% | Slope >45% | Slope <30% | Slope 30–45% | Slope >45% | Slope <30% | Slope 30–45% | Slope >45% | |
Oven-dry density (g/cm3) | 0.73 (0.05) | 0.80 (0.01) | 0.78 (0.02) | 0.78 (0.01) | 0,83 (0.16) | 0.78 (0.09) | 0.81 (0.01) | 0.78 (0.05) | 0.74 (0.03) |
Volumetric swelling (%) | 12.53 (0.69) | 12.58 (1.23) | 10.92 (1.50) | 19.91 (0.07) | 21.74 (0.39) | 20.01 (1.91) | 19.33 (1.12) | 19.13 (2.07) | 19.91 (2.67) |
Source of Variation | Wood Properties | Sum of Squares | DF | Mean Square | F | Sig. |
---|---|---|---|---|---|---|
Altitude | Oven-dry density | 0.003 | 2 | 0.001 | 0.332 | 0.722 ns |
Volumetric swelling | 388.719 | 2 | 194.360 | 84.531 | 0.000 ** | |
Fiber length | 0.136 | 2 | 0.068 | 168.064 | 0.000 ** | |
Fiber diameter | 18.025 | 2 | 9.012 | 23.417 | 0.000 ** | |
Cell wall thickness | 0.021 | 2 | 0.010 | 0.216 | 0.808 ns | |
MADI | 0.052 | 2 | 0.026 | 3.684 | 0.046 * | |
Slope | Oven-dry density | 0.007 | 2 | 0.003 | 0.828 | 0.453 ns |
Volumetric swelling | 3.490 | 2 | 1.745 | 0.759 | 0.483 ns | |
Fiber length | 0.014 | 2 | 0.007 | 17.239 | 0.000 ** | |
Fiber diameter | 6.778 | 2 | 3.389 | 8.805 | 0.002 ** | |
Cell wall thickness | 0.225 | 2 | 0.112 | 2.320 | 0.127 ns | |
MADI | 0.052 | 2 | 0.026 | 3.645 | 0.047 * |
Wood Properties | Altitude (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1730 m (Low) | 1980 m (Intermediate) | 2250 m (High) | |||||||
Slope <30% | Slope 30–45% | Slope >45% | Slope <30% | Slope 30–45% | Slope >45% | Slope <30% | Slope 30–45% | Slope >45% | |
Fiber length (mm) | 0.94 (0.02) | 0.96 (0.03) | 0.92 (0.01) | 0.87 (0.01) | 0.92 (0.01) | 0.91 (0.02) | 0.81 (0.02) | 0.82 (0.02) | 0.70 (0.04) |
Fiber diameter (μm) | 21.54 (1.71) | 23.30 (0.40) | 20.09 (0.10) | 19.70 (0.01) | 20.09 (0.19) | 19.82 (0.26) | 20.06 (0.06) | 20.00 (0.12) | 19.81 (0.52) |
Cell wall thickness (μm) | 6.02 (0.03) | 5.55 (0.15) | 5.71 (0.05) | 5.84 (0.02) | 5.95 (0.06) | 5.82 (0.63) | 5.78 (0.03) | 5.83 (0.02) | 5.83 (0.08) |
Component | Total Variance Explained Initial Eigenvalues | ||
---|---|---|---|
Total | Percent of Variance | Cumulative Percent | |
1 | 5.715 | 33.615 | 33.615 |
2 | 3.999 | 23.522 | 57.136 |
3 | 2.096 | 12.330 | 69.466 |
4 | 1.639 | 9.639 | 79.105 |
5 | 1.117 | 6.570 | 85.675 |
6 | 0.916 | 5.390 | 91.065 |
7 | 0.661 | 3.891 | 94.956 |
8 | 0.358 | 2.104 | 97.060 |
9 | 0.228 | 1.340 | 98.400 |
10 | 0.121 | 0.712 | 99.112 |
11 | 0.087 | 0.514 | 99.626 |
12 | 0.029 | 0.170 | 99.796 |
13 | 0.021 | 0.125 | 99.921 |
14 | 0.010 | 0.062 | 99.983 |
15 | 0.002 | 0.014 | 99.996 |
16 | 0.001 | 0.003 | 99.999 |
17 | 9.669 × 10−5 | 0.001 | 100.000 |
Component | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Precipitation | 0.130 | 0.282 | 0.022 | −0.628 * | −0.192 | |
Temperature | −0.201 | 0.820 * | 0.266 | −0.267 | 0.066 | |
Altitude | 0.297 | −0.859 * | −0.282 | 0.152 | −0.067 | |
Slope | −0.321 | −0.246 | 0.134 | 0.772 * | 0.175 | |
DBH | 0.963 * | −0.212 | −0.120 | 0.046 | 0.019 | |
Tree Height | 0.788 * | 0.469 | 0.010 | −0.214 | 0.119 | |
Tree crown diameter | −0.197 | 0.159 | 0.943 * | 0.082 | −0.073 | |
Tree basal area | 0.958 * | −0.225 | −0.137 | 0.067 | 0.025 | |
Tree crown basal area | −0.190 | 0.134 | 0.941 * | 0.105 | −0.097 | |
Tree Volume | 0.975 * | −0.106 | −0.144 | 0.017 | 0.007 | |
Tree Age | 0.915 * | −0.184 | −0.168 | −0.219 | 0.081 | |
Tree annual diameter increment | 0.244 | −0.031 | 0.124 | 0.840 * | −0.268 | |
Oven-dry Density | 0.288 | −0.019 | 0.079 | 0.013 | 0.827 * | |
Fiber length | −0.040 | 0.739 * | 0.136 | −0.216 | 0.269 | |
Fiber diameter | 0.045 | 0.784 * | −0.266 | −0.195 | 0.024 | |
Cell wall thickness | 0.120 | −0.164 | 0.303 | −0.075 | −0.833 * | |
Volumetric swelling | 0.120 | −0.869 * | −0.109 | −0.092 | 0.181 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazari, N.; Bahmani, M.; Kahyani, S.; Humar, M.; Koch, G. Geographic Variations of the Wood Density and Fiber Dimensions of the Persian Oak Wood. Forests 2020, 11, 1003. https://doi.org/10.3390/f11091003
Nazari N, Bahmani M, Kahyani S, Humar M, Koch G. Geographic Variations of the Wood Density and Fiber Dimensions of the Persian Oak Wood. Forests. 2020; 11(9):1003. https://doi.org/10.3390/f11091003
Chicago/Turabian StyleNazari, Noorollah, Mohsen Bahmani, Saleh Kahyani, Miha Humar, and Gerald Koch. 2020. "Geographic Variations of the Wood Density and Fiber Dimensions of the Persian Oak Wood" Forests 11, no. 9: 1003. https://doi.org/10.3390/f11091003
APA StyleNazari, N., Bahmani, M., Kahyani, S., Humar, M., & Koch, G. (2020). Geographic Variations of the Wood Density and Fiber Dimensions of the Persian Oak Wood. Forests, 11(9), 1003. https://doi.org/10.3390/f11091003