Comparative Survey of Morphological Variations and Plastid Genome Sequencing Reveals Phylogenetic Divergence between Four Endemic Ilex Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Phenotype Quantification and Determination of DNA Content
2.3. Plastome Sequencing, Assembly, Annotation, Codon Usage, and Repeat Analyses
2.4. Plastome Divergence and Phylogenetic Analyses
3. Results
3.1. Variation of the Morphological Trait and Nuclear DNA Content
3.2. The Plastid Genome Features and Sequence Divergence
3.3. Analyses of SSRs and Long Repeat Sequences
3.4. Comparative Analyses of Complete Plastomes in Ilex Species
3.5. Phylogenetic Analyses of Ilex in Aquifoliaceae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yao, X.; Tan, Y.-H.; Liu, Y.-Y.; Song, Y.; Yang, J.-B.; Corlett, R.T. Chloroplast genome structure in Ilex (Aquifoliaceae). Sci. Rep. 2016, 6, 28559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuénoud, P.; Spichiger, R.; Andrews, S.; Manen, J.-F.; Martinez, M.A.D.P.; Loizeau, P.-A. Molecular Phylogeny and Biogeography of the Genus Ilex L. (Aquifoliaceae). Ann. Bot. 2000, 85, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Manen, J.-F.; Barriera, G.; Loizeau, P.-A.; Naciri, Y. The history of extant Ilex species (Aquifoliaceae): Evidence of hybridization within a Miocene radiation. Mol. Phylogenetics Evol. 2010, 57, 961–977. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.M.; Giberti, G.C.; Poggio, L. Molecular analyses of the genus Ilex (Aquifoliaceae) in southern South America, evidence from AFLP and ITS sequence data. Am. J. Bot. 2005, 92, 352–369. [Google Scholar] [CrossRef] [PubMed]
- Tsang, A.C.; Corlett, R.T. Reproductive biology of the Ilex species (Aquifoliaceae) in Hong Kong, China. Can. J. Bot. 2005, 83, 1645–1654. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Song, Y.; Yang, J.; Tan, Y.; Corlett, R.T. Phylogeny and biogeography of the hollies (Ilex, L., Aquifoliaceae). J. Syst. Evol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Wu, F.; Fang, X. Middle Eocene East Asian monsoon prevalence over southern China: Evidence from palynological records. Glob. Planet. Change 2019, 175, 13–26. [Google Scholar] [CrossRef]
- Hao, D.; Gu, X.; Xiao, P.; Liang, Z.; Xu, L.; Peng, Y. Research progress in the phytochemistry and biology of Ilex pharmaceutical resources. Acta Pharm. Sin. B 2013, 3, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Pang, L.; Li, J.; Song, J.-L.; Qiu, L.-H. Apoptosis Inducing Effects of Kuding Tea Polyphenols in Human Buccal Squamous Cell Carcinoma Cell Line BcaCD885. Nutrients 2014, 6, 3084–3100. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.; Xu, C.; Xue, Y.; Ruan, Q.; Yang, B.; Liu, Z.; Cui, H.; Zhang, L.; Zhao, Z.; Jin, J. The therapeutic effect of Ilex pubescens extract on blood stasis model rats according to serum metabolomics. J. Ethnopharmacol. 2018, 227, 18–28. [Google Scholar] [CrossRef]
- Berté, K.A.S.; Beux, M.R.; Spada, P.K.W.D.S.; Salvador, M.; Hoffmann-Ribani, R. Chemical Composition and Antioxidant Activity of Yerba-Mate (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) Extract as Obtained by Spray Drying. J. Agric. Food Chem. 2011, 59, 5523–5527. [Google Scholar] [CrossRef] [PubMed]
- Bracesco, N.; Sanchez, A.G.; Contreras, V.; Menini, T.; Gugliucci, A. Recent advances on Ilex paraguariensis research: Minireview. J. Ethnopharmacol. 2011, 136, 84–378. [Google Scholar] [CrossRef] [PubMed]
- Debat, H.J.; Grabiele, M.; Aguilera, P.M.; Bubillo, R.E.; Otegui, M.B.; Ducasse, D.A.; Zapata, P.D.; Marti, D.A. Exploring the Genes of Yerba Mate (Ilex paraguariensis A. St.-Hil.) by NGS and De Novo Transcriptome Assembly. PLoS ONE 2014, 9, e109835. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.C.; Gu, X.-J.; Xiao, P.G. Phytochemistry and biology of Ilex pharmaceutical resources. In Medicinal Plants; Elsevier: Amsterdam, The Netherlands, 2015; pp. 531–585. [Google Scholar]
- Kim, H.K.; Saifullah; Khan, S.; Wilson, E.G.; Kricun, S.D.P.; Meissner, A.; Goraler, S.; Deelder, A.M.; Choi, Y.H.; Verpoorte, R. Metabolic classification of South American Ilex species by NMR-based metabolomics. Phytochemistry 2010, 71, 773–784. [Google Scholar] [CrossRef]
- Evens, Z.; Stellpflug, S. Holiday Plants with Toxic Misconceptions. West. J. Emerg. Med. 2012, 13, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Rendell, S.; Ennos, R.A. Chloroplast DNA diversity of the dioecious European tree Ilex aquifolium L. (English holly). Mol. Ecol. 2003, 12, 2681–2688. [Google Scholar] [CrossRef]
- Spooner, D.M.; Van Den Berg, R.G.; Rivera-Peña, A.; Velguth, P.; Del Rio, A.; Salas-López, A. Taxonomy of Mexican and Central American Members of Solanum series Conicibaccata (sect. Petota). Syst. Bot. 2001, 26, 743–756. [Google Scholar]
- Beaulieu, J.M.; Leitch, I.J.; Patel, S.; Pendharkar, A.; Knight, C.A. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 2008, 179, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R. Does Cell Size Impact Chloroplast Genome Size? Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef]
- Sabater, B. Evolution and Function of the Chloroplast. Current Investigations and Perspectives. Int. J. Mol. Sci. 2018, 19, 3095. [Google Scholar] [CrossRef] [Green Version]
- Manen, J.F.; Boulter, M.C.; Naciri-Graven, Y. The complex history of the genus Ilex, L. (Aquifoliaceae): Evidence from the comparison of plastid and nuclear DNA sequences and from fossil data. Plant. Syst. Evol. 2002, 235, 79–98. [Google Scholar] [CrossRef]
- Nock, C.J.; Waters, D.L.E.; Edwards, M.A.; Bowen, S.G.; Rice, N.; Cordeiro, G.M.; Henry, R.J. Chloroplast genome sequences from total DNA for plant identification. Plant. Biotechnol. J. 2011, 9, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Parks, M.; Cronn, R.; Liston, A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Cao, M.; Wu, Y.; Cai, L.; Cao, Y.; Ding, H.; Cui, P.; Wu, J.; Wang, Z.; Le, Z.; et al. Optimized monitoring sites for detection of biodiversity trends in China. Biodivers. Conserv. 2017, 26, 1959–1971. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Fang, Y.; Yang, X.; Yuan, F.; He, L.; Yao, J.; Wu, J.; Chi, B.; Li, Y.; Chen, S.; et al. Community characteristics of a subtropical evergreen broad-leaved forest in Huangshan, Anhui Province, East China. Biodivers. Sci. 2016, 24, 875–887. [Google Scholar] [CrossRef]
- Da Silva, N.R.; Oliveira, M.W.D.S.; Filho, H.A.D.A.; Pinheiro, L.F.S.; Rossatto, D.R.; Kolb, R.M.; Bruno, O.M. Leaf epidermis images for robust identification of plants. Sci. Rep. 2016, 6, 25994. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.; Band, S.R.; Hodgson, J.G. Seed Size and Shape Predict Persistence in Soil. Funct. Ecol. 1993, 7, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, A.M.; Poggio, L. Quantitative and qualitative genomic characterization of cultivated Ilex, L. species. Plant. Genet. Resour. 2015, 13, 142–152. [Google Scholar] [CrossRef]
- Doležel, J.; Greilhuber, J.; Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007, 2, 2233–2244. [Google Scholar] [CrossRef]
- Su, T.; Han, M.; Min, J.; Cao, D.; Pan, H.; Liu, Y. The complete chloroplast genome sequence of Populus deltoides ‘Siyang-2’. Mitochondrial DNA Part. B 2020, 5, 283–285. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Liu, B. Complete chloroplast genome sequence of Ilex latifolia (Aquifoliaceae), a traditional Chinese tea. Mitochondrial DNA Part. B 2020, 5, 190–191. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Shi, L.; Zhu, Y.; Chen, H.; Zhang, J.; Lin, X.; Guan, X. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 2012, 13, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtz, S. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [Green Version]
- Petkau, A.; Stuart-Edwards, M.; Stothard, P.; Van Domselaar, G. Interactive microbial genome visualization with GView. Bioinformatics 2010, 26, 3125–3126. [Google Scholar] [CrossRef]
- Brudno, M.; Malde, S.; Poliakov, A.; Do, C.B.; Couronne, O.; Dubchak, I.; Batzoglou, S. Glocal alignment: Finding rearrangements during alignment. Bioinformatics 2003, 19, i54–i62. [Google Scholar] [CrossRef] [Green Version]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obermayer, R. Nuclear DNA C-values in 30 Species Double the Familial Representation in Pteridophytes. Ann. Bot. 2002, 90, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolezel, J. Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Ann. Bot. 2005, 95, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, S.; Bédard, J.; Hirano, M.; Hirabayashi, Y.; Oishi, M.; Imai, M.; Takase, M.; Ide, T.; Nakai, M. Uncovering the Protein Translocon at the Chloroplast Inner Envelope Membrane. Sci. 2013, 339, 571–574. [Google Scholar] [CrossRef]
- Bölter, B.; Soll, J. Ycf1/Tic214 Is Not Essential for the Accumulation of Plastid Proteins. Mol. Plant. 2017, 10, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.K.; Ma, H.; Feng, Y.; Barriera, G.; Loizeau, P.A. Aquifoliaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2008; Volume 11, pp. 359–438. [Google Scholar]
- Qian, Y.; Tian, R. Research Advance of Ilex Germplasm Resources and Their Application to Landscape. World For. Res. 2016, 29, 40–45. [Google Scholar]
- Yi, F.; Zhao, X.; Peng, Y.; Xiao, P. Genus llex L.: Phytochemistry, Ethnopharmacology, and Pharmacology. Chinese Herb. Med. 2016, 8, 209–230. [Google Scholar] [CrossRef]
- Hetherington, A.M.; Woodward, F.I. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- Maricle, B.R.; Koteyeva, N.K.; Voznesenskaya, E.V.; Thomasson, J.R.; Edwards, G.E. Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae). New Phytol. 2009, 184, 216–233. [Google Scholar] [CrossRef]
- Scoffoni, C.; Kunkle, J.; Pasquet-Kok, J.; Vuong, C.; Patel, A.J.; Montgomery, R.A.; Givnish, T.J.; Sack, L. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. New Phytol. 2015, 207, 43–58. [Google Scholar] [CrossRef]
- Dodsworth, S.; Leitch, A.R.; Leitch, I.J. Genome size diversity in angiosperms and its influence on gene space. Curr. Opin. Genet. Dev. 2015, 35, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cao, B.; Bai, C. New reports of nuclear DNA content for 66 traditional Chinese medicinal plant taxa in China. Caryologia 2013, 66, 375–383. [Google Scholar] [CrossRef]
- Bai, C.; Alverson, W.S.; Follansbee, A.; Waller, D.M. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Ann. Bot. 2012, 110, 1623–1629. [Google Scholar] [CrossRef]
- Krahulcová, A.; Trávníček, P.; Krahulec, F.; Rejmánek, M. Small genomes and large seeds: Chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae). Ann. Bot. 2017, 119, 957–964. [Google Scholar]
- Bertolino, L.T.; Caine, R.S.; Gray, J.E. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Front. Plant. Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Jordan, G.J.; Carpenter, R.J.; Koutoulis, A.; Price, A.; Brodribb, T.J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 2015, 205, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Morgan, H.D.; Westory, M. The Relationship between Nuclear DNA Content and Leaf Strategy in Seed Plants. Ann. Bot. 2005, 96, 1321–1330. [Google Scholar] [CrossRef]
- Zong, D.; Gan, P.; Zhou, A.; Zhang, Y.; Zou, X.; Duan, A.; Song, Y.; He, C. Plastome Sequences Help to Resolve Deep-Level Relationships of Populus in the Family Salicaceae. Front. Plant. Sci. 2019, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Cascales, J.; Bracco, M.; Garberoglio, M.; Poggio, L.; Gottlieb, A. Integral Phylogenomic Approach over Ilex, L. Species from Southern South America. Life 2017, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, Y.; Nam, S.; Kwon, W.; Xi, H. The complete chloroplast genome of horned holly, Ilex cornuta Lindl. & Paxton (Aquifoliaceae). Mitochondrial DNA Part. B 2019, 4, 1275–1276. [Google Scholar]
- Kim, K.; Lee, S.-C.; Lee, J.; Yu, Y.; Yang, K.; Choi, B.-S.; Koh, H.-J.; Waminal, N.E.; Choi, H.-I.; Kim, N.-H.; et al. Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci. Rep. 2015, 5, 15655. [Google Scholar] [CrossRef] [Green Version]
- George, B.; Bhatt, B.S.; Awasthi, M.; George, B.; Singh, A.K. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants. Curr. Genet. 2015, 61, 665–677. [Google Scholar] [CrossRef]
- Provan, J. Novel chloroplast microsatellites reveal cytoplasmic variation in Arabidopsis thaliana. Mol. Ecol. 2000, 9, 2183–2185. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-M.; Zhu, G.-F.; Xu, Y.-C.; Ye, Y.-J.; Liu, J.-M. Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae. Plants 2020, 9, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.B.; Linh Giang, V.N.; Waminal, N.E.; Park, H.-S.; Kim, N.-H.; Jang, W.; Lee, J.; Yang, T.-J. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J. Ginseng Res. 2020, 44, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, T.; Duan, D.; Yang, J.; Feng, L.; Zhao, G. Comparative Analysis of the Complete Chloroplast Genomes of Five Quercus Species. Front. Plant. Sci. 2016, 07, 959. [Google Scholar] [CrossRef] [Green Version]
- Rohwer, J.G. Toward a Phylogenetic Classification of the Lauraceae: Evidence from matK Sequences. Syst. Bot. 2000, 25, 60–71. [Google Scholar] [CrossRef]
- Shaw, J.; Shafer, H.L.; Leonard, O.R.; Kovach, M.J.; Schorr, M.; Morris, A.B. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: The tortoise and the hare IV. Am. J. Bot. 2014, 101, 1987–2004. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Vázquez, L.; Chen, X.; Li, H.; Zhang, H.; Liu, Z.; Zhao, G. Development of Chloroplast and Nuclear DNA Markers for Chinese Oaks (Quercus Subgenus Quercus) and Assessment of Their Utility as DNA Barcodes. Front. Plant. Sci. 2017, 8, 816. [Google Scholar] [CrossRef]
- Liu, X.; Chang, E.-M.; Liu, J.-F.; Huang, Y.-N.; Wang, Y.; Yao, N.; Jiang, Z.-P. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus bawanglingensis Huang, Li et Xing, a Vulnerable Oak Tree in China. Forests 2019, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.-J.; Cheng, C.-L.; Chang, C.-C.; Wu, C.-L.; Su, T.-M.; Chaw, S.-M. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 2008, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Li, N.; Wang, S.; Zhou, Y.; Huang, W.; Yang, Y.; Ma, Y.; Zhou, R. Molecular Evidence for the Hybrid Origin of Ilex dabieshanensis (Aquifoliaceae). PLoS ONE 2016, 11, e0147825. [Google Scholar] [CrossRef] [PubMed]
Traits | I. latifolia Thunb. | I. suaveolens (H. Lév.) Loes. | I. viridis Champ.ex Benth. | I. micrococca Maxim. |
---|---|---|---|---|
LA (cm2) | 79.19 ± 2.24 a | 19.81 ± 1.84 c | 8.89 ± 0.89 d | 32.61 ± 1.26 b |
SLA (cm−2/g) | 40.88 ± 2.42 d | 93.02 ± 3.47 c | 100.81 ± 3.91 b | 165.4 ± 3.62 a |
LEC (µm2) | 848.21 ± 94 b | 938.65 ± 103 a | 732.42 ± 85 cd | 734.21 ± 81 c |
STA (µm) | 32.76 ± 0.35 a | 30.55 ± 0.29 c | 31.73 ± 0.29 b | 32.65 ± 0.27 ab |
STD (n/mm2) | 118.31 ± 17 d | 216.90 ± 12 c | 232.39 ± 11 b | 257.64 ± 29 a |
SW (g/100) | 6.29 ± 0.46 b | 3.04 ± 0.36 c | 8.35 ± 0.69 a | 2.12 ± 0.10 d |
VSD | 0.083 ± 0.03 b | 0.114 ± 0.02 a | 0.118 ± 0.01 a | 0.136 ± 0.01 a |
FS (mm) | 5.20 ± 0.13 cd | 7.10 ± 0.21 a | 5.50 ± 0.11 bc | 6.50 ± 0.17 b |
DNA 2C (pg) | 1.910 ± 0.021 | 2.242 ± 0.022 | 2.519 ± 0.038 | 3.053 ± 0.047 |
NG (≈Mb) | 955 | 1121 | 1232 | 1493 |
Category | Gene Family | Gene Name | Numbers |
---|---|---|---|
Photosynthesis | Photosystem I | psaA, psaB, psaC, psaI, psaJ | 5 |
Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbG, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ/lhbA | 16 | |
Cytochrome b/f | petA, petB2, petD2, petL, petG, petN | 6 | |
ATP synthase | atpA, atpB, atpE, atpF2, atpH, atpI | 6 | |
Cytochrome c | ccsA | 1 | |
photosystem I assembly | ycf33, ycf4 | 2 | |
NADH dehydrogenase | ndhA2, ndhB2d, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | 12 | |
Rubisco subunit L | rbcL | 1 | |
Transcription and translation | RNA polymerase β-subunit | rpoC1 2, rpoC 2, rpoA, rpoB | 4 |
30S ribosomal protein S | rps2, rps3, rps4, rps7 d, rps8, rps11, rps12 d+, rps14, rps15, rps16 2, rps18, rps19 | 14 | |
50S ribosomal protein L | rpl2 2d, rpl14, rpl16 2, rpl20, rpl22, rpl23 d, rpl32, rpl33, rpl36 | 11 | |
RNA | Ribosomal RNA | rrn4.5 d, rrn5 d, rrn16 d, rrn23 d | 8 |
Transfer RNA | trnP-U/GGG, trnH-GUG, trnK-UUU2, trnQ-UUG, trnS-GCU, trnG-GCC2, trnG-UCC, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnM-CAU, trnS-UGA, trnfM-CAU, trnS-GGA, trnT-UGU, trnL-UAA2, trnF-GAA, trnV-UAC2, trnW-CCA, trnP-UGG, trnL-CAA d, trnV-GAC d, trnI-GAU2 d, trnR-ACG d, trnL-UAG, trnN-GUU d, trnA-UGC2 d, trnI-CAU d | 37 | |
Other | RNA splicing | matK | 1 |
Plastid envelope | cemA | 1 | |
Acetyl-CoA carboxylase β | accD | 1 | |
Serine Protease | clpP3 | 1 | |
Translational initiation factor 1 | infA | 1 | |
Unknown function | Conserved hypothetical gene | ycf1 d, ycf2 d, ycf15 d | 6 |
orf56 d, orf42 d, ycf68 d, orf188 | 7 * |
Species | Plastome (bp) | LSC (bp) | SSC (bp) | IRs (bp) | PE Genes | tRNA Genes | rRNA Genes | GC (%) |
---|---|---|---|---|---|---|---|---|
I. szechwanensis | 157,900 | 87,204 | 18,513 | 52,183 | 96 | 40 | 8 | 37.6 |
I. pubescens | 157,741 | 87,109 | 18,436 | 52,196 | 96 | 40 | 8 | 37.7 |
I. paraguariensis | 157,614 | 87,144 | 18,307 | 52,154 | 86 | 37 | 8 | 37.6 |
I. wilsonii | 157,918 | 87,266 | 18,432 | 52,220 | 96 | 40 | 8 | 37.6 |
I. latifolia | 157,610 | 87,020 | 18,427 | 52,154 | 95 | 40 | 8 | 37.7 |
I. suaveolens | 157,857 | 87,255 | 18,398 | 52,204 | 89 | 37 | 8 | 37.6 |
I. viridis | 157,701 | 87,177 | 18,394 | 52,130 | 89 | 37 | 8 | 37.7 |
I. micrococca | 157,782 | 87,200 | 18,434 | 52,148 | 89 | 37 | 8 | 37.6 |
I. integra | 157,548 | 86,935 | 18,426 | 52,186 | 86 | 37 | 8 | 37.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, T.; Zhang, M.; Shan, Z.; Li, X.; Zhou, B.; Wu, H.; Han, M. Comparative Survey of Morphological Variations and Plastid Genome Sequencing Reveals Phylogenetic Divergence between Four Endemic Ilex Species. Forests 2020, 11, 964. https://doi.org/10.3390/f11090964
Su T, Zhang M, Shan Z, Li X, Zhou B, Wu H, Han M. Comparative Survey of Morphological Variations and Plastid Genome Sequencing Reveals Phylogenetic Divergence between Four Endemic Ilex Species. Forests. 2020; 11(9):964. https://doi.org/10.3390/f11090964
Chicago/Turabian StyleSu, Tao, Mengru Zhang, Zhenyu Shan, Xiaodong Li, Biyao Zhou, Han Wu, and Mei Han. 2020. "Comparative Survey of Morphological Variations and Plastid Genome Sequencing Reveals Phylogenetic Divergence between Four Endemic Ilex Species" Forests 11, no. 9: 964. https://doi.org/10.3390/f11090964
APA StyleSu, T., Zhang, M., Shan, Z., Li, X., Zhou, B., Wu, H., & Han, M. (2020). Comparative Survey of Morphological Variations and Plastid Genome Sequencing Reveals Phylogenetic Divergence between Four Endemic Ilex Species. Forests, 11(9), 964. https://doi.org/10.3390/f11090964