Genetic Diversity and Structure of Japanese Endemic Genus Thujopsis (Cupressaceae) Using EST-SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Study Sites
2.2. DNA Extraction and Genotyping
2.3. Data Analysis
2.3.1. Genetic Diversity within Populations
2.3.2. Genetic Structures among Populations and Distribution Regions
3. Results
3.1. Genetic Diversity across All Populations
3.2. Genetic Structure among Populations
4. Discussion
4.1. Genetic Diversity at EST-SSR in Thujopsis
4.2. Comparison of Genetic Structure between Td and Th
4.3. Contributions of the Breeding Program for the Genus Thujopsis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Locus | Group | Repeat Motif | Primer Sequence (5′−3′) | Allele Size Range (bp) | |
---|---|---|---|---|---|
Tdest1 | 5 | (CT)11 | F: | GCCTCCCTCGCGCCATCAG GATTTTCTGACAGGCTTTGTTCTC | 137–173 |
R: | GTTTCTTAATTCCCAAGAGTGCTTATGAGTTC | ||||
Tdest3 | 1 | (AT)11 | F: | GCCTCCCTCGCGCCATCAG CGGCCCAGGTTTCTGTACTC | 155–184 |
R: | GTTTCTTGCCCATTAAAGTCGGGTATTG | ||||
Tdest11 | 3 | (AT)12 | F: | GCCTCCCTCGCGCCATCAGTGGGATACATACTGCATTTGTTAGG | 136–161 |
R: | GTTTCTTCTCCCCAAGCAAGTCACCAC | ||||
Tdest14 | 4 | (AG)12 | F: | GCCTCCCTCGCGCCATCAGCAGTAGACAATTTCTGCAAATCACC | 152–190 |
R: | GTTTCTTTCCCTTTTGTTGGCATTATAGG | ||||
Tdest17 | 3 | (AG)12 | F: | GCCTCCCTCGCGCCATCAGGCTTTTGATGTCCGCTATATCCTC | 160–176 |
R: | GTTTCTTGGAGATTCCAATGTTTGTCATGC | ||||
Tdest21 | 3 | (AG)13 | F: | GCCTCCCTCGCGCCATCAGGTCCATCCATTCTCACTCCAAAG | 228–292 |
R: | GTTTCTTAGCAGACCCTATTTCACAGCATC | ||||
Tdest24 | 4 | (AT)15 | F: | GCCTCCCTCGCGCCATCAGATACCATACAGCTTTCAGCCAG | 239–266 |
R: | GTTTCTTGCAGAACAAACGAATCAATGAGAG | ||||
Tdest29 | 3 | (AC)16 | F: | GCCTCCCTCGCGCCATCAGAAACGACTCTGCTGGATTTCAC | 215–243 |
R: | GTTTCTTTTCCGCTCTTGATTTTCTCTCC | ||||
Tdest35 | 2 | (CT)15 | F: | GCCTCCCTCGCGCCATCAGAAGCTATTGACCCTTCTCAGGATAC | 191–227 |
R: | GTTTCTTCCATGTTGAATTGTTCCCTTTC | ||||
Tdest37 | 5 | (ATC)9 | F: | GCCTCCCTCGCGCCATCAGCCAAGCGACAGAAAACCATTC | 158–175 |
R: | GTTTCTTTCAGTCTCTTCCTCCTCCTCCTC | ||||
Tdest38 | 1 | (ACC)9 | F: | GCCTCCCTCGCGCCATCAGTGACCATTCCTCCTCCTCCTC | 114–137 |
R: | GTTTCTTCATGTTTGCAGTTGAGAGAAGACC | ||||
Tdest39 | 1 | (GCT)9 | F: | GCCTCCCTCGCGCCATCAGGCAGCACAGGAGAAGAAAGATG | 153–186 |
R: | GTTTCTTACAACAGCCACAACGTGTCC | ||||
Tdest42 | 1 | (ACC)9 | F: | GCCTCCCTCGCGCCATCAGCTCCCTATCCCAACACCAACAC | 225–258 |
R: | GTTTCTTTGCCTACCTATCCTTCTTCTTCTCC | ||||
Tdest43 | 2 | (CGG)9 | F: | GCCTCCCTCGCGCCATCAGGGTCCAATGCAGGTAATACAAGAAG | 134–167 |
R: | GTTTCTTTCCCCGCCAAGATACTCAAC | ||||
Tdest45 | 5 | (GGT)12 | F: | GCCTCCCTCGCGCCATCAGTGAGGGTGGTGAGACAATTC | 208–235 |
R: | GTTTCTTCAAGATTTGGAACTCCTGCAAC | ||||
Tdest49 | 2 | (GAT)10 | F: | GCCTCCCTCGCGCCATCAGGTGCCCTCAAAGTTACAGCAGTC | 221–248 |
R: | GTTTCTTGCAATCACCTCATCCTCACTTC | ||||
Tdest53 | 4 | (CTT)13 | F: | GCCTCCCTCGCGCCATCAGCCAAAGCCCTTCCAGTAACATC | 241–305 |
R: | GTTTCTTGATGGAATGAGTGAATCTCAGGAAC | ||||
Tdset56 | 2 | (AAG)9 | F: | GCCTCCCTCGCGCCATCAGCATTGCCCTTTGGAATATAGGATC | 142–167 |
R: | GTTTCTTGTTGCCCATCTGCTCTTCTTC | ||||
Tdest58 | 4 | (AAG)13 | F: | GCCTCCCTCGCGCCATCAGCTGAACGGCGCCCTAATCTC | 151–188 |
R: | GTTTCTTGCCCACTCCTCAAATCCAAC |
Locus | TA | Ho | HT | FIS | FST | RST | GST | G’ST | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tdest1 | 19 | 0.889 | 0.904 | −0.037 | * | 0.065 | ** | 0.097 | ** | 0.052 | ** | 0.380 | ** |
Tdest3 | 13 | 0.503 | 0.606 | 0.064 | ** | 0.135 | ** | 0.058 | ** | 0.113 | ** | 0.251 | ** |
Tdest11 | 14 | 0.789 | 0.873 | 0.032 | ** | 0.078 | ** | 0.289 | ** | 0.066 | ** | 0.371 | ** |
Tdest14 | 20 | 0.864 | 0.904 | 0.014 | * | 0.037 | ** | 0.024 | * | 0.031 | ** | 0.260 | ** |
Tdest17 | 10 | 0.624 | 0.781 | 0.054 | ** | 0.175 | ** | 0.069 | ** | 0.157 | ** | 0.474 | ** |
Tdest21 | 32 | 0.891 | 0.927 | 0.004 | ** | 0.041 | ** | 0.021 | * | 0.035 | ** | 0.349 | ** |
Tdest24 | 16 | 0.710 | 0.767 | 0.023 | ** | 0.054 | ** | 0.205 | ** | 0.053 | ** | 0.199 | ** |
Tdest29 | 8 | 0.358 | 0.409 | 0.025 | ** | 0.118 | ** | 0.153 | ** | 0.101 | ** | 0.163 | ** |
Tdest35 | 32 | 0.852 | 0.935 | 0.040 | ** | 0.059 | ** | 0.095 | ** | 0.051 | ** | 0.470 | ** |
Tdest37 | 5 | 0.398 | 0.484 | 0.018 | ** | 0.207 | ** | 0.205 | ** | 0.164 | ** | 0.281 | ** |
Tdest38 | 10 | 0.655 | 0.692 | −0.034 | ** | 0.108 | ** | 0.104 | ** | 0.085 | ** | 0.239 | ** |
Tdest39 | 7 | 0.456 | 0.490 | −0.056 | ** | 0.143 | ** | 0.173 | ** | 0.118 | ** | 0.212 | ** |
Tdest42 | 13 | 0.565 | 0.732 | 0.031 | ** | 0.238 | ** | 0.054 | ** | 0.204 | ** | 0.502 | ** |
Tdest43 | 14 | 0.714 | 0.753 | −0.011 | ** | 0.077 | ** | 0.121 | ** | 0.062 | ** | 0.218 | ** |
Tdest45 | 9 | 0.462 | 0.581 | 0.096 | ** | 0.144 | ** | 0.136 | ** | 0.120 | ** | 0.252 | ** |
Tdest49 | 8 | 0.228 | 0.272 | 0.051 | ** | 0.121 | ** | 0.125 | ** | 0.116 | ** | 0.155 | ** |
Tdest53 | 21 | 0.863 | 0.888 | −0.025 | ** | 0.064 | ** | 0.099 | ** | 0.052 | ** | 0.342 | ** |
Tdest56 | 8 | 0.626 | 0.730 | −0.010 | ** | 0.183 | ** | 0.082 | ** | 0.152 | ** | 0.411 | ** |
Tdest58 | 12 | 0.361 | 0.402 | 0.044 | ** | 0.065 | ** | 0.068 | ** | 0.060 | ** | 0.098 | ** |
average | 14.3 | 0.621 | 0.691 | 0.014 | ** | 0.105 | ** | 0.096 | ** | 0.088 | ** | 0.246 | ** |
Allele Frequencies across All Populations | |||||
---|---|---|---|---|---|
Locus | Allele Size | Td | Th | Td/Th | Th/Td |
Tdest24 | N | 230 | 379 | ||
239 | 0.152 | 0.003 | 57.6 | 0.0 | |
242 | 0.000 | 0.001 | |||
243 | 0.030 | 0.000 | |||
245 | 0.217 | 0.090 | 2.4 | 0.4 | |
247 | 0.424 | 0.429 | 1.0 | 1.0 | |
249 | 0.072 | 0.110 | 0.7 | 1.5 | |
251 | 0.057 | 0.173 | 0.3 | 3.1 | |
253 | 0.004 | 0.074 | 0.1 | 17.0 | |
255 | 0.002 | 0.051 | 0.0 | 23.7 | |
256 | 0.002 | 0.008 | 0.3 | 3.6 | |
257 | 0.026 | 0.028 | 0.9 | 1.1 | |
259 | 0.002 | 0.003 | 0.8 | 1.2 | |
261 | 0.009 | 0.004 | 2.2 | 0.5 | |
263 | 0.002 | 0.022 | 0.1 | 10.3 | |
265 | 0.000 | 0.004 | |||
266 | 0.000 | 0.001 | |||
Tdest39 | N | 230 | 379 | ||
153 | 0.952 | 0.575 | 1.7 | 0.6 | |
156 | 0.000 | 0.001 | |||
159 | 0.039 | 0.243 | 0.2 | 6.2 | |
162 | 0.000 | 0.003 | |||
165 | 0.009 | 0.170 | 0.1 | 19.6 | |
168 | 0.000 | 0.003 | |||
186 | 0.000 | 0.005 | |||
Tdest42 | N | 230 | 379 | ||
225 | 0.028 | 0.001 | 21.4 | 0.0 | |
228 | 0.000 | 0.003 | |||
231 | 0.004 | 0.018 | 0.2 | 4.2 | |
234 | 0.022 | 0.000 | |||
237 | 0.041 | 0.215 | 0.2 | 5.2 | |
240 | 0.015 | 0.001 | 11.5 | 0.1 | |
243 | 0.498 | 0.042 | 11.8 | 0.1 | |
244 | 0.102 | 0.000 | |||
246 | 0.048 | 0.600 | 0.1 | 12.5 | |
249 | 0.185 | 0.062 | 3.0 | 0.3 | |
252 | 0.007 | 0.041 | 0.2 | 6.3 | |
255 | 0.050 | 0.007 | 7.6 | 0.1 | |
258 | 0.000 | 0.009 | |||
Tdest56 | N | 230 | 379 | ||
142 | 0.002 | 0.000 | |||
147 | 0.000 | 0.001 | |||
152 | 0.370 | 0.080 | 4.6 | 0.2 | |
153 | 0.011 | 0.000 | |||
155 | 0.022 | 0.463 | 0.0 | 21.3 | |
161 | 0.478 | 0.230 | 2.1 | 0.5 | |
164 | 0.117 | 0.223 | 0.5 | 1.9 | |
167 | 0.000 | 0.003 |
References
- Neale, D.B.; Wheeler, N.C. The Conifers: Genomes, Variation and Evolution; Springer Science+Business Media: New York, NY, USA, 2019; ISBN 978-3-319-46806-8. [Google Scholar]
- Rice, K.J.; Emery, N.C. Managing microevolution: Restoration in the face of global change. Front. Ecol. Environ. 2003, 1, 469–478. [Google Scholar] [CrossRef]
- Grassi, F.; Labra, M.; Imazio, S.; Rubio, R.O.; Failla, O.; Scienza, A.; Sala, F. Phylogeographical structure and conservation genetics of wild grapevine. Conserv. Genet. 2006, 7, 837–845. [Google Scholar] [CrossRef]
- Matsumoto, A.; Uchida, K.; Taguchi, Y.; Tani, N.; Tsumura, Y. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers. J. Plant Res. 2010, 123, 689–699. [Google Scholar] [CrossRef]
- Rajora, O.P.; Mosseler, A. Challenges and opportunities for conservation of forest genetic resources. Euphytica 2001, 118, 197–212. [Google Scholar] [CrossRef]
- Cavers, S.; Navarro, C.; Lowe, A.J. Targeting genetic resource conservation in widespread species: A case study of Cedrela odorata L. For. Ecol. Manag. 2004, 197, 285–294. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Ran, J.H.; Wang, X.Q. Three genome-based phylogeny of Cupressaceae s.l.: Further evidence for the evolution of gymnosperms and southern hemisphere biogeography. Mol. Phylogenet. Evol. 2012, 64, 452–470. [Google Scholar] [CrossRef]
- Hayashi, Y. Taxonomical and Phytogeographical Study of Japanese Conifers; Norin Shuppan: Tokyo, Japan, 1960. (In Japanese) [Google Scholar]
- Kurata, S. Illustrated Important Forest Trees of Japan; Chikyu Shuppan Co., LTD: Tokyo, Japan, 1964. (In Japanese) [Google Scholar]
- Ikeda, T.; Tokuda, N.; Tomaru, N. Identification of Thujopsis dolabrata var. hondae clones and their distribution across plantations in Ishikawa Prefecture. J. For. Res. 2018, 23, 105–111. [Google Scholar] [CrossRef]
- Higuchi, Y.; Matsumoto, A.; Moriguchi, Y.; Mishima, K.; Tanaka, K.; Yada, Y.; Takata, K.; Watanabe, A.; Hirao, T.; Tsumura, Y.; et al. Genetic diversity and structure using microsatellite markers in natural and breeding populations of Thujopsis dolabrata var. hondae. J. Jpn. For. Soc. 2012, 94, 247–251. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Mishima, K.; Takata, K.; Tomaru, N. The origin and genetic variability of vegetatively propagated clones identified from old planted trees and plantations of Thujopsis dolabrata var. hondae in Ishikawa Prefecture, Japan. Tree Genet. Genomes 2019, 15, 80. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Hasegawa, Y.; Mishima, K.; Takata, K. Isolation and characterization of 22 EST-SSR markers for the Genus Thujopsis (Cupressaceae). Appl. Plant Sci. 2015, 3, 1400101. [Google Scholar] [CrossRef]
- Blacket, M.J.; Robin, C.; Good, R.T.; Lee, S.F.; Miller, A.D. Universal primers for fluorescent labelling of PCR fragments—An efficient and cost-effective approach to genotyping by fluorescence. Mol. Ecol. Resour. 2012, 12, 456–463. [Google Scholar] [CrossRef]
- Goudet, J. A Program to Estimate and Test Population Genetics Parameters. Available online: https://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 25 May 2020).
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139, 457–462. [Google Scholar]
- Hardy, O.J.; Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2002, 2, 618–620. [Google Scholar] [CrossRef] [Green Version]
- Hedrick, P.W. A standardized genetic differentiation measure. Evolution 2005, 59, 1633–1638. [Google Scholar] [CrossRef]
- Meirmans, P.G.; Hedrick, P.W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 2011, 11, 5–18. [Google Scholar] [CrossRef]
- Piry, S.; Luikart, G.; Cornuet, J.M. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. HierFstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef] [Green Version]
- De Meeûs, T.; Goudet, J. A step-by-step tutorial to use HierFstat to analyse populations hierarchically structured at multiple levels. Infect. Genet. Evol. 2007, 7, 731–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Takezaki, N.; Nei, M.; Tamura, K. POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with windows interface. Mol. Biol. Evol. 2010, 27, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Takezaki, N.; Nei, M.; Tamura, K. POPTREE2_web. Available online: http://www.kms.ac.jp/~genomelb/takezaki/poptree2/poptree2_web.html (accessed on 12 June 2020).
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, S.; Takeuchi, Y.; Yamasaki, M.; Sakurai, S.; Isagi, Y. Lineage admixture during postglacial range expansion is responsible for the increased gene diversity of Kalopanax septemlobus in a recently colonised territory. Heredity 2011, 107, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Meng, K.; Fan, Q.; Tan, W.; Liao, W.; Chen, S. Development and validation of EST-SSR markers for Fokienia hodginsii (Cupressaceae). Appl. Plant Sci. 2017, 5, 1600152. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Chu, F.H.; Liu, S.C.; Tseng, Y.H.; Huang, Y.S.; Ma, L.T.; Wang, C.T.; You, Y.T.; Hsu, S.Y.; Hsieh, H.C.; et al. Isolation and characterization of SSR and EST-SSR loci in Chamaecyparis formosensis (Cupressaceae). Appl. Plant Sci. 2018, 6, e01175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, F.; Lea, V.; Law, J.; Wolters, P.; Powell, W.; Donini, P. Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 2003, 133, 359–366. [Google Scholar] [CrossRef]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Takahashi, T.; Tani, N.; Taira, H.; Tsumura, Y. Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. J. Plant Res. 2005, 118, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Iwaizumi, M.G.; Takahashi, M.; Isoda, K.; Austerlitz, F. Consecutive five-year analysis of paternal and maternal gene flow and contributions of gametic heterogeneities to overall genetic composition of dispersed seeds of Pinus densiflora (Pinaceae). Am. J. Bot. 2013, 100, 1896–1904. [Google Scholar] [CrossRef]
- Katsuki, T.; Shimada, K.; Yoshimaru, H. Process to extinction and genetic structure of a threatened Japanese conifer species, Picea koyamae. J. For. Res. 2011, 16, 292–301. [Google Scholar] [CrossRef]
- Aizawa, M.; Yoshimaru, H.; Katsuki, T.; Kaji, M. Imprint of post-glacial history in a narrowly distributed endemic spruce, Picea alcoquiana, in central Japan observed in nuclear microsatellites and organelle DNA markers. J. Biogeogr. 2008, 35, 1295–1307. [Google Scholar] [CrossRef]
- Aizawa, M.; Yoshimaru, H.; Saito, H.; Katsuki, T.; Kawahara, T.; Kitamura, K.; Shi, F.; Sabirov, R.; Kaji, M. Range-wide genetic structure in a north-east Asian spruce (Picea jezoensis) determined using nuclear microsatellite markers. J. Biogeogr. 2009, 36, 996–1007. [Google Scholar] [CrossRef]
- Iwaizumi, M.G.; Tsuda, Y.; Ohtani, M.; Tsumura, Y.; Takahashi, M. Recent distribution changes affect geographic clines in genetic diversity and structure of Pinus densiflora natural populations in Japan. For. Ecol. Manag. 2013, 304, 407–416. [Google Scholar] [CrossRef]
- Kawase, D.; Tsumura, Y.; Tomaru, N.; Seo, A.; Yumoto, T. Genetic structure of an endemic Japanese conifer, Sciadopitys verticillata (Sciadopityaceae), by using microsatellite markers. J. Hered. 2010, 101, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Suyama, Y.; Tsumura, Y.; Ohba, K. A cline of allozyme variation in Abies mariesii. J. Plant Res. 1997, 110, 219–226. [Google Scholar] [CrossRef]
- Tani, N.; Tomaru, N.; Araki, M.; Ohba, K. Genetic diversity and differentiation in populations of Japanese stone pine (Pinus pumila) in Japan. Can. J. For. Res. 1996, 26, 1454–1462. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Godt, M.J.W.; Sherman-Broyles, S.L. Factors influencing levels of genetic diversity in woody plant species. New For. 1992, 6, 95–124. [Google Scholar] [CrossRef]
- Hewitt, G.M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999, 68, 87–112. [Google Scholar] [CrossRef]
- Baucom, R.S.; Estill, J.C.; Cruzan, M.B. The effect of deforestation on the genetic diversity and structure in Acer saccharum (Marsh): Evidence for the loss and restructuring of genetic variation in a natural system. Conserv. Genet. 2005, 6, 39–50. [Google Scholar] [CrossRef]
- O’Connell, L.M.; Mosseler, A.; Rajora, O.P. Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 2006, 97, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Fady, B.; Lefèvre, F.; Vendramin, G.G.; Ambert, A.; Régnier, C.; Bariteau, M. Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conserv. Genet. 2008, 9, 85–95. [Google Scholar] [CrossRef]
- Tsukada, M. The history of Cryptomeria japonica (sugi): The last 15000 years. Kagaku Sci. 1980, 50, 538–546. (In Japanese) [Google Scholar]
- Hiraoka, K.; Tomaru, N. Genetic divergence in nuclear genomes between populations of Fagus crenata along the Japan Sea and Pacific sides of Japan. J. Plant Res. 2009, 122, 269–282. [Google Scholar] [CrossRef]
- Hu, F.S.; Hampe, A.; Petit, R.J. Paleoecology meets genetics: Deciphering past vegetational dynamics. Front. Ecol. Environ. 2009, 7, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.K.; Uchiyama, K.; Nakao, K.; Moriguchi, Y.; Jose-Maldia, L.S.; Tsumura, Y. Evidence for cryptic northern refugia in the last glacial period in Criptomeria japonica. Ann. Bot. 2014, 114, 1687–1700. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, Y.; Ide, Y. Wide-range analysis of genetic structure of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood in the cool temperate zone of Japan. Mol. Ecol. 2005, 14, 3929–3941. [Google Scholar] [CrossRef]
- Aoyama, T. The properties of cold environment for Thujopsis dolabrata var. hondai and Criptomeria japonica in the northeastern Japan. Q. J. Geogr. 1995, 47, 91–102. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K. Forest tree breeding project in Aomori Prefecture to promote excellent seeds and seedlings. For. Genet. Tree Breed. 2013, 2, 139–141. (In Japanese) [Google Scholar]
- Higuchi, Y.; Itou, S. Test on breeding of Hiba plus trees (I) seed production characteristics of Hiba plus trees selected from Sado Island. Bull. Niigata Prefect. For. Res. Inst. 2012, 53, 1–6. (In Japanese) [Google Scholar]
No | Pop Name | Pop Code | Prefecture | Distribution Region | Latitude/Longitude | N |
---|---|---|---|---|---|---|
1 | Minamidate | MD | Hokkaido | var. hondae | 41.870072,140.283394 | 15 |
2 | Todogawa | TG | Hokkaido | var. hondae | 41.823216,140.208334 | 23 |
3 | Okoppe | OK | Aomori | var. hondae | 41.478333,140.952778 | 27 |
4 | Ohata | OH | Aomori | var. hondae | 41.386911,141.048666 | 30 |
5 | Higashidori | HD | Aomori | var. hondae | 41.085490,141.314990 | 30 |
6 | Nakazato | NZ | Aomori | var. hondae | 40.987595,140.456850 | 31 |
7 | Ajigasawa | AS | Aomori | var. hondae | 40.677765,140.184354 | 12 |
8 | Choubousan | CB | Aomori | var. hondae | 40.903131,140.605565 | 15 |
9 | Juniko | JN | Aomori | var. hondae | 40.558209,139.964216 | 30 |
10 | Owani | OW | Aomori | var. hondae | 40.448351,140.590625 | 22 |
11 | Omyoujin | OM | Iwate | var. hondae | 39.654310,140.896561 | 29 |
12 | Hayachine | HC | Iwate | var. hondae | 39.582572,141.481268 | 24 |
13 | Goyousan | GY | Iwate | var. hondae | 39.207849,141.716187 | 24 |
14 | Kaminoyama | KM | Yamagata | var. hondae | 38.083196,140.304773 | 19 |
15 | Sado | SD | Niigata | var. hondae | 38.215756,138.451880 | 31 |
16 | Suzu | SZ | Ishikawa | var. hondae | 37.402306,137.165028 | 17 |
17 | Minakami | MK | Gunma | var. dolabrata | 36.839137,138.972695 | 35 |
18 | Nikko | NK | Tochigi | var. dolabrata | 36.822614,139.440342 | 48 |
19 | Kiso | KS | Nagano | var. dolabrata | 35.727433,137.620934 | 32 |
20 | Kuraiyama | KR | Gifu | var. dolabrata | 35.985774,137.216638 | 35 |
21 | Toyo-oka | TO | Hyougo | var. dolabrata | 35.509750,134.637190 | 44 |
22 | Obitani | OB | Tokushima | var. dolabrata | 33.844595,134.327933 | 36 |
Variety | No | Pop Code | N | Allele Number | Allelic Richness | Private Allele | Ho | He | FIS |
---|---|---|---|---|---|---|---|---|---|
Th | 1 | MD | 15 | 6.30 | 5.86 | 1 | 0.646 | 0.639 | 0.025 |
2 | TG | 23 | 6.70 | 5.54 | 1 | 0.593 | 0.623 | 0.071 | |
3 | OK | 27 | 7.50 | 5.97 | 2 | 0.673 | 0.662 | 0.002 | |
4 | OH | 30 | 8.00 | 6.02 | 1 | 0.628 | 0.664 | 0.071 | |
5 | HD | 30 | 7.80 | 5.93 | 2 | 0.646 | 0.641 | 0.010 | |
6 | NZ | 31 | 8.70 | 6.55 | 0 | 0.689 | 0.682 | 0.005 | |
7 | AS | 12 | 5.80 | 5.84 | 3 | 0.746 | 0.646 | −0.112 | |
8 | CB | 15 | 6.50 | 6.12 | 0 | 0.662 | 0.660 | 0.032 | |
9 | JN | 30 | 7.80 | 6.08 | 3 | 0.681 | 0.664 | −0.009 | |
10 | OW | 22 | 6.80 | 5.76 | 1 | 0.624 | 0.636 | 0.042 | |
11 | OM | 29 | 7.90 | 6.13 | 4 | 0.679 | 0.663 | −0.006 | |
12 | HC | 24 | 6.80 | 5.56 | 1 | 0.618 | 0.603 | −0.004 | |
13 | GY | 24 | 7.60 | 6.19 | 0 | 0.672 | 0.651 | −0.012 | |
14 | KM | 19 | 6.70 | 5.87 | 3 | 0.637 | 0.624 | 0.006 | |
15 | SD | 31 | 7.30 | 5.67 | 0 | 0.637 | 0.623 | −0.005 | |
16 | SZ | 17 | 6.50 | 5.74 | 1 | 0.573 | 0.587 | 0.054 | |
Average | 7.17 | 5.93 | 1.4 | 0.650 | 0.642 | ||||
Td | 17 | MK | 35 | 7.20 | 5.61 | 1 | 0.609 | 0.611 | 0.018 |
18 | NK | 48 | 7.30 | 5.24 | 5 | 0.554 | 0.584 | 0.062 | |
19 | KS | 32 | 6.40 | 5.15 | 1 | 0.554 | 0.561 | 0.027 | |
20 | KR | 35 | 6.20 | 4.70 | 2 | 0.496 | 0.500 | 0.022 | |
21 | TO | 44 | 5.90 | 4.68 | 1 | 0.542 | 0.548 | 0.023 | |
22 | OB | 36 | 5.50 | 4.20 | 1 | 0.513 | 0.504 | −0.005 | |
Average | 6.42 | 4.93 | 1.8 | 0.545 | 0.551 |
AMOVA | Hierarchical F Statistics | ||||||
---|---|---|---|---|---|---|---|
Source of Variation | Variance Components | Percentage of Variation | F | 95% CI | |||
Among Region | 0.606 | 8.80 | * | FRegion/Total | 0.088 | * | 0.050–0.136 |
Among Pop | 0.393 | 5.71 | * | FPop/Region | 0.062 | * | 0.049–0.079 |
Within Pop | 5.889 | 85.49 | * | FInd/Pop | 0.018 | ns | 0.004–0.035 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inanaga, M.; Hasegawa, Y.; Mishima, K.; Takata, K. Genetic Diversity and Structure of Japanese Endemic Genus Thujopsis (Cupressaceae) Using EST-SSR Markers. Forests 2020, 11, 935. https://doi.org/10.3390/f11090935
Inanaga M, Hasegawa Y, Mishima K, Takata K. Genetic Diversity and Structure of Japanese Endemic Genus Thujopsis (Cupressaceae) Using EST-SSR Markers. Forests. 2020; 11(9):935. https://doi.org/10.3390/f11090935
Chicago/Turabian StyleInanaga, Michiko, Yoichi Hasegawa, Kentaro Mishima, and Katsuhiko Takata. 2020. "Genetic Diversity and Structure of Japanese Endemic Genus Thujopsis (Cupressaceae) Using EST-SSR Markers" Forests 11, no. 9: 935. https://doi.org/10.3390/f11090935
APA StyleInanaga, M., Hasegawa, Y., Mishima, K., & Takata, K. (2020). Genetic Diversity and Structure of Japanese Endemic Genus Thujopsis (Cupressaceae) Using EST-SSR Markers. Forests, 11(9), 935. https://doi.org/10.3390/f11090935