Typology of Forest Users in West Usambara Tanzania and Implication to Forest Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Data Collection
2.3. Theoretical Perspective
2.4. Data Analysis
2.4.1. Income for Typology Construction
2.4.2. Perception of Benefits, Management, and Sustainable Utilization of Forest
2.4.3. Factors Influencing Typology Forest Dependency
3. Results
3.1. Socioeconomic and Demographic Characteristics of the Study Population
3.2. Cluster Analysis for Typology Identification
3.3. Factor Analysis on the Perception of Forest Management and Utilization
3.4. Characterization of Forest Dependency Typologies
3.5. Typology Pathways and Income Shares
3.6. Typology Perception of Management and Utilization
3.7. Factors Influencing Typologies of Forest Utilization
4. Discussion
4.1. Socioeconomic Variation between Typologies
4.2. Typologies’ Livelihood Strategies and Benefits from the Forest
4.3. Perception of Management and Utilization of the Forest
4.4. Determinants of the Typologies’ Dependence on the Forest
5. Conclusions and Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Romeo, R.; Vita, A.; Testolin, R.; Hofer, T. Mapping the Vulnerability of Mountain Peoples to Food Insecurity; FAO: Rome, Italy, 2015; 82p. [Google Scholar]
- Gratzer, G.; Keeton, W.S. Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations’ 2030 Agenda. Mt. Res. Dev. 2017, 37, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Payne, D.; Snethlage, M.; Spehen, E.M.; Geschke, J.; Fischer, M. Nature and people in the Andes, East African Mountains, European Alps, and Hindu Kush–Himalaya: Current research and future directions. Mt. Res. Dev. 2020, 40, 14. [Google Scholar] [CrossRef]
- Newmark, W.D. Conserving Biodiversity in East African Forests—A Study of the Eastern Arc Mountains; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2002; Volume 155, 210p. [Google Scholar]
- Mowo, J.G.; Mwihomeke, S.T.; Mzoo, J.B. Managing Natural Resources in the West Usambara: A Glimmer of Hope in the Horizon. In Proceedings of the Mountains High Summit Conference for Africa, Nairobi, Kenya, 6–10 May 2002; Ministry of Agriculture and Food Security: Dar es Salaam, Tanzania, 2002; p. 13. Available online: http://lib.icimod.org/record/10929/files/213.pdf (accessed on 22 May 2020).
- Huijzendveld, B.F.D. Changes in Political Economy and Ecology in West-Usambara, Tanzania: Ca 1850–1950. Int. J. Afr. Hist. Stud. 2008, 41, 383–409. [Google Scholar]
- Malmborg, K.; Sinare, H.; Kautsky, E.E.; Ouedraogo, I.; Gordon, L.J. Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel. PLoS ONE 2018, 13, e0192019. [Google Scholar] [CrossRef] [Green Version]
- Songoro, A.E. Land Scarcity, Rural Livelihoods and Forest Management in West Usambara, Tanzania. Ph.D. Thesis, University of Giessen, Germany, 2014. [Google Scholar]
- Blomley, T.; Iddi, S. Participatory Forest Management in Tanzania: 1993–2009. Lessons Learned and Experiences to Date. Dar es Salaam. 2009. Available online: https://pdfs.semanticscholar.org/ce41/a15cfb25064d2113b82fac7c9356f7ba50f3.pdf (accessed on 27 May 2020).
- Macintosh, D.J.; Ashton, E.C. Draft Code of Conduct for the Sustainable Management of Mangrove Ecosystems; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Nel, E.; Illgner, P. The contribution of bees to livelihoods in southern Africa. In Rights, Resources and Rural Development Community-Based Natural Resource Management in Southern Africa, 1st ed.; Fabricius, C., Koch, E., Magome, H., Turner, S., Eds.; Earthscan: London, UK, 2004; pp. 127–134. [Google Scholar]
- Dokken, T.; Angelsen, A. Forest reliance across poverty groups in Tanzania. Ecol. Econ. 2015, 117, 28. [Google Scholar] [CrossRef] [Green Version]
- Köbrich, C.; Rehman, T.; Khan, M. Typification of farming systems for constructing representative farm models: Two illustrations of the application of multi-variate analyses in Chile and Pakistan. Agric. Syst. 2003, 76, 141–157. [Google Scholar] [CrossRef]
- Vanclay, J. Using a typology of tree-growers to guide forestry extension. Ann. Trop. Res. 2005, 27, 97. [Google Scholar]
- Zenteno, M.; Zuidema, P.A.; de Jong, W.; Boot, R.G.A. Livelihood strategies and forest dependence: New insights from Bolivian forest communities. For. Policy Econ. 2013, 26, 10. [Google Scholar] [CrossRef]
- CIFOR. Policies and Governance Structures in Woodlands of Southern Africa; Policies and Governance Structures in Woodlands of Southern Africa: Bogor, Indonesia, 2003; 452p. [Google Scholar]
- Kideghesho, J.R.; Msuya, T.S. Gender and socio-economic factors influencing domestication of indigenous medicinal plants in the West Usambara Mountains, northern Tanzania. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2010, 6, 3–12. [Google Scholar] [CrossRef]
- Ellis, F. Household Strategies and Rural Livelihood Diversification. J. Dev. Stud. 1998, 35, 1–38. [Google Scholar] [CrossRef]
- Mowo, J.; Masuki, K.; Lyamchai, C.; Tanui, J.; Adimassu, Z.; Kamugisha, R. By-laws formulation and enforcement in natural resource management: Lessons from the highlands of eastern Africa. For. Trees Livelihoods 2016, 25, 120–131. [Google Scholar] [CrossRef]
- Johansonn, L. Ten Million Trees Later, 1st ed.; GTZ: Eschborn, Germany, 2001. [Google Scholar]
- MNRT. National Forest Policy; Ministry of Natural Resources and Tourism: Dar es Salaam, Tanzania, 1998; 36p.
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations Department of Economic and Social Affairs: San Fransico, CA, USA, 2015. Available online: http://www.un.org/en/development/desa/news/sustainable/un-adopts-new-global-goals.html#more-15178 (accessed on 2 June 2020).
- Tenge, A.J.; De Graaff, J.; Hella, J.P. Social and economic factors affecting the adoption of soil and water conservation in West Usambara highlands, Tanzania. Land Degrad. Dev. 2004, 15, 99–114. [Google Scholar] [CrossRef]
- Nyanga, A.; Kessler, A.; Tenge, A. Key socio-economic factors influencing sustainable land management investments in the West Usambara Highlands, Tanzania. Land Use Policy 2015, 51, 260–266. [Google Scholar] [CrossRef]
- Fraval, S.; Hammond, J.; Lannerstad, M.; Oosting, S.J.; Sayula, G.; Teufel, N.; Silvestri, S.; Poole, J.; Herrero, M.; Van Wijk, M.T. Livelihoods and food security in an urban linked, high potential region of Tanzania: Changes over a three year period. Agric. Syst. 2018, 160, 87–95. [Google Scholar] [CrossRef]
- Mbwambo, L.; Eid, T.; Malimbwi, R.E.; Zahabu, E. Impact of decentralised forest management on forest resource conditions in Tanzania. For. Trees Livelihoods 2012, 37–41. [Google Scholar] [CrossRef]
- Haruyama, S.; Toko, A. Local Forest Management in Tanzania-Acase Study From Lushoto District, Usambara Mountain. 2005, pp. 586–603. Available online: https://pdfs.semanticscholar.org/02ff/2ef3d449e1ed8ade06d47d68f86a58cd1f70.pdf (accessed on 3 June 2020).
- Luswaga, H. The Mountainous Forest Benefits and Communities Participation in Forest Management in West Usambara-Tanzania. Ph.D. Thesis, Justus Liebig University, Giessen, Germany, 2019. [Google Scholar]
- Suleiman, M.S.; Wasonga, V.O.; Mbau, J.S.; Suleiman, A.; Elhadi, Y.A. Non-timber forest products and their contribution to households income around Falgore Game Reserve in Kano, Nigeria. Ecol. Process. 2017, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Njana, M.A.; Kajembe, G.C.; Malimbwi, R.E. Are miombo woodlands vital to livelihoods of rural households? Evidence from Urumwa and surrounding communities, Tabora, Tanzania. For. Trees Livelihoods 2013, 22, 124–140. [Google Scholar] [CrossRef]
- Angelsen, A.; Larsen, H.; Lund, J.; Smith-Hall, C.; Wunder, S. (Eds.) Measuring Livelihoods and Environmental Dependence: Methods for Research and Fieldwork; CIFOR: Bogor, Indonesia, 2011; 282p. [Google Scholar]
- Ose, S.O. Using Excel and Word to Structure Qualitative Data. J. Appl. Soc. Sci. 2016, 10, 147–162. [Google Scholar] [CrossRef]
- Ploeg, J.D.V.D. Rural Sociolgy and the New Agrarian Question: A Perspective from The Netherlands. Sociol. Ruralis 1993, XXXIII, 240–260. [Google Scholar] [CrossRef]
- Emtage, N.F. An Investigation of the Social and Economic Factors Affecting the Development of Small-Scale Forestry by Rural Households in Leyte Province, Philippines: A typology of Rural Households in Relation to Small-Scale Forestry. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 2004. [Google Scholar]
- Barr, N. Conventional and low-input pasture improvement—A review of recent market research. N. Z. J. Agric. Res. 1996, 39, 559–567. [Google Scholar] [CrossRef]
- Ellis, F.; Freeman, H.A. (Eds.) Rural Livelihoods and Poverty Reduction Policies; Routledge: London, UK, 2005; 404p. [Google Scholar]
- Khatiwada, S.; Deng, W.; Paudel, B.; Khatiwada, J.; Zhang, J.; Su, Y. Household Livelihood Strategies and Implication for Poverty Reduction in Rural Areas of Central Nepal. Sustainability 2017, 9, 612. [Google Scholar] [CrossRef] [Green Version]
- Vanclay, F.; Howden, P.; Mesiti, L.; Glyde, S. The Social and Intellectual Construction of Farming Styles: Testing Dutch Ideas in Australian Agriculture. Eur. Soc. Rural Sociol. 2006, 46, 22. [Google Scholar] [CrossRef]
- DFID. Sustainable Livelihoods Guidance Sheets; Departement for International Development: London, UK, 1999; 150p. [Google Scholar]
- Hien, H.T.; Franke, C.; Piorr, A.; Lange, A.; Zasada, I. Target groups of rural development policies: Development of a surveybased farm typology for analysing self-perception statements of farmers. Outlook Agric. 2014, 43, 75–83. [Google Scholar] [CrossRef]
- Hammond, J.; Rosenblum, N.; Breseman, D.; Gorman, L.; Manners, R.; van Wijk, M.T.; Sibomana, M.; Remans, R.; Vanlauwe, B.; Schut, M. Towards actionable farm typologies: Scaling adoption of agricultural inputs in Rwanda. Agric. Syst. 2020, 183, 102857. [Google Scholar] [CrossRef]
- Priegnitz, U.; Lommen, W.J.M.; Onakuse, S.; Struik, P.C. A Farm Typology for Adoption of Innovations in Potato Production in Southwestern Uganda. Front. Sustain. Food Syst. 2019, 3, 1–15. [Google Scholar] [CrossRef]
- Michielsens, C.G.J.; Lorenzen, K.; Phillips, M.J.; Gauthier, R. Asian carp farming systems: Towards a typology and increased resource use efficiency. Aquac. Res. 2002, 33, 403–413. [Google Scholar] [CrossRef]
- Goswami, R.; Chatterjee, S.; Prasad, B. Farm types and their economic characterization in complex agro-ecosystems for informed extension intervention: Study from coastal West Bengal, India. Agric. Food Econ. 2014, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, S.; Timler, C.J.; Michalscheck, M.; Paas, W.; Descheemaeker, K.; Tittonell, P.; Andersson, J.A.; Groot, J.C.J. Capturing farm diversity with hypothesis-based typologies: An innovative methodological framework for farming system typology development. PLoS ONE 2018, 13, e0194757. [Google Scholar] [CrossRef] [Green Version]
- Margerum, R.D. A typology of collaboration efforts in environmental management. Environ. Manag. 2008, 41, 487–500. [Google Scholar] [CrossRef]
- Nkhata, B.A.; Mosimane, A.; Downsborough, L.; Breen, C.; Roux, D.J. A typology of benefit sharing arrangements for the governance of social-ecological systems in developing countries. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef]
- Kumer, P.; Štrumbelj, E. Clustering-based typology and analysis of private small-scale forest owners in Slovenia. For. Policy Econ. 2017, 80, 116–124. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Tynsong, H.; Lynrah, M.M.; Lapasam, E.; Deb, S.; Sharma, D. Institutional arrangement and typology of community forests of Meghalaya, Mizoram and Nagaland of North-East India. J. For. Res. 2013, 24, 179–186. [Google Scholar] [CrossRef]
- Barr, S. Environment and Society-Sustainability, Policy and the Citizen; Ashgate Publishing Limited: Hampshire, UK, 2008; 297p. [Google Scholar]
- Hussain, J.; Zhou, K.; Akbar, M.; Zafar khan, M.; Raza, G.; Ali, S.; Hussain, A.; Abbas, Q.; Khan, G.; Khan, M.; et al. Dependence of rural livelihoods on forest resources in Naltar Valley, a dry temperate mountainous region, Pakistan. Glob. Ecol. Conserv. 2019, 20, e00765. [Google Scholar] [CrossRef]
- Lopez-Ridaura, S.; Frelat, R.; van Wijk, M.T.; Valbuena, D.; Krupnik, T.J.; Jat, M.L. Climate smart agriculture, farm household typologies and food security: An ex-ante assessment from Eastern India. Agric. Syst. 2018, 159, 57–68. [Google Scholar] [CrossRef]
- Pacini, G.C.; Colucci, D.; Baudron, F.; Righi, E.; Corbeels, M.; Tittonell, P.; Stefanini, F.M. Combining multi-dimensional scaling and cluster analysis to describe the diversity of rural households. Exp. Agric. 2014, 50, 376–397. [Google Scholar] [CrossRef] [Green Version]
- Gurney, G.G.; Cinner, J.E.; Sartin, J.; Pressey, R.L.; Ban, N.C.; Marshall, N.A.; Prabuning, D. Participation in devolved commons management: Multiscale socioeconomic factors related to individuals’ participation in community-based management of marine protected areas in Indonesia. Environ. Sci. Policy 2016, 61, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Kamanga, P.; Vedeld, P.; Sjaastad, E. Forest incomes and rural livelihoods in Chiradzulu District, Malawi. Ecol. Econ. 2008, 68, 613–624. [Google Scholar] [CrossRef]
- GoT. Environment, Peace and Stability Facility (MIFRESTA) Environment Support Programme (ESP) Participatory Forest Management (2003–2007) Tanzania; GoT: Dodoma, Tanzania, 2002. [Google Scholar]
- Pett, M.A.; Lackey, N.R.; Sullivan, J.J. Making Sense of Factor Analysis: The Use of Factor Analysis for Development in Health Care Research, 1st ed.; SAGE Publications: Thousand Oaks, CA, USA, 2003; 365p. [Google Scholar]
- Agarwal, B. Participatory Exclusions, Community Forestry, and Gender: An Analysis for South Asia and a Conceptual Framework: Erratum. World Dev. 2001, 29, 1623–1648. [Google Scholar] [CrossRef]
- Adhikari, S.; Kingi, T.; Ganesh, S. Incentives for community participation in the governance and management of common property resources: The case of community forest management in Nepal. For. Policy Econ. 2014, 44, 1–9. [Google Scholar] [CrossRef]
- Jana, S.K.; Lise, W.; Ahmed, M. Factors affecting participation in joint forest management in the West Bengal state of India. J. For. Econ. 2014, 20, 317–332. [Google Scholar] [CrossRef]
- Pedhazur, E.J.; Schmelkin, L.P. Measurement, Design and Analysis: An Integrated Approach; Lawrence Erlbaum: Hillsdale, NJ, USA, 1991; Volume 50, 828p. [Google Scholar]
- Saisana, M.; Tarantola, S. State-of-the-art Report on Current Methodologies and Practices for Composite Indicator Development; Joint Research Centre: Ispra, Italy, 2002. [Google Scholar]
- Nerfa, L.; Rhemtulla, J.M.; Zerriffi, H. Forest dependence is more than forest income: Development of a new index of forest product collection and livelihood resources. World Dev. 2020, 125, 104689. [Google Scholar] [CrossRef]
- Fishben, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975; 509p. [Google Scholar]
- Sebatta, C.; Mugisha, J.; Bagamba, F.; Nuppenau, E.A.; Domptail, S.E.; Kowalski, B.; Hoeher, M.; Ijala, A.R.; Karungi, J. Pathways to sustainable intensification of the coffee-banana agroecosystems in the mt. elgon region. Cogent Food Agric. 2019, 1–28. [Google Scholar] [CrossRef]
- Tesfaye, Y.; Roos, A.; Campbell, B.M.; Bohlin, F. Livelihood strategies and the role of forest income in participatory-managed forests of Dodola area in the bale highlands, southern Ethiopia. For. Policy Econ. 2011, 13, 258–265. [Google Scholar] [CrossRef]
- Lestari, S.; Kotani, K.; Kakinaka, M. Enhancing voluntary participation in community collaborative forest management: A case of Central Java, Indonesia. J. Environ. Manag. 2015, 150, 299–309. [Google Scholar] [CrossRef]
- Chhetri, B.B.K.; Johnsen, F.H.; Konoshima, M.; Yoshimoto, A. Community forestry in the hills of Nepal: Determinants of user participation in forest management. For. Policy Econ. 2013, 30. [Google Scholar] [CrossRef]
- Coleman, E.A.; Mwangi, E. Women’s participation in forest management: A cross-country analysis. Glob. Environ. Chang. 2013, 23, 193–205. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Laibson, D.; Sacerdote, B. An economic approach to social capital. Econ. J. 2002, 112, 437–458. [Google Scholar] [CrossRef] [Green Version]
- Angelsen, A.; Jagger, P.; Babigumira, R.; Belcher, B.; Hogarth, N.J.; Bauch, S.; Boerner, J.; Smith-Hall, C.; Wunder, S. Environmental Income and Rural Livelihoods: A Global-Comparative Analysis. World Dev. 2014, 64, S12–S28. [Google Scholar] [CrossRef] [Green Version]
- Babigumira, R.; Angelsen, A.; Buis, M.; Bauch, S.; Sunderland, T.; Wunder, S. Forest Clearing in Rural Livelihoods: Household-Level Global-Comparative Evidence. World Dev. 2014, 64, S67–S79. [Google Scholar] [CrossRef] [Green Version]
- Lise, W. Factors influencing people’s participation in forest management in India. Ecol. Econ. 2000, 34, 379–392. [Google Scholar] [CrossRef]
- Ellis, F. The Determinants of Rural Livelihood Diversification in Developing Countries. J. Agric. Econ. 2008, 51, 289–302. [Google Scholar] [CrossRef]
- Brown, D.; Stephens, E.; Ouma, J.; Murithi, F.; Barrett, C.B. Livelihood strategies in the rural Kenyan highlands. J. Agric. Econ. 2006, 1, 21–36. [Google Scholar]
- Luswaga, H.; Nuppenau, E. Participatory Forest Management in West Usambara Tanzania: What Is the Community Perception on Success? Sustainability 2020, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Mooi, E.; Sarstedt, M.; Mooi-Reci, I. Market Research: The Process, Data, and Methods Using Stata, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; 429p. [Google Scholar]
- Arbuckle, J.G. Farmer support for extending Conservation Compliance beyond soil erosion: Evidence from Iowa. J. Soil Water Conserv. 2013, 68, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Dinno, A. Implementing horn’s parallel analysis for principal component analysis and factor analysis. Stata J. 2009, 9, 291–298. [Google Scholar] [CrossRef]
- Dehghani Pour, M.; Barati, A.A.; Azadi, H.; Scheffran, J. Revealing the role of livelihood assets in livelihood strategies: Towards enhancing conservation and livelihood development in the Hara Biosphere Reserve, Iran. Ecol. Indic. 2018, 94, 336–347. [Google Scholar] [CrossRef]
- Tittonell, P. Livelihood strategies, resilience and transformability in African agroecosystems. Agric. Syst. 2014, 126, 3–14. [Google Scholar] [CrossRef]
- Kuivanen, K.S.; Michalscheck, M.; Descheemaeker, K.; Adjei-Nsiah, S. A comparison of statistical and participatory clustering of smallholder farming systems e A case study in Northern Ghana. J. Rural Stud. 2016, 45, 184–198. [Google Scholar] [CrossRef]
- Heubach, K.; Wittig, R.; Nuppenau, E.; Hahn, K. The economic importance of non-timber forest products (NTFPs) for livelihood maintenance of rural west African communities: A case study from northern Benin. Ecol. Econ. 2011, 70, 1991–2001. [Google Scholar] [CrossRef]
- Balama, C.; Augustino, S.; Eriksen, S.; Makonda, F.B.S. The role of priority non-timber forest products in enhancing local adaptive capacity to climate change stresses in Kilombero district, Tanzania. Clim. Dev. 2016, 5529. [Google Scholar] [CrossRef]
- Agarwal, B. Gender and forest conservation: The impact of women’s participation in community forest governance. Ecol. Econ. 2009, 68, 2785–2799. [Google Scholar] [CrossRef]
- Coulibaly-Lingani, P.; Savadogo, P.; Tigabu, M.; Oden, P.-C. Factors influencing people’s participation in the forest management program in Burkina Faso, West Africa. For. Policy Econ. 2011, 13, 292–302. [Google Scholar] [CrossRef]
- Egunyu, F.; Reed, M.G. Social learning by whom? Assessing gendered opportunities for participation and social learning in collaborative forest governance. Ecol. Soc. 2015, 20, 13. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.C.; Germain, R.H.; Mack, S.A. Land Use Policy Forest conservation programs and the landowners who prefer them: Profiling family forest owners in the New York City watershed. Land Use Policy 2016, 50, 17–28. [Google Scholar] [CrossRef]
- Scheba, A.; Mustalahti, I. Rethinking “expert” knowledge in community forest management in Tanzania. For. Policy Econ. 2015, 60, 7–18. [Google Scholar] [CrossRef]
- Berkes, F. Devolution of environment and resources governance: Trends and future. Environ. Conserv 2010, 37, 489–500. [Google Scholar] [CrossRef]
- IBRD. Forests Sourcebook: Practical Guidance for Sustaining Forests in Development Cooperation; The World Bank: Washington, DC, USA, 2008; 402p. [Google Scholar]
- Swapan, M.S.H. Who participates and who doesn’t? Adapting community participation model for developing countries. Cities 2016, 53, 70–77. [Google Scholar] [CrossRef]
- Topp-Jørgensen, E.; Poulsen, M.K.; Lund, J.F.; Massao, J.F. Community-based monitoring of natural resource use and forest quality in montane forests and miombo woodlands of Tanzania. Biodivers. Conserv. 2005, 14, 2653–2677. [Google Scholar] [CrossRef]
- Brown, G.; Reed, P. Typology for Use in National Forest Planning ational forest management planning issues have. For. Sci. 2000, 46, 240–247. [Google Scholar]
- Soltani, A.; Angelsen, A.; Eid, T.; Naieni, M.S.N.; Shamekhi, T. Poverty, sustainability, and household livelihood strategies in Zagros, Iran. Ecol. Econ. 2012, 79, 60–70. [Google Scholar] [CrossRef]
- Aung, P.S.; Adam, Y.O.; Pretzsch, J.; Peters, R. Distribution of forest income among rural households: A case study from Natma Taung national park, Myanmar. For. Trees Livelihoods 2015, 24, 190–201. [Google Scholar] [CrossRef]
- Temu, E.J.; Hella, J.P. Assessment of the Impact of Sustainable Land Use Practices on Food Security in West Usambara Mountains, Tanzania. Int. J. Sci. Basic Appl. Res. 2014, 14, 1–13. [Google Scholar]
- Vedeld, P.; Angelsen, A.; Sjaastad, E.; Kobugabe Berg, G. Counting on the Environment: Forest Incomes and the Rural Poor; Report No.: 98; The World Bank: Washington, DC, USA, 2004. [Google Scholar]
Explanatory Variable | Definition | Relationship with Forest Dependence |
---|---|---|
Land size | Size of land used for agriculture (acre) | The increase in area used for farming may negatively influence forest dependency, as it may be linked to food sufficiency [67]. |
Livestock ownership | Total livestock measured in livestock units (TLU) | The households with livestock may have high dependency on the forest if they depend on the forest for pasture, but many households in West Usambara grow their own folder on their farm hedges [68]. |
Gender of household head | Gender of decision-maker of household (female = 1, male = 0) | The forest is important for female headed households to meet family needs, therefore, may depend more in the forest [68,69]. |
Age | Number of years of age of the household decision-maker | The knowledge and use of the forest increases (+) with age but declines at a certain level [70]. |
Household labor (AEU) | Standardized labor composition of the household | Labor composition determines the household employability for farming and forest activities and may positively increase the household dependency on the forest [71,72]. |
Education | Number of years of education of the decision-maker | In West Usambara, most villagers are poorly educated, with the majority only receiving primary education. Normally, forest dependency is negatively influenced by years of education (−), as educated people may engage in other income activities [60,73]. |
Training | Whether the decision-maker attended agriculture or natural resource training (Yes = 1, No = 0) | Training in agriculture may increase productivity, and natural resource training may improve the perception of forest importance and may reduce forest dependency [74]. |
Access to remittances | Whether a household has access to an external income source (Yes = 1, No = 0) | Access to external sources of income may reduce the household income burden and reduce forest dependency, similar to having access to credit sources [74,75]. |
The location of household | Location of household relative to the institutional regime (JMF = 1, CBFM = 0) | In West Usambara, households located around the JFM forest may have the advantage of better forest access and, therefore, high forest dependency [76]. |
Forest distance | Household distance to the forest (min) | Generally, the distance from a household to a forest will influence forest dependency negatively due to fewer direct forest benefits [68]. |
Market access | Distance from the household to the market center (min) | An increase in distance from a household to the market may influence the forest negatively due to less direct forest benefits [68]. |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Age (years) | 159 | 46.79 | 15.16 | 20 | 83 |
Education (years) | 159 | 6.23 | 2.01 | 0 | 11 |
Household size (AEU) | 159 | 4.22 | 1.48 | 1.5 | 11 |
Forest distance (min) | 159 | 30.93 | 13.04 | 2 | 60 |
Market distance (min) | 159 | 27.59 | 14.46 | 2 | 60 |
Food shortage (months) | 159 | 2.18 | 1.21 | 0 | 5 |
Area farmed (acres) | 159 | 2.71 | 1.374 | 0 | 6 |
Livestock units (TLU) | 159 | 0.78 | 0.59 | 0 | 2.8 |
Total income (USD/AEU) | 159 | 203.23 | 146.34 | 29.39 | 881.01 |
Variable | PCF1 | PCF2 | PCF3 | PCF4 | PCF5 | Uniqueness |
---|---|---|---|---|---|---|
Trust-NGOs | 0.5128 | 0.3759 | ||||
Trust-VNRC | 0.9024 | 0.1506 | ||||
Trust-LG | 0.9151 | 0.1528 | ||||
Importance-fuelwood | 0.7329 | 0.4588 | ||||
Importance-timber | 0.8474 | 0.2539 | ||||
Importance-NTFP | 0.7300 | 0.2259 | ||||
Importance employment | 0.7787 | 0.3333 | ||||
Importance-income | 0.7580 | 0.3873 | ||||
Meeting-frequency | 0.8544 | 0.1996 | ||||
Meeting-learning | 0.8936 | 0.1474 | ||||
Meeting-influence | 0.7860 | 0.2934 | ||||
Tree planting | 0.6047 | 0.4934 | ||||
Firefighting | 0.7992 | 0.2810 | ||||
Reporting-illegality | 0.5802 | 0.4585 | ||||
Firebreak-participation | 0.8165 | 0.2589 | ||||
Erosion control | 0.7362 | 0.3844 | ||||
Mitigating adversity | 0.8451 | 0.2191 | ||||
Eigenvalue | 4.174 | 2.147 | 1.591 | 1.032 | 1.102 | |
Variance explained | 18% | 12% | 10% | 11% | 9% |
Variable | Typology Clusters | Pooled (N = 159) | ||
---|---|---|---|---|
LFIS (N = 43) | HFIS (N = 51) | MFIS (N = 65) | ||
Age (years) ** | 62.81 (9.72) | 35.74 (9.42) | 44.86 (12.74) | 46.79 (15.16) |
Education (years) ** | 4.58 (1.67) | 7.03 (1.83) | 6.70 (1.71) | 6.23 (2.01) |
Household size (AEU) ** | 4.76 (1.85) | 4.18 (1.31) | 3.90 (1.22) | 4.22 (1.48) |
Livestock Unit (TLU) ** | 1.18 (0.67) | 0.75 (0.49) | 0.53 (0.44) | 0.78 (0.59) |
Forest distance (min) ** | 33.48 (11.47) | 26.56 (10.41) | 32.67 (15.05) | 30.93 (13.04) |
Food insecurity (months) | 2.02 (1.29) | 2.11 (1.16) | 2.35 (1.18) | 2.18 (1.21) |
Area farmed (acres) | 1.25 (0.42) | 1.24 (0.32) | 1.20 (0.47) | 1.23 (0.41) |
Importance for culture ** | 2.97 (0.51) | 2.72 (0.60) | 3.00 (0.5) | 2.91 (0.54) |
Importance for water | 3.46 (0.54) | 3.23 (0.51) | 3.38 (0.55) | 3.35 (0.54) |
Importance for biodiversity ** | 3.13 (0.41) | 2.92 (0.44) | 3.06 (0.39) | 3.03 (0.41) |
Importance for fuelwood | 3.32 (1.08) | 3.37 (1.16) | 3.43 (1.24) | 3.38 (1.17) |
Importance for timber | 2.88 (1.02) | 2.74 (1.01) | 2.90 (1.08) | 2.85 (1.04) |
Importance for NTFPs | 3.25 (1.00) | 3.25 (1.05) | 3.07 (1.10) | 3.18 (1.06) |
Importance for employment | 3.04 (1.02) | 2.66 (1.07) | 2.78 (1.11) | 2.81 (1.08) |
Importance for income | 2.93 (1.00) | 2.52 (1.04) | 2.81 (1.07) | 2.75 (1.05) |
Meeting frequency ** | 2.16 (1.37) | 2.00 (1.20) | 1.46 (0.81) | 1.82 (1.15) |
Learning from meetings ** | 2.09 (1.28) | 1.82 (1.10) | 1.47 (0.75) | 1.75 (1.05) |
Meeting influence | 1.97 (1.14) | 1.66 (0.86) | 1.58 (0.91) | 1.71 (0.97) |
Tree planting * | 3.20 (1.35) | 2.76 (1.28) | 3.29 (1.37) | 3.10 (1.36) |
Firefighting in forest | 3.37 (1.25) | 2.94 (1.28) | 2.90 (1.31) | 3.04 (1.29) |
Reporting illegalities ** | 2.58 (1.31) | 2.03 (1.19) | 1.86 (1.19) | 2.11 (1.26) |
Firebreak maintenance ** | 3.11 (1.31) | 2.35 (1.24) | 2.32 (1.25) | 2.54 (1.30) |
Erosion control | 3.76 (0.92) | 3.86 (0.74) | 4.01 (0.81) | 3.89 (0.82) |
Mitigating adversities ** | 3.09 (1.23) | 2.98 (1.31) | 3.55 (1.01) | 3.24 (1.19) |
TYPOLOGIES | Coef. | St.Err. | t-Value | p-Value | [95% Conf] | [Interval] | Sig |
---|---|---|---|---|---|---|---|
LFIS (base outcome) | |||||||
HFIS | |||||||
Farmed | 2.253 | 1.029 | 1.78 | 0.075 | 0.920 | 5.515 | * |
Livestock (TLU) | 0.019 | 0.024 | −3.18 | 0.001 | 0.002 | 0.220 | *** |
Gender | 1.216 | 1.247 | 0.19 | 0.849 | 0.163 | 9.083 | |
Age | 0.735 | 0.051 | −4.44 | 0.000 | 0.642 | 0.842 | *** |
Household size | 1.053 | 0.377 | 0.14 | 0.886 | 0.522 | 2.125 | |
Education | 2.635 | 0.936 | 2.73 | 0.006 | 1.313 | 5.287 | *** |
Training | 0.724 | 0.559 | −0.42 | 0.675 | 0.159 | 3.286 | |
Remittances | 0.302 | 0.361 | −1.00 | 0.317 | 0.029 | 3.147 | |
Institutional regime | 0.929 | 1.019 | −0.07 | 0.946 | 0.108 | 7.978 | |
Forest distance | 0.930 | 0.043 | −1.58 | 0.115 | 0.850 | 1.018 | |
Market distance | 1.069 | 0.059 | 1.22 | 0.223 | 0.960 | 1.191 | |
Constant | 142,000 | 825,000 | 2.05 | 0.041 | 1.660 | 1.22 × 1010 | ** |
MFIS | |||||||
Farmed | 1.493 | 0.576 | 1.04 | 0.299 | 0.701 | 3.179 | |
Livestock (TLU) | 0.008 | 0.011 | −3.78 | 0.000 | 0.001 | 0.100 | *** |
Gender | 0.983 | 0.992 | −0.02 | 0.986 | 0.136 | 7.103 | |
Age | 0.827 | 0.050 | −3.14 | 0.002 | 0.735 | 0.931 | *** |
Household size | 0.417 | 0.143 | −2.55 | 0.011 | 0.213 | 0.816 | ** |
Education | 3.013 | 1.061 | 3.13 | 0.002 | 1.511 | 6.009 | *** |
Training | 0.158 | 0.144 | −2.02 | 0.043 | 0.026 | 0.942 | ** |
Remittances | 0.555 | 0.623 | −0.53 | 0.600 | 0.061 | 5.008 | |
Institutional regime | 0.618 | 0.685 | −0.44 | 0.664 | 0.070 | 5.424 | |
Forest distance | 1.017 | 0.045 | 0.38 | 0.701 | 0.932 | 1.110 | |
Market distance | 0.801 | 0.043 | −4.16 | 0.000 | 0.722 | 0.889 | *** |
Constant | 3.02 × 108 | 1.79 × 109 | 3.30 | 0.001 | 2813.106 | 3.25 × 1013 | *** |
Pseudo r-squared | 0.732 | Number of obs | 159 | ||||
Chi-square | 252.247 | Prob > chi2 | 0.000 | ||||
Akaike crit. (AIC) | 140.485 | Bayesian crit. (BIC) | 214.138 | ||||
ML (Cox-Snell) R2: 0.795 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luswaga, H.; Nuppenau, E.-A. Typology of Forest Users in West Usambara Tanzania and Implication to Forest Management. Forests 2021, 12, 24. https://doi.org/10.3390/f12010024
Luswaga H, Nuppenau E-A. Typology of Forest Users in West Usambara Tanzania and Implication to Forest Management. Forests. 2021; 12(1):24. https://doi.org/10.3390/f12010024
Chicago/Turabian StyleLuswaga, Hussein, and Ernst-August Nuppenau. 2021. "Typology of Forest Users in West Usambara Tanzania and Implication to Forest Management" Forests 12, no. 1: 24. https://doi.org/10.3390/f12010024
APA StyleLuswaga, H., & Nuppenau, E. -A. (2021). Typology of Forest Users in West Usambara Tanzania and Implication to Forest Management. Forests, 12(1), 24. https://doi.org/10.3390/f12010024