A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species
Abstract
:1. Introduction
2. Phytochemistry
3. Biological Activity of Quercus Extracts
3.1. Antioxidant Activity
3.2. Antibacterial and Antifungal Activity
3.3. Anti-Inflammatory and Anticancer Activity
3.4. Antidiabetic Activity
3.5. Other Activities
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Popovic, B.; Stajner, D.; Ždero Pavlović, R.; Orlović, S.; Galić, Z. Antioxidant characterization of oak extracts combining spectrophotometric assays and chemometrics. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Nixon, K. Global and neotropical distribition and diversity of oak (Genus Quercus) and oak forests. In Ecology and Conservation of Neotropical Montane Oak Forests (Ecological Studies); Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–13. [Google Scholar]
- Aldrich, P.R.; Cavender-Bares, J. Quercus. In Wild Crop Relatives: Genomic and Breeding Resources; Springer: Berlin/Heidelberg, Germany, 2011; pp. 89–129. [Google Scholar]
- Box, E.O.; Fujiwara, K. Warm-temperate deciduous forests: Concept and global overview. In Warm-Temperate Deciduous Forests around the Northern Hemisphere; Springer: Cham, Switzerland, 2015; pp. 7–26. [Google Scholar]
- Tanouchi, H.; Sato, T.; Takeshita, K. Comparative studies on acorn and seedling dynamics of four Quercus species in an evergreen broad-leaved forest. J. Plant Res. 1994, 107, 153–159. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2011; Volume Supplement 1. [Google Scholar]
- Martins, J.; de Oliveira, L.S.; Nisgoski, S.; Sabourin, R. A database for automatic classification of forest species. Mach. Vis. Appl. 2012, 24. [Google Scholar] [CrossRef]
- Karioti, A.; Bilia, A.; Skaltsa, H. Quercus ilex L.: A rich source of polyacylated flavonoid glucosides. Planta Med. 2009, 75. [Google Scholar] [CrossRef]
- Vinha, A.; Barreira, J.; Costa, A.; Oliveira, M. A new age for Quercus spp. Fruits: Review on nutritional and phytochemical composition and related biological activities of acorns. Compr. Rev. Food Sci. Food Saf. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Laemke, J.; Unsicker, S. Phytochemical variation in treetops: Causes and consequences for tree-insect herbivore interactions. Oecologia 2018, 187. [Google Scholar] [CrossRef]
- Tanase, C.; Cosarca, S.; Muntean, D.-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef] [Green Version]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11. [Google Scholar] [CrossRef]
- Engström, M. Understanding the Bioactivity of Plant Tannins: Developments in Analysis Methods and Structure-Activity Studies; Painosalama Oy: Turku, Finland, 2016. [Google Scholar]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Yarnes, C.; Boecklen, W.; Tuominen, K.; Salminen, J.-P. Defining phytochemical phenotypes: Size and shape analysis of phenolic compounds in white oaks (Fagaceae, Quercus Sect. Quercus) of the Chihuahuan Desert. Can. J. Bot. 2006, 84. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadidi, L.; Babou, L.; Zaidi, F.; Valentão, P.; Andrade, P.B.; Grosso, C. Quercus ilex L.: How season, plant organ and extraction procedure can influence chemistry and bioactivities. Chem. Biodivers. 2017, 14, e1600187. [Google Scholar] [CrossRef]
- Cantos-Villar, E.; Espín, J.C.; Lopez, C.; Hoz, L.; Ordónez, J.; Tomás-Barberán, F. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged iberian pigs. J. Agric. Food Chem. 2003, 51, 6248–6255. [Google Scholar] [CrossRef]
- Jong, J.; Bimal, K.; Hyeun, C.; Kyung, J.; Ki, S.; Young, S.; Taek, S.; Ji, L.; Hye, K.; Min, C. Comparison of phenolic compounds content in indeciduous Quercus species. J. Med. Plants Res. 2012, 6, 5228–5239. [Google Scholar] [CrossRef] [Green Version]
- Brossa, R.; Casals, I.; Pintó-Marijuan, M.; Fleck, I. Leaf flavonoid content in Quercus ilex L. resprouts and its seasonal variation. Trees 2009, 23, 401–408. [Google Scholar] [CrossRef]
- Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Reynoso-Camacho, R.; Ramos-Gómez, M.; Garcia-Gasca, T.; Rodríguez-Muñoz, M.E.; Guzmán-Maldonado, S.H.; Medina-Torres, L.; Lujan-García, B.A. Antioxidant activity and genotoxic effect on hela cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009, 115, 1320–1325. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; Zin Elabadin, T.K.; Yessoufou, K. Polyphenol profile and pharmaceutical potential of Quercus spp. bark extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef] [Green Version]
- Vinha, A.; Barreira, J.; Ferreira, I.; Oliveira, M. Therapeutic, phytochemistry, and pharmacology of acorns (Quercus nuts): A review. In Bioactive Compounds in Underutilized Fruits and Nuts; Springer: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Lopes, I.; Bernardo-Gil, G. Characterisation of acorn oils extracted by hexane and by supercritical carbon dioxide. Eur. J. Lipid Sci. Technol. 2005, 107, 12–19. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148. [Google Scholar] [CrossRef]
- Loreto, F.; Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Frattoni, M.; Sharkey, T. Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc. Natl. Acad. Sci. USA 1996, 93, 9966–9969. [Google Scholar] [CrossRef] [Green Version]
- Miranda, I.; Sousa, V.; Ferreira, J.; Pereira, H. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Rial, D.; Penuelas, J.; López-Mahía, P.; Llusia, J. Terpenoid emissions from Quercus robur. A case study of Galicia (NW Spain). J. Environ. Monit. 2009, 11, 1268–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welter, S.; Bracho-Nuñez, A.; Mir, C.; Zimmer, I.; Kesselmeier, J.; Lumaret, R.; Schnitzler, J.-P.; Staudt, M. The diversification of terpene emissions in mediterranean oaks: Lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares. Tree Physiol. 2012, 32, 1082–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovic, S.; Sobajic, S.; Rakic, S.; Tomic, A.; Kukic, J. Investigation of kernel oils of Quercus robur and Quercus cerris. Chem. Nat. Compd. 2004, 40, 420–422. [Google Scholar] [CrossRef]
- Rabhi, F.; Narváez-Rivas, M.; Tlili, N.; Boukhchina, S.; León-Camacho, M. Sterol, aliphatic alcohol and tocopherol contents of Quercus ilex and Quercus suber from different regions. Ind. Crops Prod. 2016, 83, 781–786. [Google Scholar] [CrossRef]
- Meziti, H.; Bouriche, H.; Kada, S.; Demirtas, I.; Kizil, M.; Senator, A.; Garrido, G. Phytochemical analysis, and antioxidant, anti-hemolytic and genoprotective effects of Quercus ilex L. and Pinus halepensis mill. Methanolic extracts. J. Pharm. Pharmacogn. Res. 2019, 7, 260–272. [Google Scholar]
- Joshi, A.K.; Juyal, D.S. Traditional and ethnobotanical uses of Quercus Leucotrichophora A. Camus (Quercus oblongata D. Don) in Kumaun and Garhwal regions of Uttarakhand, India: A review. Int. J. Herb. Med. 2017, 5, 06–08. [Google Scholar]
- Jazib, M.J.; Rather, S.A. An ethno-botanical overview of oak: A multipurpose wild tree species of the Pir Panjal Himalayas. Forest Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- Hamayun, M. Ethnobotanical studies of some useful shrubs and trees of district buner, NWFP, Pakistan. Ethnobot. Leafl. 2003, 2003, 12. [Google Scholar]
- Singh, R.; Kumari, N. Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus Mukorrossi Gaertn.—A valuable medicinal tree. Ind. Crops Prod. 2015, 73. [Google Scholar] [CrossRef]
- Akroum, S. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L. J. Mycol. Médicale J. Med. Mycol. 2016, 27. [Google Scholar] [CrossRef] [PubMed]
- Nedamani, E.R.; Sadeghi, A.; Ghorbani, M.; Kashaninejad, M. Evaluation of antioxidant interactions in combined extracts of green tea (Camellia Sinensis), rosemary (Rosmarinus Officinalis) and oak fruit (Quercus Branti). J. Food Sci. Technol. 2015. [Google Scholar] [CrossRef]
- Tuyen, P.T.; Khang, D.T.; Ha, P.T.; Hai, T.N.; Elzaawely, A.A.; Xuan, T.D. Antioxidant capacity and phenolic contents of three Quercus species. Int. Lett. Nat. Sci. 2016, 54, 85–99. [Google Scholar] [CrossRef]
- Koleckar, V.; Kubikova, K.; Rehakova, Z.; Kuca, K.; Jun, D.; Jahodár, L.; Opletal, L. Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Rev. Med. Chem. 2008, 8, 436–447. [Google Scholar] [CrossRef]
- Takuo, O.; Hideyuki, I. Tannins of constant structure in medicinal and food plants - hydrolyzable tannins and polyphenols related to tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
- Kim, M.-H.; Park, D.-H.; Bae, M.-S.; Song, S.-H.; Seo, H.-J.; Han, D.-G.; Oh, D.-S.; Jung, S.-T.; Cho, Y.-C.; Park, K.-M.; et al. Analysis of the active constituents and evaluation of the biological effects of Quercus acuta Thunb. (Fagaceae) extracts. Molecules 2018, 23, 1772. [Google Scholar] [CrossRef] [Green Version]
- Tahmouzi, S. Optimization of polysaccharides from zagros oak leaf using RSM: Antioxidant and antimicrobial activities. Carbohydr. Polym. 2014, 106, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Morcuende, D.; Hérnandez-López, S.; Madruga, M.; Silva, F.; Estévez, M. Antioxidant extracts from acorns (Quercus ilex L.) effectively Protect Ready-to-Eat (RTE) chicken patties irrespective of packaging atmosphere: Acorn as antioxidant in convenience food. J. Food Sci. 2017, 82. [Google Scholar] [CrossRef] [PubMed]
- Horvathova, M.; Országhová, Z.; Laubertova, L.; Vaváková, M.; Sabaka, P.; Rohdewald, P.; Durackova, Z.; Muchová, J. Effect of the french oak wood extract robuvit on markers of oxidative stress and activity of antioxidant enzymes in healthy volunteers: A pilot study. Oxid. Med. Cell. Longev. 2014, 2014, 639868. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.R.; Preedy, V.R.; Zibadi, S. Index. In Polyphenols in Human Health and Disease; Academic Press: San Diego, CA, USA, 2014; pp. 1401–1419. [Google Scholar] [CrossRef]
- Girish, C.; Pradhan, S.C. Herbal Drugs on the Liver. In Liver Pathophysiology: Therapies and Antioxidants; Muriel, P., Ed.; Academic Press: Boston, MA, USA, 2017; pp. 605–620. [Google Scholar] [CrossRef]
- Watson, R.R.; Preedy, V.R.; Zibadi, S. (Eds.) Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Chiarini, A.; Micucci, M.; Malaguti, M.; Budriesi, R.; Ioan, P.; Lenzi, M.; Fimognari, C.; Toschi, T.G.; Comandini, P.; Hrelia, S. Sweet chestnut (Castanea sativa Mill.) bark extract: Cardiovascular activity and myocyte protection against oxidative damage. Oxid. Med. Cell. Longev. 2013, 2013, 471790. [Google Scholar] [CrossRef] [Green Version]
- Yoon, I.-S.; Park, D.-H.; Bae, M.-S.; Oh, D.-S.; Kwon, N.-H.; Kim, J.-E.; Choi, C.-Y.; Cho, S. In vitro and in vivo studies on Quercus acuta Thunb. (Fagaceae) extract: Active constituents, serum uric acid suppression, and xanthine oxidase inhibitory activity. Evid. Based Complement. Alternat. Med. 2017, 2017, 4097195. [Google Scholar] [CrossRef] [PubMed]
- Youn, U.-Y.; Shon, M.-S.; Kim, G.-N.; Katagiri, R.; Harata, K.; Kamegai, M.; Ishida, Y.; Lee, S.-C. Antioxidant and anti-adipogenic activities of acorn shells. Food Sci. Biotechnol. 2016, 25, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-T.; Choi, H.-K.; Kim, S.H.; Chung, S.; Hur, H.J.; Park, J.; Chung, M.-Y. Hypolipidemic activity of Quercus acutissima fruit ethanol extract is mediated by inhibition of acetylation. J. Med. Food 2017, 20. [Google Scholar] [CrossRef] [PubMed]
- Koseki, J.; Matsumoto, T.; Matsubara, Y.; Tsuchiya, K.; Mizuhara, Y.; Sekiguchi, K.; Nishimura, H.; Watanabe, J.; Kaneko, A.; Hattori, T.; et al. Inhibition of Rat 5 α -reductase activity and testosterone-induced sebum synthesis in hamster sebocytes by an extract of Quercus acutissima cortex. Evid.-Based Complement. Altern. Med. 2015, 2015, 853846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettweiler, M.; Lyles, J.; Nelson, K.; Dale, B.; Reddinger, R.; Zurawski, D.; Quave, C. American civil war plant medicines inhibit growth, biofilm formation, and quorum sensing by multidrug-resistant bacteria. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, A.J.; Nelson, N.W.; Brame, L.S.; Champlin, F.R. Endemic north American plants as potentially suitable agents for wound cleaning under resource scarce conditions. Wilderness Environ. Med. 2019, 30, 401–406. [Google Scholar] [CrossRef]
- Karimi, A.; Rafieian-kopaei, M.; Moradi, M.T.; Alidadi, S. Anti-herpes simplex virus Type-1 activity and phenolic content of crude ethanol extract and four corresponding fractions of Quercus brantii L Acorn. J. Evid.-Based Complement. Altern. Med. 2016, 22. [Google Scholar] [CrossRef]
- Farhad, M.; Karimi, A.; Alidadi, S. In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions. Chin. J. Nat. Med. 2016, 14, 196–202. [Google Scholar] [CrossRef]
- Aleebrahim-Dehkordy, E.; Rafieian-kopaei, M.; Amini-Khoei, H.; Abbasi, S. In vitro evaluation of antioxidant activity and antibacterial effects and measurement of total phenolic and flavonoid contents of Quercus brantii L. fruit extract. J. Diet. Suppl. 2018, 16, 1–9. [Google Scholar] [CrossRef]
- Abdollahi, P.; Khanavi, M.; Sabbagh-Bani-Azad, M.; Abdolghaffari, A.H.; Vazirian, M.; Isazadeh, I.; Rezvanfar, M.A.; Baeeri, M.; Mohammadirad, A.; Rahimi, R.; et al. On the beneft of galls of Quercus brantii Lindl. in murine colitis: The role of free gallic acid. Arch. Med. Sci. 2014, 10, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Moshfeghy, Z.; Asadi, K.; Akbarzadeh, M.; Zare, A.; Poordast, T.; Emamghoreishi, M.; Najib, F.; Sayadi, M. Quercus brantii Lindl. vaginal douche versus clotrimazole on vaginal candidiasis. J. Pharmacopunct. 2018, 21, 185–194. [Google Scholar] [CrossRef]
- Daryani, A.; Ebrahimzadeh, M.; Taheri, M.; Ahmadpour, E.; Montazeri, M.; Sarvi, S.; Akbari, M. Anti-toxoplasma effects of methanol extracts of Feijoa Sellowiana, Quercus castaneifolia, and Allium paradoxum. J. Pharmacopunct. 2017, 20, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Franco, S.; Silva, A.; Cupara, S.; Koskovac, M.; Kojicic, K.; Soares, S.; Rodrigues, F.; Sut, S.; Dall’Acqua, S.; et al. Chemical characterization and bioactive properties of a coffee-like beverage prepared from: Quercus cerris kernels. Food Funct. 2019, 10, 2050–2060. [Google Scholar] [CrossRef] [PubMed]
- Hobby, G.; Quave, C.; Nelson, K.; Compadre, C.; Beenken, K.; Smeltzer, M. Quercus cerris extracts limit staphylococcus aureus biofilm formation. J. Ethnopharmacol. 2012, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, S.; Barut, B.; Özel, A.; Kuruüzüm-Uz, A.; Sohretoglu, D. Tyrosinase and α-Glucosidase potential of compounds isolated from Quercus coccifera Bark: In vitro and in silico perspectives. Bioorg. Chem. 2019, 86. [Google Scholar] [CrossRef]
- Valencia, E.; García-Pérez, M.; Garnica Romo, M.G.; Figueroa, J.; Melendez, E.; Salgado-Garciglia, R.; Martinez-Flores, H. Antioxidant properties of polyphenolic extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla bark. Antioxidants 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Valencia, E.; Martinez-Flores, H.; Garcia-Perez, M.; Melendez, E.; García-Pérez, M. Investigation of the antibacterial activity and subacute toxicity of a Quercus crassifolia polyphenolic bark extract for its potential use in functional foods. J. Food Sci. 2019, 84. [Google Scholar] [CrossRef]
- Kim, M.; Yin, J.; Hwang, I.H.; Park, D.H.; Lee, E.K.; Kim, M.J.; Lee, M.W. Anti-acne vulgaris effects of pedunculagin from the leaves of Quercus mongolica by anti-inflammatory activity and 5α-Reductase inhibition. Molecules 2020, 25, 2154. [Google Scholar] [CrossRef]
- Ahmed, M.; Adil, M.; Haq, I.; Tipu, M.K.; Qasim, M.; Gul, B. RP-HPLC-based phytochemical analysis and diverse pharmacological evaluation of Quercus floribunda Lindl. Ex A. camus nuts extracts. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
- Youn, S.; Kwon, J.; Yin, J.; Tam, L.; Ahn, H.; Myung, S.; Lee, M. Anti-inflammatory and anti-urolithiasis effects of polyphenolic compounds from Quercus gilva blume. Molecules 2017, 22, 1121. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.-C.; Chen, J.; Zhang, L.-J.; Lin, Z.-H.; Huang, H.-T.; Cheng, H.-L.; Kuo, Y.-H. Antioxidant and anti-nitric oxide components from Quercus glauca. Chem. Pharm. Bull. (Tokyo) 2012, 60, 924–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rtibi, K.; Hammami, I.; Selmi, S.; Grami, D.; Sebai, H.; Mohamed, A.; Marzouki, L. Phytochemical properties and pharmacological effects of Quercus ilex L. aqueous extract on gastrointestinal physiological parameters in vitro and in vivo. Biomed. Pharmacother. 2017, 94, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Castejón Martínez, L.; Rosillo, M.; Villegas, I.; Sánchez-Hidalgo, M.; Hadidi, L.; Zaidi, F.; Lastra, C. Quercus ilex extract ameliorates acute TNBS-induced colitis in rats. Planta Med. 2019, 85. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Segura, A.; Silva-Belmares, S.; Segura-Ceniceros, E.; Ascacio-Valdés, J.; Méndez-González, L.; Ilyina, A. Screening and characterization of medicinal plants extracts with bactericidal activity against Streptococcus mutans. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
- Gul, F.; Khan, K.; Adhikari, A.; Zafar, S.; Akram, M.; Khan, H.; Saeed, M. Antimicrobial and antioxidant activities of a new metabolite from Quercus incana. Nat. Prod. Res. 2016, 31, 1–9. [Google Scholar] [CrossRef]
- Hasan, B.Z.; Ahmed, A.; Khan, A. Apoptotic and antimetastatic activities of betulin isolated from Quercus incana against non-small cell lung cancer cells. Cancer Manag. Res. 2019, 2019, 1667. [Google Scholar]
- Chusri, S.; Na-Phatthalung, P.; Voravuthikunchai, S. Anti-biofilm activity of Quercus infectoria G. olivier against methicillin-resistant Staphylococcus Aureus. Lett. Appl. Microbiol. 2012, 54, 511–517. [Google Scholar] [CrossRef]
- Kheirandish, F.; Delfan, B.; Mahmoudvand, H.; Moradi, N.; Ezatpour, B.; Ebrahimzadeh, F.; Rashidipour, M. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria olivier extract. Biomed. Pharmacother. 2016, 82, 208–215. [Google Scholar] [CrossRef]
- Tayel, A.A.; El-Sedfy, M.A.; Ibrahim, A.I.; Moussa, S.H. Application of Quercus infectoria extract as a natural antimicrobial agent for chicken egg decontamination. Rev. Argent. Microbiol. 2018, 50, 391–397. [Google Scholar] [CrossRef]
- Khairon, R.; Zin, N.M.; Rahman, M.A.; Basri, D.F. Comparative proteomic analysis of differential proteins in response to aqueous extract of Quercus infectoria gall in methicillin-resistant staphylococcus aureus. Int. J. Proteomics 2016, 2016, 4029172. [Google Scholar] [CrossRef] [Green Version]
- Basri, D. Evaluation of analgesic activity of the methanol extract from the galls of Quercus infectoria (Olivier) in rats. Evid. Based Complement. Alternat. Med. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, R.; Sheorey, S.D.; Hinge, M. Analgesic and anti-inflammatory plants: An updated review. Int. J. Pharm. Sci. Rev. Res. 2012, 12, 114–119. [Google Scholar]
- Iminjan, M.; Amat, N.; Li, X.-H.; Upur, H.; Ahmat, D.; He, B. Investigation into the toxicity of traditional uyghur medicine Quercus infectoria galls water extract. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Karbasizade, V.; Dehghan, P.; Mohammadi Sichani, M.; Shahanipour, K.; Sepahvand, S.; Jafari, R.; Yousefian, R. Evaluation of three plant extracts against biofilm formation and expression of quorum sensing regulated virulence factors in Pseudomonas Aeruginosa. Pak. J. Pharm. Sci. 2017, 30, 585–589. [Google Scholar] [PubMed]
- Yarani, R.; Mansouri, K.; Mohammadi-Motlagh, H.-R.; Mahnam, A.; Aleagha, M.S.E. In vitro inhibition of angiogenesis by hydroalcoholic extract of oak (Quercus infectoria) acorn shell via suppressing VEGF, MMP-2, and MMP-9 secretion. Pharm. Biol. 2012, 51. [Google Scholar] [CrossRef] [Green Version]
- Basri, D.; Khairon, R. Pharmacodynamic interaction of Quercus infectoria galls extract in combination with vancomycin against MRSA using microdilution checkerboard and time-kill assay. Evid.-Based Complement. Altern. Med. 2012, 2012, 493156. [Google Scholar] [CrossRef] [Green Version]
- Tayel, A.A.; El-Tras, W.F.; Abdel-Monem, O.A.; El-Sabbagh, S.M.; Alsohim, A.S.; El-Refai, E.M. Production of anticandidal cotton textiles treated with oak gall extract. Rev. Argent. Microbiol. 2013, 45, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Salih, F. Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in pseudomonas aeruginosa recovered from burn wounds. BMC Complement. Altern. Med. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Chokpaisarn, J.; Urao, N.; Voravuthikunchai, S.; Koh, T. Quercus infectoria inhibits Set7/NF-ΚB inflammatory pathway in macrophages exposed to a diabetic environment. Cytokine 2017, 94. [Google Scholar] [CrossRef]
- Abdullah, A.R.; Hapidin, H.; Abdullah, H. The role of semipurified fractions isolated from Quercus infectoria on bone metabolism by using HFOB 1.19 human fetal osteoblast cell model. Evid. Based Complement. Alternat. Med. 2018, 2018, 5319528. [Google Scholar] [CrossRef] [Green Version]
- Sati, S.; Sati, N.; Sati, O.P.; Biswas, D.; Chauhan, B.S. Analysis and antimicrobial activity of volatile constituents from Quercus leucotrichophora (Fagaceae) bark. Nat. Prod. Res. 2011, 26, 869–872. [Google Scholar] [CrossRef]
- Sati, A.; Sati, S.C.; Sati, N.; Sati, O.P. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits. Nat. Prod. Res. 2017, 31, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Paswan, V.K.; Sahoo, A. Feeding of oak (Quercus leucotrichophora) leaves and evaluation for its potential inclusion in the feeding of native heifers of Kumaon Himalaya. Trop. Anim. Health Prod. 2012, 44. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Kim, H.H.; Hwang, I.H.; Kim, D.H.; Lee, M.W. Anti-inflammatory effects of phenolic compounds isolated from Quercus mongolica fisch. Ex Ledeb. on UVB-irradiated human skin cells. Molecules 2019, 24, 3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kim, D.H.; Oh, M.; Park, K.; Heo, J.; Lee, M.-W. Inhibition of matrix Metalloproteinase-1 and Type-I procollagen expression by phenolic compounds isolated from the leaves of Quercus mongolica in ultraviolet-irradiated human fibroblast cells. Arch. Pharm. Res. 2014, 38. [Google Scholar] [CrossRef]
- Yin, P.; Wang, Y.; Yang, L.; Sui, J.; Liu, Y. Hypoglycemic effects in alloxan-induced diabetic rats of the phenolic extract from mongolian oak cups enriched in ellagic acid, kaempferol and their derivatives. Molecules 2018, 23, 1046. [Google Scholar] [CrossRef] [Green Version]
- Panchal, S.K.; Brown, L. Cardioprotective and hepatoprotective effects of ellagitannins from european oak bark (Quercus petraea L.) extract in rats. Eur. J. Nutr. 2013, 52, 397–408. [Google Scholar] [CrossRef]
- Dania, V.O.; Fadina, O.O.; Ayodele, M.; Kumar, P.L. Efficacy of Oryza sativa husk and Quercus phillyraeoides extracts for the in Vitro and in Vivo control of fungal rot disease of white yam (Dioscorea Rotundata Poir). SpringerPlus 2014, 3, 711. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.; Alanon, M.; Ricardo-da-Silva, J.; Pérez-Coello, M.; Laureano, O. Evaluation of portuguese and spanish Quercus pyrenaica and Castanea sativa species used in cooperage as natural source of phenolic compounds. Eur. Food Res. Technol. 2013, 237. [Google Scholar] [CrossRef]
- Natella, F.; Leoni, G.; Maldini, M.; Natarelli, L.; Comitato, R.; Schonlau, F.; Virigil, F.; Canali, R. Absorbtion, metabolisation and effects at transcriptome level of a standardised french oak wood extract Robuvit® in healthy volunteers: A pilot study. J. Agric. Food Chem. 2013, 62. [Google Scholar] [CrossRef]
- Országhová, Z.; Waczulíková, I.; Burki, C.; Rohdewald, P.; Ďuračková, Z. An effect of oak-wood extract (Robuvit®) on energy state of healthy adults—A pilot study. Phytother. Res. 2015, 29, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Deryabin, D.G.; Tolmacheva, A.A. Antibacterial and anti-quorum sensing molecular composition derived from Quercus cortex (Oak Bark) extract. Molecules 2015, 20, 17093–17108. [Google Scholar] [CrossRef] [PubMed]
- Duskaev, G.; Rakhmatullin, S.; Kazachkova, N.; Sheida, Y.; Mikolaychik, I.; Morozova, L.; Galiev, B. Effect of the combined action of Quercus cortex extract and probiotic substances on the immunity and productivity of broiler chickens. Vet. World 2018, 11, 1416–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belcaro, G.; Dugall, M.; Hu, S.; Ledda, A.; Ippolito, E. French oak wood (Quercus Robur) extract (Robuvit) in primary lymphedema: A supplement, pilot, registry evaluation. Int. J. Angiol. Off. Publ. Int. Coll. Angiol. Inc 2015, 24, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Belcaro, G.; Saggino, A.; Cornelli, U.; Luzzi, R.; Dugall, M.; Hosoi, M.; Feragalli, B.; Cesarone, M. Improvement in mood, oxidative stress, fatigue, and insomnia following supplementary management with Robuvit®. J. Neurosurg. Sci. 2018, 62, 423–427. [Google Scholar] [CrossRef]
- López-Hortas, L.; Falqué, E.; Domínguez, H.; Torres, M.D. Microwave Hydrodiffusion and Gravity (MHG) extraction from different raw materials with cosmetic applications. Molecules 2019, 25, 92. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Moreno, N.; Moler, J.; Urmeneta, H.; Suberviola-Ripa, J.; Cibriain-Sabalza, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Oak wood extracts applied to the grapevine. An alternative to obtain quality garnacha wines. Food Res. Int. 2017, 105. [Google Scholar] [CrossRef]
- Uddin, G.; Rauf, A. Phytochemical screening, antimicrobial and antioxidant activities of aerial parts of Quercus Robur L. J. Med. Plants Res. 2012. [Google Scholar] [CrossRef]
- Azeem, M.; Borg-Karlson, A.K.; Rajarao, G.K. Sustainable bio-production of styrene from forest waste. Bioresour. Technol. 2013, 144, 684–688. [Google Scholar] [CrossRef]
- Focant, M.; Froidmont, E.; Archambeau, Q.; Van, Q.C.; Larondelle, Y. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. J. Dairy Sci. 2018, 102. [Google Scholar] [CrossRef] [Green Version]
- Honarmand, S.; Dabirmanesh, B.; Amanlou, M.; Khajeh, K. The interaction of several herbal extracts with α-synuclein: Fibril formation and surface plasmon resonance analysis. PLoS ONE 2019, 14, e0217801. [Google Scholar] [CrossRef] [PubMed]
- Muccilli, V.; Cardullo, N.; Spatafora, C.; Cunsolo, V.; Tringali, C. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1H NMR. Food Chem. 2017, 215, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kim, H.-J.; Yoon, J.-S.; Lee, H.-W.; Park, G.-C.; Yi, E.; Yoon, G.; Schini-Kerth, V.; Oak, M.-H. The effect of Quercus salicina leaf extracts on vascular endothelial function: Role of nitric oxide. J. Nanosci. Nanotechnol. 2016, 16, 2069–2071. [Google Scholar] [CrossRef] [PubMed]
- Mai, Y.; Wang, Z.; Wang, Y.; Xu, J.; He, X. Anti-neuroinflammatory triterpenoids from the seeds of Quercus serrata thunb. Fitoterapia 2020, 6142, 104523. [Google Scholar] [CrossRef]
- Rosales-Castro, M.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Rivas-Arreola, M.J.; Karchesy, J.J. Antioxidant activity of fractions from Quercus sideroxyla bark and identification of proanthocyanidins by HPLC-DAD and HPLC-MS. Holzforschung 2012, 66, 577–584. [Google Scholar] [CrossRef]
- Soto, M.; Rosales-Castro, M.; Escalona-Cardoso, G.; Paniagua, N. Evaluation of hypoglycemic and genotoxic effect of polyphenolic bark extract from Quercus sideroxyla. Evid. Based Complement. Alternat. Med. 2016, 2016, 4032618. [Google Scholar] [CrossRef] [Green Version]
- Aroso, I.; Araújo, A.R.; Fernandes, J.; Santos, T.; Batista, M.; Pires, R.; Mano, J.F.; Reis, R.L. Hydroalcoholic extracts from the bark of Quercus suber L. (Cork): Optimization of extraction conditions, chemical composition and antioxidant potential. Wood Sci. Technol. 2017, 51. [Google Scholar] [CrossRef]
- Gonçalves, F.; Correia, P.; Silva, S.; Aguiar, C.A. Evaluation of antimicrobial properties of cork. FEMS Microbiol. Lett. 2015, 363, fnv231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Liu, Z.-H.; Wang, D.-M.; Li, D.-W.; Yang, L.-N.; Wang, W. Chemical composition, antibacterial activity and related mechanism of valonia and shell from Quercus variabilis blume (Fagaceae) against Salmonella Paratyphi a and Staphylococcus Aureus. BMC Complement. Altern. Med. 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Maiuro, L.; Sturchio, M.; Coppola, R.; Tremonte, P. Antimicrobial activity of gallic acid against food-related pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int. J. Food Microbiol. 2017, 266. [Google Scholar] [CrossRef]
- Hemingway, R.W.; Laks, P.E. Plant Polyphenols: Synthesis, Properties, Significance, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 59. [Google Scholar]
- Chung, K.-T.; Wong, T.Y.; Wei, C.-I.; Huang, Y.-W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Fujii, K.; Yamasaki, O.; Oono, T.; Iwatsuki, K. Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother. 2001, 48, 487–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baliga, M.S.; Shivashankara, A.R.; Venkatesh, S.; Bhat, H.P.; Palatty, P.L.; Bhandari, G.; Rao, S. Chapter 7 - phytochemicals in the prevention of ethanol-induced hepatotoxicity: A revisit. In Dietary Interventions in Liver Disease; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 79–89. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Morgenstern, H.; Greenland, S.; Tashkin, D.P.; Mao, J.T.; Cai, L.; Cozen, W.; Mack, T.M.; Lu, Q.-Y.; Zhang, Z.-F. Dietary flavonoid intake and lung cancer—A population-based case-control study. Cancer 2008, 112, 2241–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, B.; Anwar, F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008, 108, 879–884. [Google Scholar] [CrossRef]
- Rios, J.-L.; Giner, R.; Marin, M.; Recio, M. A pharmacological update of ellagic acid. Planta Med. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Tafesse, T.; Hymete, A.; Mekonnen, Y.; Mohammed, M. antidiabetic activity and phytochemical screening of extracts of the leaves of Ajuga remota benth on alloxan-induced diabetic mice. BMC Complement. Altern. Med. 2017, 17, 243. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Guzmán, N.E.; González-Laredo, R.F.; Vázquez-Cabral, B.D.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Gamboa-Gómez, C.I.; Flores-Rueda, A.G. 11—Oak leaves as a new potential source for functional beverages: Their antioxidant capacity and monomer flavonoid composition. In Functional and Medicinal Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 381–411. [Google Scholar] [CrossRef]
- Wang, T.; Li, X.; Zhou, B.; Li, H.; Zeng, J.; Gao, W. Anti-diabetic activity in Type 2 diabetic mice and α-glucosidase inhibitory, antioxidant and anti-inflammatory potential of chemically profiled pear peel and pulp extracts (Pyrus spp.). J. Funct. Foods 2015, 13, 276–288. [Google Scholar] [CrossRef]
- Shen, S.-C.; Chang, W.-C. Hypotriglyceridemic and hypoglycemic effects of vescalagin from pink wax apple [Syzygium Samarangense (blume) Merrill and Perry cv. Pink] in high-fructose diet-induced diabetic rats. Food Chem. 2013, 136, 858–863. [Google Scholar] [CrossRef]
- Sindt, L.; Gammacurta, M.; Waffo-Téguo, P.; Dubourdieu, D.; Marchal, A. Taste-guided isolation of bitter lignans from Quercus petraea and their identification in wine. J. Nat. Prod. 2016, 79. [Google Scholar] [CrossRef]
- Hwang, J.T.; Park, I.J.; Shin, J.I.; Lee, Y.K.; Lee, S.K.; Baik, H.W.; Ha, J.; Park, O.J. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Bioph. Res. Commun. 2005, 338, 694–699. [Google Scholar] [CrossRef] [PubMed]
Quercus Species: Scientific and Common Name | Raw Materials | Extract Type | Main Compounds Identified | Biological/Pharmacological Activities | References |
---|---|---|---|---|---|
Quercus acuta Thunb.—Japanese evergreen oak | Leaf | Hexane, Ethyl acetate, Acetone, Methanol, Ethanol, Water extract | Cinnamic acid, phytol, α-linolenic acid, α-tocopherol, β-sitosterol, β-amyrin, and friedelin-3-ol |
| [42] |
Leaf | Ethyl acetate extract | Vitamin E, loliolide, sesquiterpene (neophytadiene), triterpene (α-amyrin, friedelin) Phytosterol (stigmasterol), palmitic acid, linolenic acid, flavonoids (quercetin, luteolin, apigenin) |
| [50] | |
Quercus acutissima Carruth.—sawtooth oak | Acorn shell | Water and methanol extract | Phenolic compounds |
| [51] |
Acorn | Ethanol extract | - |
| [52] | |
Bark | Water axtract | Flavonoids, gallotannin, ellagitannin |
| [53] | |
Methanol extract | Phenolic acids (caffeic acid, ellagic acid, gallic acid, and protocate-chuic acid) |
| [22] | ||
Quercus alba L.—white oak | Bark | Methanol extract | Ellagitannins, procyanidins, triterpenes |
| [54] |
Water extract | - |
| [55] | ||
Quercus brantii Lindl.—Brant’s oak | Acorn | Ethanol extract | Phenolic compounds |
| [56] |
Methanol extract | Phenolic compounds |
| [38] | ||
Ethyle alcohol extract | Phenolic compounds |
| [57] | ||
Ethanol extract | Phenolic compounds |
| [58] | ||
Powder and hydro-alcoholic extract | Phenolic compounds |
| [59] | ||
Leaves | Alcoholic extract | Polysaccharide |
| [43] | |
Acorn | Hydro-alcoholic extract | - |
| [60] | |
Quercus castaneifolia C.A. Mey—chestnut - leaved oak | Acorn | Methanol extract | - |
| [61] |
Quercus cerris L.—Turkey oak, Austrian oak | Seed | Water extract | flavonoids, ellagic acid, gallotaninns, ellagitannins, α-tocopherol |
| [62] |
Leaves | Water extract | - |
| [63] | |
Quercus coccifera L.—kermes oak | Bark and lower stems | Methanol extract | Lignan (lyoniresinol), cocciferoside, chlorocatechin, polydatin |
| [64] |
Quercus crassifolia Bonpl.—mexican oak | Bark | Ethanol and water extract | Polyphenols (flavonoids, hydroxycinnamic acids) |
| [65] |
| [66] | ||||
Quercus mongolica ssp. crispula (Blume) Menitsky—mizunara | Leaves and bark | Ethanol extract | Ellagic acid, chlorogenic acid, benzoic acid |
| [39] |
Leaves | 80% acetone extract | - |
| [67] | |
Quercus floribunda Lindl. Ex A. Camus | Acorn | Water, Methanol, N-Hexane, Chloroform extracts | Flavonoids, quercetin, gallic acid, catechin and chlorogenic acid, pyrocatechol |
| [68] |
Quercus gilva Blume—red-bark oak | Leaves and bark | Aqueous acetone extract | Cathechins, tannins |
| [69] |
Quercus glauca Thunb.—ring cupped oak, Japanese blue oak, | Bark | Ethanolic extract | Lignans, lignanoids, triterpenoids, flavonoids |
| [70] |
Quercus ilex L.—evergreen oak, holy oak | Acorn pulp | Acetone and water extract | Phenolic compounds |
| [44] |
Acorn | Water extract | Phenolic compounds |
| [71] | |
Leaves | Hydro-methanol extract | Phenolic acids—(gallic, protocatechuic, ellagic acid derivatives, and ellagic acid), flavonoids, (catechin, epicatechins, and quercetin) |
| [72] | |
Bark | Water and methanol extract | Flavonoids, catechins |
| [73] | |
Quercus incana Bartran—bluejack oak, cinnamon oak | Bark | Methanol extract | Flavonoids, tannins |
| [74] |
Leaves | Chloroform, Methanol n-hexane extract | Flavonoids (eupatorin), triterpene (betulin) |
| [75] | |
Quercus infectoria G. Olivier—aleppo oak | Acorn | Ethanolic exract | Phenolic compounds |
| [76] |
Methanolic extract | Tannins, phenols and flavonoids |
| [77] | ||
Ethanol and water extract | p-hydroxybenzoic acid, pyrogallol, catechol, caffeine, cathechine, e-vanillic, 3-hydroxythyro-sol, naringin, rutin |
| [78] | ||
Water extract | Tannins |
| [79] | ||
Methanol extract | Alkaloids, flavonoids, steroids, tannins |
| [80,81] | ||
Water extract | - |
| [82] | ||
Bark | Acetone extract | Phenolic compounds |
| [83] | |
Acorn | Hidroalcoholic axtract | - |
| [84] | |
Acetone and methanol extract | - |
| [85] | ||
Ethanol extract | - |
| [86] | ||
Aqueous extract | - |
| [87] | ||
Ethanol extract | Phenolic acids (tannic acid, gallic acid, ellagic acid), flavonoids |
| [88] | ||
Water extract | Gallic acid, syringic acid |
| [89] | ||
Quercus laurina Bonpl.—mexican oak | Bark | Ethanolic and water extract | - |
| [65] |
Quercus oblongata D. Don—banj oak | Bark | - | Mono-terpenoids (1,8–cineol, γ-terpinene), sesquiterpenoids, aliphatic aldehydes |
| [90] |
Acorn | - | Palmitic and stearic acids |
| [91] | |
Leaves | - | Carbohydrates, protein |
| [92] | |
Quercus macrocarpa Michx.—bur oak | Bark | Methanol extract | Caffeic acid, ellagic acid, protocatechuic, gallic acid, epicatechin, epigallocatechin |
| [22] |
Quercus mongolica Fisch. ex Ladeb.—Mongolian oak | Leaves | Acetone extract | Tannins, flavonoids |
| [93] |
Leaves | Acetone extract | Catechin, epigallocatechin, quercetin, kaempferol, glucopyranoside |
| [94] | |
Acorn (cups) | Ethanol extract | Ellagic acid, kaempferol |
| [95] | |
Quercus petraea (Matt.) Liebl.—sessile oak | Twigs, leaves, acorn | Water extract | Catechin, tannins, flavonoids, proanthocyanidin |
| [1] |
Bark | Alcohol extract | Tannins (vescalagin, castalagin, grandinin and roburin E) |
| [96] | |
Quercus phillyreoides A.Gray—ubame oak | Bark | Water extract | Alkaloids, flavonoids, saponins, tannins, terpenoids, antraquinone |
| [97] |
Quercus pyrenaica Wild.—Pyrenean oak | Bark | Water/acetone and methanol extract | Vescalagin, castalagin, granidin and roburin E |
| [98] |
Quercus robur L.—common oak/pedunculate oak/European oak/English oak | Bark | Water extract | Gallic acid, ellagic acid, castalin/Vescalin granidinin/roburin E |
| [99] |
Tannins (roburins) |
| [100] | |||
Phloroglucinol dihydrate, 4-propylresorcinol, pyrogallol |
| [101] | |||
Twigs, leaves and acorn | Water extract | Carotenoids, proanthocyanidin, tannins, flavonoids |
| [1] | |
Bark | Water extract | - |
| [102] | |
Roburins |
| [45] | |||
Ellagitaninns |
| [103] | |||
Ellagic acid |
| [104] | |||
Acorn | - | - |
| [105] | |
Bark | Water extract | vanillin, coniferaldehyde, acetovanillone and syringaldehyde |
| [106] | |
Methanol extract | Alkaloids, anthraquinones, saponins, tannins and terpenoids |
| [107] | ||
Ellagic acid, gallic acid, protocatechuic acid and vanillic acid |
| [22] | |||
- | - |
| [108] | ||
- | - |
| [109] | ||
Acorn | Methanol/water extract | Phenolic compounds |
| [110] | |
Bark | Ethanol extract | Gallic acid, castalagin, vescalagin, granidin, roburin E |
| [111] | |
Quercus salicina Blume | Leaves and bark | Ethanol extract | Gallic and vanillic acids, flavonoids |
| [39] |
| [112] | ||||
Quercus scytophylla Liebm.—mexican oak | Bark | Ethanolic and water extract | - |
| [65] |
Quercus serrata Murray—jolcham oak | Leaves and bark | Ethanol extract | syringic acid, cinnamic acids, flavonoids |
| [39] |
Seeds | Ethanol extract | Triterpenoid comounds fractions |
| [113] | |
Quercus sideroxyla Bonpl. | Bark | Ethanol extract | Gallic acid, catechin, epicatechin, gallocatechin, dimeric procyanidins |
| [114,115] |
Bark | Aqueous acetone extract | Gallic acid, catechin, epicatechin, gallocatechin, procyanidins, proanthocyanidins |
| [114] | |
Quercus suber L.—cork oak | Bark | Hidroalcoholic extract | Gallic acid, ellagic acid, vescalagin, castalagin, Β-O-ethylvescalagin |
| [116] |
Acetone extract | Phenolic acids, proanthocianidins, |
| [37] | ||
water extract | - |
| [117] | ||
Quercus variabilis Blume—Chinese cork oak | Acorn cups and shell | Ethanol and water extract | Ellagic acid, tannins |
| [118] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burlacu, E.; Nisca, A.; Tanase, C. A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. Forests 2020, 11, 904. https://doi.org/10.3390/f11090904
Burlacu E, Nisca A, Tanase C. A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. Forests. 2020; 11(9):904. https://doi.org/10.3390/f11090904
Chicago/Turabian StyleBurlacu, Ema, Adrian Nisca, and Corneliu Tanase. 2020. "A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species" Forests 11, no. 9: 904. https://doi.org/10.3390/f11090904
APA StyleBurlacu, E., Nisca, A., & Tanase, C. (2020). A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. Forests, 11(9), 904. https://doi.org/10.3390/f11090904