Patterns for Populus spp. Stand Biomass in Gradients of Winter Temperature and Precipitation of Eurasia
Abstract
:1. Introduction
2. Objects of Research
3. Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Halofsky, J.S.; Conklin, D.R.; Donato, D.C.; Halofsky, J.E.; Kim, J.B. Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: Western Washington, U.S.A. PLoS ONE 2018, 13, e0209490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosanic, A.; Anderson, K.; Harrison, S.; Turkington, T.; Bennie, J. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PLoS ONE 2018, 13, e0191021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glebov, F.; Litvinenko, V. The dynamics of tree ring width in relation to meteorological indices in different types of wetland forests. Lesovedenie 1976, 4, 56–62. [Google Scholar]
- Tarko, A. Antropogennye Izmeneniya Global’nykh Biosfernykh Protsessov [Anthropogenic Changes of Global Biosphere Processes]; Fizmatlit: Moscow, Russia, 2005. [Google Scholar]
- Behrensmeyer, A.K. ATMOSPHERE: Climate Change and Human Evolution. Science 2006, 311, 476–478. [Google Scholar] [CrossRef]
- Bazilevich, N.; Rodin, L. Schematic Maps of Productivity and Biological Turnover of Elements in the main Types of Land vegetation. Izvestiya Vsesoyuznogo Geograficheskogo Obshchestva 1967, 99, 190–194. [Google Scholar]
- Rodin, L.E.; Bazilevich, N. Production and Mineral Cycling in Terrestrial Vegetation; Oliver & Boyd: Edinburgh/London, UK, 1967. [Google Scholar]
- Anderson, K.J.; Allen, A.P.; Gillooly, J.F.; Brown, J.H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 2006, 9, 673–682. [Google Scholar] [CrossRef]
- Huston, M.A.; Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 2009, 79, 343–377. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the Primary Productivity of the World. Ecol. Stud. 1975, 4, 237–263. [Google Scholar]
- Fu, L.; Sun, W.; Wang, G. A climate-sensitive aboveground biomass model for three larch species in northeastern and northern China. Trees 2016, 31, 557–573. [Google Scholar] [CrossRef]
- Forrester, D.I.; Tachauer, I.; Annighoefer, P.; Barbeito, I.; Pretzsch, H.; Ruiz-Peinado, R.; Stark, H.; Vacchiano, G.; Zlatanov, T.; Chakraborty, T.; et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 2017, 396, 160–175. [Google Scholar] [CrossRef]
- Zeng, W.; Duo, H.; Lei, X.; Chen, X.; Wang, X.; Pu, Y.; Zou, W. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp. in China. Eur. J. For. Res. 2017, 136, 233–249. [Google Scholar] [CrossRef]
- Usoltsev, V.A.; Merganičová, K.; Konôpka, B.; Osmirko, A.A.; Tsepordey, I.S.; Chasovskikh, V.P. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central Eur. For. J. 2019, 65, 166–179. [Google Scholar] [CrossRef]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomolino, M.V.; Riddle, B.R.; Brown, J.H. Biogeography, 3rd ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2006. [Google Scholar]
- Morozov, G.F. The Theory of Forest Stand Types; Selkolkhozgiz: Moscow-Leningrad, Russia, 1931. [Google Scholar]
- Draper, N.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1966. [Google Scholar]
- Zeng, W. Developing Tree Biomass Models for Eight Major Tree Species in China. In Biomass Volume Estimation and Valorization for Energy; IntechOpen: London, UK, 2017; pp. 3–21. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, M.W.; Cunia, T. Use of dummy variables to harmonize tree biomass tables. Can. J. For. Res. 1980, 10, 483–490. [Google Scholar] [CrossRef]
- Usoltsev, V.A.; Shobairi, S.O.; Tsepordey, I.S.; Chasovskikh, V.P. Additive Allometric model of Populus sp. Single-Tree Biomass as a Basis of Regional Taxation Standards for Eurasia. Indian For. 2019, 145, 625–630. [Google Scholar]
- Grigoriev, A.; Budyko, M. The periodicity law of geographic zonality. Doklady Akademii Nauk SSSR 1956, 110, 129–132. [Google Scholar]
- Komarov, V. Meridional zonality of organisms. In Proceedings of the 1st All-Russian Congress of Russian Botanists in Petrograd, Leningrad, Russia, 16 September 1921. [Google Scholar]
- Ni, J.; Zhang, X.-S.; Scurlock, J.M. Synthesis and analysis of biomass and net primary productivity in Chinese forests. Ann. For. Sci. 2001, 58, 351–384. [Google Scholar] [CrossRef]
- Usoltsev, V.A.; Tsepordey, I.S.; Osmirko, A.A. Biological productivity of Eurasian forests due to temperature and precipitation. In Proceedings of the Forest Ecosystems of Boreal Zone: Biodiversity, Bioeconomy, Ecological Risks, All-Russian Conference with International Participation. Krasnoyarsk, Russia, 26–31 August 2019; pp. 458–460, (In Russian with English title, summary and contents). [Google Scholar]
- Hultén, E.; Lehre, J. Outline of the History of Arctic and Boreal Biota during the Quaternary Period; Cramer: New York, NY, USA, 1937. [Google Scholar]
- Tolmachev, A.I. Fundamentals of Plant Habitat Theory: Introduction to Plant Community Chorology; State University Publishing: Leningrad, Russia, 1962. [Google Scholar]
- Lavrinovich, M.V. Physical Geography of Eurasia (Regional Overview); Belarusian State University: Minsk, Belarusia, 2003; Available online: https://b-ok.cc/book/3128971/f9cd53 (accessed on July 2003). (In Russian)
- Rogers, P.C.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, Q.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu, H.; et al. A global view of aspen: Conservation science for widespread keystone systems. Glob. Ecol. Conserv. 2020, 21, 00828. [Google Scholar] [CrossRef]
- Usoltsev, V. Forest Arabesques, or Sketches of Our Trees’ Life, 3rd ed.; Radomska Szkoła Wyższa w Radomiu: Radom, Poland, 2019. [Google Scholar]
- Usoltsev, V.A. Forest Biomass and Primary Production Database for Eurasia: Digital Version, 3rd ed.; Ural State Forest Engineering University: Yekaterinburg, Russia, 2020. [Google Scholar] [CrossRef]
- World Weather Maps. 2007. Available online: https://www.mapsofworld.com/referrals/weather/ (accessed on 15 June 2007).
- Zubairov, B.; Heußner, K.-U.; Schröder, H. Searching for the best correlation between climate and tree rings in the Trans-Ili Alatau, Kazakhstan. Dendrobiology 2018, 79, 119–130. [Google Scholar] [CrossRef]
- Morley, J.W.; Batt, R.D.; Pinsky, M.L. Marine assemblages respond rapidly to winter climate variability. Glob. Chang. Biol. 2016, 23, 2590–2601. [Google Scholar] [CrossRef] [PubMed]
- Bijak, S. Tree-ring chronology of silver fir and ist dependence on climate of the Kaszubskie Lakeland (Northern Poland). Geochronometria 2010, 35, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Toromani, E.; Bojaxhi, F. Growth response of silver fir and Bosnian pine from Kosovo. South-East Eur. For. 2010, 1, 20–28. [Google Scholar] [CrossRef]
- Emanuel, W.R.; Shugart, H.H.; Stevenson, M.P. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim. Chang. 1985, 7, 29–43. [Google Scholar] [CrossRef]
- Laing, J.; Binyamin, J. Climate change effect on winter temperature and precipitation of Yellowknife, Northwest Territories, Canada from 1943 to 2011. Am. J. Clim. Chang. 2013, 2, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Felton, A.; Nilsson, U.; Sonesson, J.; Felton, A.M.; Roberge, J.-M.; Ranius, T.; Ahlström, M.; Bergh, J.; Björkman, C.; Boberg, J.; et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio 2016, 45, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Baskerville, G.L. Use of logarithmic regression in the estimation of plant biomass. Can. J. For. Res. 1972, 2, 9–53. [Google Scholar] [CrossRef]
- Lapenis, A.; Shvidenko, A.; Shepaschenko, D.; Nilsson, S.; Aiyyer, A.R. Acclimation of Russian forests to recent changes in climate. Glob. Chang. Biol. 2005, 11, 2090–2102. [Google Scholar] [CrossRef]
- Huang, J.; Tardif, J.C.; Bergeron, Y.; Denneler, B.; Berninger, F.; Girardin, M.P. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob. Chang. Biol. 2010, 16, 711–731. [Google Scholar] [CrossRef]
- Givnish, T.J. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn. 2002, 36, 703–743. [Google Scholar] [CrossRef]
- Schaphoff, S.; Reyer, C.P.; Schepaschenko, D.; Gerten, D.; Shvidenko, A. Tamm Review: Observed and projected climate change impacts on Russia’s forests and its carbon balance. For. Ecol. Manag. 2016, 361, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Spathelf, P.; Stanturf, J.; Kleine, M.; Jandl, R.; Chiatante, D.; Bölte, A. Adaptive measures: integrating adaptive forest management and forest landscape restoration. Ann. For. Sci. 2018, 75, 55. [Google Scholar] [CrossRef] [Green Version]
- Vasseur, F.; Exposito-Alonso, M.; Ayala-Garay, O.J.; Wang, G.; Enquist, B.J.; Vile, D.; Violle, C.; Weigel, D. Adaptive diversification of growth allometry in the plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2018, 115, 3416–3421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderegg, W.R.; Anderegg, L.D.L.; Kerr, K.L.; Trugman, A.T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Chang. Biol. 2019, 25, 3793–3802. [Google Scholar] [CrossRef] [PubMed]
- DeLeo, V.L.; Menge, D.N.L.; Hanks, E.M.; Juenger, T.E.; Lasky, J.R. Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Glob. Chang. Biol. 2019, 26, 523–538. [Google Scholar] [CrossRef]
- Denney, D.A.; Anderson, J.T. Natural history collections document biological responses to climate change: A commentary on DeLeo et al.(2019), Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana. Glob. Chang. Biol. 2020, 26, 340–342. [Google Scholar] [CrossRef] [Green Version]
- Bigot, S.; Buges, J.; Gilly, L.; Jacques, C.; Le Boulch, P.; Berger, M.; Delcros, P.; Domergue, J.-B.; Koehl, A.; Ley-Ngardigal, B.; et al. Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change. Glob. Chang. Biol. 2018, 24, 5573–5589. [Google Scholar] [CrossRef]
- Shelford, V.E. Animal Communities in Temperate America: As Illustrated in the Chicago region: A Study in Animal Ecology; University of Chicago Press: Chicago, IL, USA, 1913. [Google Scholar]
- Odum, E.P. Fundamentals of Ecology; Saunders: Philadelphia, PA, USA, 1971. [Google Scholar]
Species | Botanical Name | Country | Plot Quantity |
---|---|---|---|
Quaking aspen | Populus tremula L. | Russia, Ukraine, Kazakhstan, Estonia, Belarus | 188 |
David′s aspen | P. davidiana Dode | China, Japan | 129 |
Californian poplar | P. trichocarpa Torr. & A.Gray ex Hook. | France, Austria, Belgium, Netherlands | 37 |
Poplar larrity | P. laurifolia Ledeb. | Russia | 12 |
White poplar | P. alba Ledeb. | Russia, Kazakhstan | 10 |
Poplar «Robusta» | Populus × euroamericana | Ukraine | 10 |
Asiatic poplar | P. euphratica Olivier | China | 9 |
Hybrid | Populus hybrid | Japan | 8 |
Poplar berry-bearing | P. deltoids W. Bartram ex Humphry Marshall | China | 6 |
Black poplar | P. nigra L. | Russia | 2 |
Bahala poplar | Populus × bachelieri Solemacher | Bulgaria | 1 |
Ploomy poplar | P. pruinosa Schrenk | Tajikistan | 1 |
Total | 413 |
A | N | V | Pi | Tm | PRm | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ps | Pb | Pf | Pa | Pr | Pt | |||||
40 | 0.790 | 208 | 89 | 5.5 | 2.40 | 98.0 | 21.6 | 119.6 | −7 | 570 |
21 | 0.278 | 218 | 99.8 | 20.7 | 4.19 | 129.7 | 29.2 | 158.9 | −3 | 570 |
12 | 12.54 | 62.5 | 34.8 | 4.45 | 1.91 | 41.2 | 15.0 | 56.2 | −13 | 290 |
22 | 4.550 | 30 | 16.1 | 4.24 | 0.80 | 21.1 | 6.0 | 27.1 | −13 | 290 |
49 | 0.650 | 284 | 113 | 22.5 | 3.07 | 138.6 | 57.0 | 195.6 | −20 | 317 |
41 | 0.526 | 192 | 76.0 | 22.2 | 2.40 | 100.6 | 55.0 | 155.6 | −18 | 250 |
78 | 0.518 | 200 | 88.83 | 28.37 | 4.99 | 127.7 | 38.79 | 166.5 | −15 | 570 |
45 | 0.500 | 105 | 49.62 | 10.92 | 4.52 | 67.56 | 8.58 | 76.14 | −26 | 570 |
78 | 0.666 | 185 | 103.1 | 45.44 | 8.75 | 163.9 | 37.8 | 201.7 | −15 | 570 |
27 | 2.935 | 142 | 84.29 | 17.56 | 7.01 | 114.0 | 42.73 | 156.7 | −9 | 820 |
68 | 1.244 | 223 | 102.4 | 22.44 | 7.43 | 138.5 | 51.47 | 190.0 | −15 | 570 |
25 | 4.066 | 122 | 73.51 | 11.31 | 5.89 | 95.04 | 36.6 | 131.6 | −15 | 570 |
40 | 1.062 | 224 | 99.81 | 32.82 | 7.69 | 146.6 | 45.47 | 192.1 | −15 | 570 |
34 | 1.595 | 182 | 95.77 | 13.15 | 7.91 | 122.6 | 52.18 | 174.8 | −10 | 444 |
50 | 1.510 | 163 | 75.11 | 22.44 | 6.21 | 108.4 | 34.26 | 142.7 | −25 | 444 |
28 | 7.32 | 129 | 73.0 | 11.40 | 2.00 | 89.93 | 17.2 | 107.1 | −15 | 570 |
37 | 2.913 | 153 | 86.65 | 18.56 | 6.27 | 116.7 | 41.79 | 158.5 | −15 | 570 |
69 | 0.811 | 284 | 110.9 | 17.20 | 7.62 | 142.2 | 56.36 | 198.6 | −26 | 444 |
58 | 1.188 | 124 | 61.47 | 16.79 | 3.66 | 85.63 | 27.24 | 112.9 | −26 | 444 |
79 | 0.403 | 163 | 68.75 | 18.91 | 3.66 | 95.43 | 29.6 | 125.0 | −26 | 444 |
38 | 4.255 | 121 | 73.56 | 11.79 | 6.19 | 95.95 | 38.21 | 134.2 | −15 | 570 |
68 | 1.822 | 234 | 117.3 | 30.29 | 7.23 | 162.0 | 54.8 | 216.8 | −26 | 444 |
29 | 2.000 | 61 | 34.42 | 16.31 | 2.77 | 55.88 | 16.57 | 72.45 | −5 | 826 |
39 | 2.774 | 62 | 37.92 | 8.72 | 3.00 | 58.27 | 9.41 | 67.68 | −5 | 826 |
Dependent Variables | Coefficients and Independent Variables | adjR2 ** | SE *** | |||||
---|---|---|---|---|---|---|---|---|
a0 * | a1(lnA) | a2(lnV) | a3(lnN) | a5[ln(Tm + 50)] | a6(lnPRm) | |||
ln(N) | 10.7307 | −1.2994 | - | - | −2.4045 | 0.4747 | 0.623 | 0.74 |
ln(V) | 5.9573 | 0.3617 | - | −0.2589 | 0.5288 | −0.6169 | 0.534 | 0.47 |
ln(Ps) | −1.8923 | 0.2068 | 0.9123 | 0.0646 | 0.0764 | 0.0811 | 0.963 | 0.17 |
ln(Pb) | −2.8796 | 0.2421 | 0.5520 | −0.0537 | 0.3792 | 0.0678 | 0.675 | 0.44 |
ln(Pf) | −4.0545 | 0.0070 | 0.4127 | 0.1332 | −0.0589 | 0.5272 | 0.522 | 0.38 |
ln(Pr) | −3.5174 | 0.0497 | 0.7113 | 0.0563 | 0.2306 | 0.3533 | 0.720 | 0.35 |
ln(Pa) | −1.2511 | 0.1782 | 0.8183 | 0.0463 | 0.0984 | 0.0960 | 0.955 | 0.17 |
ln(Pt) | −1.1022 | 0.0477 | 0.7969 | 0.0486 | 0.1467 | 0.1849 | 0.918 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usoltsev, V.A.; Chen, B.; Shobairi, S.O.R.; Tsepordey, I.S.; Chasovskikh, V.P.; Anees, S.A. Patterns for Populus spp. Stand Biomass in Gradients of Winter Temperature and Precipitation of Eurasia. Forests 2020, 11, 906. https://doi.org/10.3390/f11090906
Usoltsev VA, Chen B, Shobairi SOR, Tsepordey IS, Chasovskikh VP, Anees SA. Patterns for Populus spp. Stand Biomass in Gradients of Winter Temperature and Precipitation of Eurasia. Forests. 2020; 11(9):906. https://doi.org/10.3390/f11090906
Chicago/Turabian StyleUsoltsev, Vladimir Andreevich, Baozhang Chen, Seyed Omid Reza Shobairi, Ivan Stepanovich Tsepordey, Viktor Petrovich Chasovskikh, and Shoaib Ahmad Anees. 2020. "Patterns for Populus spp. Stand Biomass in Gradients of Winter Temperature and Precipitation of Eurasia" Forests 11, no. 9: 906. https://doi.org/10.3390/f11090906
APA StyleUsoltsev, V. A., Chen, B., Shobairi, S. O. R., Tsepordey, I. S., Chasovskikh, V. P., & Anees, S. A. (2020). Patterns for Populus spp. Stand Biomass in Gradients of Winter Temperature and Precipitation of Eurasia. Forests, 11(9), 906. https://doi.org/10.3390/f11090906