How Do Plants Respond Biochemically to Fire? The Role of Photosynthetic Pigments and Secondary Metabolites in the Post-Fire Resprouting Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Characterization of Experimental Burns
2.3. Assessment of Chlorophyll and Carotenoid Contents
2.4. Total Phenolic Compounds and Tannin Assessments
2.5. Resprouting Measurements
2.6. Statistical Analysis
3. Results
3.1. Assessment of Chlorophyll and Carotenoid Contents
3.2. Total Phenolic Compound and Tannin Assessments
3.3. Resprouting Measurements
3.4. Biochemical Compounds Affecting the Resprouting Capacity
3.5. Biochemical Compounds Affecting the Growth of Resprouts
3.6. Association between the Biochemical Response to Fire and Resprouting
4. Discussion
4.1. Assessing Chlorophyll and Carotenoid Contents
4.2. Total Phenolic Compounds and Tannin Assessments
4.3. Resprouting Measurements
4.4. Biochemical Compounds Affecting the Resprouting Capacity
4.5. Biochemical Compounds Affecting the Growth of Resprouts
4.6. Association between the Biochemical Response to Fire and Resprouting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- French, N.; Kasischke, E.; Hall, R.; Murphy, K.; Verbyla, D.; Hoy, E.; Allen, J. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Bravo, S.; Kunst, C.; Gimenez, A.; Moglia, J. Fire regime of a Elionorus muticus Spreng. savanna, western Chaco region, Argentina. Int. J. Wildland Fire 2001, 10, 65–72. [Google Scholar] [CrossRef]
- Bravo, S.J. En la Región Chaqueña Occidental. In Fuego en Ecosistemas Argentinos; Edition: Ediciones INTA; Informe Técnico: Buenos Aires, Argentina, 2010; pp. 111–132. [Google Scholar]
- Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gómez, M. Fire regimes and vegetation responses in two Mediterranean-climate regions Regímenes de incendios y respuestas de la vegetación en dos regiones de clima Mediterráneo. Ecol. Res. 2004, 77, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Paula, S.; Pausas, J.G. Leaf traits and resprouting ability in the Mediterranean basin. Funct. Ecol. 2006, 20, 941–947. [Google Scholar] [CrossRef]
- Arnan, X.; Rodrigo, A.; Retana, J. Post-fire regeneration of Mediterranean plant communities at a regional scale is dependent on vegetation type and dryness. J. Veg. Sci. 2007, 18, 111–122. [Google Scholar] [CrossRef]
- Clarke, P.J.; Lawes, M.J.; Midgley, J.J.; Lamont, B.B.; Ojeda, F.; Burrows, G.E.; Enright, N.J.; Knox, K.J.E. Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaureguiberry, P.; Cuchietti, A.; Gorné, L.D.; Bertone, G.A.; Díaz, S. Post-fire resprouting capacity of seasonally dry forest species—Two quantitative indices. Ecol. Manag. 2020, 473, 118267. [Google Scholar] [CrossRef]
- Ormeño, E.; Céspedes, B.; Sánchez, I.A.; Velasco-García, A.; Moreno, J.M.; Fernandez, C.; Baldy, V. The relationship between terpenes and flammability of leaf litter. Ecol. Manag. 2009, 257, 471–482. [Google Scholar] [CrossRef]
- Page, W.F.; Jenkins, M.J.; Runyon, J.B. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage. Can. J. Res. 2012, 42, 1631–1647. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; French, B.J.; Prior, L.D. Have plants evolved to self-immolate? Front. Plant Sci. 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Della Rocca, G.; Madrigal, J.; Marchi, E.; Michelozzi, M.; Moya, B.; Danti, R. Relevance of terpenoids on flammability of Mediterranean species: An experimental approach at a low radiant heat flux. IForest 2017, 10, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Guerra, L.; Verdaguer, V.; Gispert, M.; Pardini, G.; Font, J.; González, J.A.; Peruzzi, E.; Masciandaro, G.; Llorens, L. Effects of UV radiation and rainfall reduction on leaf and soil parameters related to C and N cycles of a Mediterranean shrubland before and after a controlled fire. Plant Soil 2018, 424, 503–524. [Google Scholar] [CrossRef] [Green Version]
- Jaureguiberry, P.; Díaz, S. Post-burning regeneration of the Chaco seasonally dry forest: Germination response of dominant species to experimental heat shock. Oecologia 2015, 177, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Cambrón-Sandoval, V.H.; España-Boquera, M.L.; Sánchez-Vargas, N.M.; Sáenz-Romero, C.; Vargas-Hernández, J.; Herrerías-Diego, Y. Chlorophyll production in Pinus pseudostrobus juveniles under different development environments. Rev. Chapingo Ser. Cienc. Del Ambiente 2011, 17. [Google Scholar] [CrossRef]
- Callejas, R.; Kania, E.; Contreras, A.; Morales, L.; Peppi, C. Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo-Salazar, M.T.; Marín-Giraldo, Y.; Ocampo, D.M. Efectos en el nivel fotosintético en tres especies de plantas acuáticas sometidas a un tratamiento con agua residual de origen minero. Boletín Científico Cent. De Mus. Mus. De Hist. Nat. 2018, 22, 43–57. [Google Scholar]
- Allred, B.W.; Snyder, K.A. Ecophysiological responses of Chihuahuan desert grasses to fire. J. Arid Environ. 2008, 72, 1989–1996. [Google Scholar] [CrossRef]
- Esteban, R.; Moran, J.F.; Becerril, J.M.; García-Plazaola, J.I. Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environ. Exp. Bot. 2015, 119, 63–75. [Google Scholar] [CrossRef]
- Nisar, N.; Li, L.; Lu, N.; Khin, N.C.; Pogson, B. Carotenoid Metabolism in Plants. Mol. Plant 2015, 1, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Goel, N.; Harron, J.; Hu, B.; Miller, J.; Mohamed, G.; Noland, T.; Sampson, P.; Zarco, P. Needle chlorophyll content estimation through modelling version using hyperspectral data from boreal conifer forest canopies. Remote Sens. Environ. 2004, 89, 189–199. [Google Scholar]
- Huot, Y.; Babin, M.; Bruyant, F.; Grob, C.; Twardowski, M.S.; Claustre, H. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosci. Discuss. 2007, 4, 707–745. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.; Fortes, D.; Herrera, R.; García, M.; Gonzáles, S.; Romero, A. Comportamiento de los pigmentos fotosintéticos, según la edad de rebrote después del pastoreo de Pennisetum purpureum vc. Cuba CT-115 en la estación poco lluviosa. Rev. Cuba. De Cienc. Agrícola 2009, 43, 183–186. [Google Scholar]
- Takashima, T.; Hikosaka, K.; Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plantcell Environ. 2004, 27, 1047–1054. [Google Scholar] [CrossRef]
- Santacruz-García, A.C.; Bravo, S.; del Corro, F.; Ojeda, F. A comparative assessment of plant flammability through a functional approach: The case of woody species from Argentine Chaco region. Austral. Ecol. 2019, 44, 1416–1429. [Google Scholar] [CrossRef]
- Ganthaler, A.; Stöggl, W.; Kranner, I.; Mayr, S. Foliar Phenolic Compounds in Norway Spruce with Varying Susceptibility to Chrysomyxa rhododendri: Analyses of Seasonal and Infection-Induced Accumulation Patterns. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagadic, L.; Caquet, T.; Amiard, J.C.; Ramade, F. Biomarqueurs en Écotoxicologie—Aspects Fondamentaux; Elsevier Masson: Paris, France, 1997. [Google Scholar]
- García, E.M. Efecto de metabolitos secundarios sobre la fermentación ruminal in vitro e in vivo. Obtención de Productos Cárnicos Resistentes a La Oxidación. Ph.D. Thesis, Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina, 2015; pp. 1–198. [Google Scholar]
- Lin, H.Y.; Chang, T.C.; Chang, S.T. A review of antioxidant and pharmacological properties of phenolic compounds in Acacia confusa. J. Tradit. Complement. Med. 2018, 8, 443–450. [Google Scholar] [CrossRef]
- Asif, M. Chemistry and antioxidant activity of plants containing some phenolic compounds. Chem. Int. 2015, 1, 35–52. [Google Scholar]
- Chapin, F.S.; Schulze, E.D.; Mooney, H.A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Evol. Syst. 1990, 21, 423–447. [Google Scholar] [CrossRef]
- Soler, M.; Úbeda, X. Evaluation of fire severity via analysis of photosynthetic pigments: Oak, eucalyptus and cork oak leaves in a Mediterranean forest. J. Environ. Manag. 2018, 206, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, R.; Kunst, C.; Bravo, S.; Leiva, M.; Lorea, L.; Godoy, J.; Navarrete, V. Developing a prescription for brush control in the Chaco region, effects of combined treatments on the canopy of three native shrub species. Arid Land Res. Manag. 2018, 32, 351–366. [Google Scholar] [CrossRef]
- Bravo, S.; Basualdo, M.; Kunst, C.; del Corro, F. Aerial Bud Bank and Structural Changes of Woody Species from Argentine Chaco in Response to Disturbances. J. Environ. Sci. Eng. 2019, 8, 58–69. [Google Scholar]
- Cannac, M.; Barboni, T.; Ferrat, L.; Bighelli, A.; Castola, V.; Costa, J.; Trecul, D.; Morandini, F.; Pasqualini, V. Oleoresin flow and chemical composition of Corsican pine (Pinus nigra subsp. laricio) in response to prescribed burnings. Ecol. Manag. 2009, 257, 1247–1254. [Google Scholar] [CrossRef]
- Bravo, S.; Kunst, C.; Leiva, M.; Ledesma, R. Response of hardwood tree regeneration to surface fires, western Chaco region, Argentina. Ecol. Manag. 2014, 326, 36–45. [Google Scholar] [CrossRef]
- Talamo, A.; Caziani, S.M. Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. Ecol. Manag. 2003, 184, 79–92. [Google Scholar] [CrossRef]
- Kunst, C.; Ledesma, R.; Bravo, S.; Defosse, G.; Godoy, J.; Navarrete, V. Comportamiento del fuego en un pastizal del sitio ecológico ‘media loma’, región chaqueña occidental (Argentina ). Rev. De Investig. Agropecu. 2012, 38, 70–77. [Google Scholar]
- Grau, R.; Torres, R.; Gasparri, N.; Blendinger, P.; Marinaro, S.; Macchi, L. Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. J. Arid Environ. 2015, 123, 40–46. [Google Scholar] [CrossRef]
- Barchuk, A.; Iglesias, M.d.R.; Oviedo, C. Rebrote basal de Aspidosperma quebracho-blanco en estado de plántula: Mecanismo de persistencia en el Chaco Árido. Ecol. Austral 2006, 16, 197–205. [Google Scholar]
- Jaureguiberry, P. Caracteres funcionales, flamabilidad y respuesta al fuego de especies vegetales dominantes en distintas situaciones de uso de la tierra en el centro-oeste de Argentina. Ph.D. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, 2012. [Google Scholar]
- Della Rocca, G.; Hernando, C.; Madrigal, J.; Danti, R.; Moya, J.; Guijarro, M.; Pecchioli, A.; Moya, B. Possible land management uses of common cypress to reduce wildfire initiation risk: A laboratory study. J. Environ. Manag. 2015, 159, 68–77. [Google Scholar] [CrossRef]
- Carter, G.; Knapp, A. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Cannac, M.; Pasqualini, V.; Greff, S.; Fernandez, C.; Ferrat, L. Characterization of phenolic compounds in Pinus laricio needles and their responses to prescribed burnings. Molecules 2007, 12, 1614–1622. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, W.; Moreira, A. The role of fire in population dynamics of woody plants. In Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna; Olivera, P., Marquis, R., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 159–177. ISBN 0231120427. [Google Scholar]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz, G. Ecological characterization of a Eutric Regosol soil in Argentina Semiarid Chaco forest. Quebracho 1995, 3, 13–23. [Google Scholar]
- Torella, S.A.; Adámoli, J. Situación ambiental de la ecoregión del Chaco Seco. In Situación Ambiental Argentina 2005; Brown, A.D., Marinez Ortiz, U., Acerbi, M., Corchera, J., Eds.; Fundacion Vida Silvestre Argentina: Buenos Aires, Argentina, 2005; pp. 75–82. [Google Scholar]
- Kunst, C.; Bravo, S.; Navall, M.; Anriquez, A.; Coria, D.; Silberman, J.; Gómez, A.; Albanesi, A. Ecology and management of the dry forests and savannas of the western Chaco region. In Dry Forests: Ecology, Species Diversity and Sustainable Management; Greer, F.E., Ed.; NOVA Publishers: Hauppauge, NY, USA, 2014; pp. 133–164. ISBN 978-1-63321-291-6. [Google Scholar]
- Araujo, P.; Iturre, M.; Acosta, H.; Renolfi, R. Estructura del bosque de La María EEA INTA Santiago del Estero. Quebracho. Rev. De Cienc. 2008, 16, 5–19. [Google Scholar]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Goodwin, T.W. Chemistry and Biochemistry of Plant Pigments, 2nd ed.; Academic Press: London, UK, 1976; 870p. [Google Scholar]
- Pérez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.S.; Cornwell, W.K.K.; Craine, J.M.M.; Gurvich, D.E.E.; et al. New Handbook for standardized measurment of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Méndez, A.M. Papel de los carbohidratos en la tolerancia al estrés hídrico en líneas recombinantes con sustitución de cromosomas de cebada: Estudio bioquímico y molecular. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2014. [Google Scholar]
- De Dios, V.R.; Arteaga, C.; Peguero-Pina, J.J.; Sancho-Knapik, D.; Qin, H.; Zveushe, O.; Sun, W.; Williams, D.G.; Boer, M.; Voltas, J.; et al. Hydraulic and photosynthetic limitations prevail over root non-structural carbohydrate reserves as drivers of resprouting in two Mediterranean oaks. Plantcell Environ. 2020. [Google Scholar] [CrossRef]
- Kane, V.R.; Lutz, J.A.; Alina Cansler, C.; Povak, N.A.; Churchill, D.J.; Smith, D.F.; Kane, J.T.; North, M.P. Water balance and topography predict fire and forest structure patterns. Ecol. Manag. 2015, 338, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Xiang, S.; Li, G. Different responses in leaf pigments and leaf mass per area to altitude between evergreen and deciduous woody species. Aust. J. Bot. 2013, 61, 424–435. [Google Scholar] [CrossRef]
- El Omari, B.; Fleck, I.; Aranda, X.; Abadía, A.; Cano, A.; Arnao, M.B. Total antioxidant activity in Quercus ilex resprouts after fire. Plant Physiol. Biochem. 2003, 41, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Enright, N.J.; Fontaine, J.B.; Lamont, B.B.; Miller, B.P.; Westcott, V.C. Resistance and resilience to changing climate and fire regime depend on plant functional traits. J. Ecol. 2014, 102, 1572–1581. [Google Scholar] [CrossRef] [Green Version]
- Conti, G.; Díaz, S. Plant functional diversity and carbon storage—An empirical test in semi-arid forest ecosystems. J. Ecol. 2013, 101, 18–28. [Google Scholar] [CrossRef]
- Stylinski, C.; Gamon, J.; Oechel, W. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 2002, 131, 336–374. [Google Scholar] [CrossRef] [PubMed]
- Kunst, C.; Bravo, S.J. Ecología y régimen de fuego en la región chaqueña argentina. In Fuego en los Ecosistemas Argentinos; Instituto Nacional de Tecnología Agropecuaria: Santiago del Estero, Argentina, 2003; pp. 109–118. [Google Scholar]
- Saitoh, T.; Nagai, S.; Saigusa, N.; Kobayashi, H.; Suzuki, R.; Nasahara, K.N.; Muraoka, H. Assessing the use of camera-based indices for characterizing canopy phenology in relation to gross primary production in a deciduous broad-leaved and an evergreen coniferous forest in Japan. Ecol. Inf. 2012, 11, 45–54. [Google Scholar] [CrossRef]
- Manrique Reol, E. Año XII, No1/2003 Enero-Abril. Ecosistemas 2003, 12, 11. [Google Scholar]
- Huang, L.; Ning, Z.; Zhang, X. Impacts of caterpillar disturbance on forest net primary production estimation in China. Ecol. Indic. 2019, 10, 1144–1151. [Google Scholar] [CrossRef]
- Alonso, M.; Rozados, M.J.; Vega, J.A.; Pérez-Gorostiaga, P.; Cuiñas, P.; Fontúrbel, M.T.; Fernández, C. Biochemical responses of pinus pinaster trees to fire-induced trunk girdling and crown scorch: Secondary metabolites and pigments as needle chemical indicators. J. Chem. Ecol. 2002, 28, 687–700. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Valares, C. Variación del Metabolismo Secundario en Plantas Debida al Genotipo y al Ambiente; Universidad de Extremadura: Badajoz, Spain, 2011; ISBN 978-84-694-9433-2. [Google Scholar]
- Galindo-Segura, L.A. Variación intraespecífica de rasgos funcionales de Cedrela odorata sobre un gradiente climático en la Península de Nicoya, Costa Rica. Master’s Thesis, CATIE, Turrialba, Costa Rica, 2018. [Google Scholar]
- Guedes, L.M.; Aguilera, N.; Becerra, J.; Hernández, V.; Dos-Santos, R.M. Leaf and stem galls of Schinus polygamus (Cav.) Cabr (Anacardiaceae): Anatomical and chemical implications. Biochem. Syst. Ecol. 2016, 69, 266–273. [Google Scholar] [CrossRef]
- Hernández, F.; Noguera-Artiaga, L.; Burló, B.; Wojdyło, A.; Carbonell-Barrachina, A.A.; Legua, P. Physicochemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J. Sci. Food Agric. 2016, 96, 2682–2691. [Google Scholar]
- Bonatto-Schimitberger, V.M.; de Almeida-Pratti, D.L.; Cavalcanti, L.C.; Ramalho, V.F.; Ferreira-da Costa, A.P.; Scherer, R.; Machado-Kuster, R.; Countinho-Ramos, A.; Gomes-da Silva, A. Volatile compounds profile changes from unripe to ripe fruits of Brazilian pepper (Schinus terebinthifolia Raddi). Ind. Crop. Prod. 2018, 119, 125–131. [Google Scholar] [CrossRef]
- Herrero, M.L.; Torres, R.C.; Renison, D. Do wildfires promote woody species invasion in a fire-adapted ecosystem? post-fire resprouting of native and non-native woody plants in central Argentina. Environ. Manag. 2016, 57, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, M.B.; Johnson, E.A. Fire effects on trees. In Forest Fires; Johnson, E., Ed.; Academic Press: Edmonton, AB, Canada, 2001; pp. 477–525. ISBN 9780080506746. [Google Scholar]
- Pintó-Marijuan, M.; Joffre, R.; Casals, I.; de Agazio, M.; Zacchini, M.; García-Plazaola, J.I.; Esteban, R.; Aranda, X.; Guàrdia, M.; Fleck, I. Antioxidant and photoprotective responses to elevated CO2 and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (near-infrared reflectance spectroscopy). Plant Biol. 2013, 15, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.S.; Ferraro, A.; Ogando, F.I.B.; de Aguiar, C.L.; Appezzato-Da-Glória, B. Structures related to resprouting potential of two myrtaceae species from Cerrado: Morpho-anatomical and chemical studies. Acad. Bras. Cienc. 2020, 92, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Hou, H.; Zhang, S.; Liu, Y.; Wang, H.; Deng, W.W.; Zhou, S.; Wu, Y.; Shen, F.; Gao, L.; et al. Comparison of phenolic compound accumulation profiles in eight evergreen woody core eudicots indicating the diverse ecological adaptability of Camellia sinensis. Sci. Hortic. 2017, 219, 200–206. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [Green Version]
Species | Botanical Family | Growth Habit | Foliar Persistence |
---|---|---|---|
A. emarginata | Capparaceae | Shrub | Evergreen |
A. quebracho blanco | Apocynaceae | Tree | Evergreen |
C. ehrenbergiana | Celtidaceae | Shrub | Deciduous |
S. johnstonii | Anacardiaceae | Shrub | Evergreen |
S. lorentzii | Anacardiaceae | Tree | Deciduous |
S. mistol | Rhamnaceae | Tree | Deciduous |
Species | Pre-Fire Height | BT | FL | BB |
---|---|---|---|---|
A. emarginata | 1.88 ± 0.56 a | 62 ± 19 | 1.26 ± 0.19 | 58 ± 20 c |
A. quebracho blanco | 1.92 ± 0.61 a | 65 ± 31 | 1.37 ± 0.18 | 30 ± 19 ab |
C. ehrenbergiana | 1.66 ± 0.54 a | 77 ± 41 | 1.24 ± 0.21 | 40 ± 26 bc |
S. johnstonii | 1.37 ± 0.22 a | 63 ± 32 | 1.28 ± 0.29 | 58 ± 19 c |
S. lorentzii | 3.96 ± 1.89 b | 64 ± 41 | 1.29 ± 0.21 | 24 ± 29 ab |
S. mistol | 3.96 ± 1.34 b | 102 ± 52 | 1.22 ± 0.17 | 19 ± 16 a |
Species | Type of Resprout | Mortality | RN | RD | RMH | RP | RC |
---|---|---|---|---|---|---|---|
A. emarginata | Basal | 0 | 21 ± 14 | 0.21 ± 0.13 a | 0.43 ± 0.31 | 80 | 46.4 |
A. quebracho blanco | Basal | 0 | 8 ± 5 | 2.30 ± 1.60 b | 0.46 ± 0.29 | 90 | 27.0 |
C. ehrenbergiana | Basal | 0 | 11 ± 12 | 0.32 ± 0.06 a | 0.66 ± 0.54 | 70 | 28.3 |
S. johnstonii | Basal | 0 | 14 ± 8 | 0.35 ± 0.10 a | 0.74 ± 0.30 | 100 | 58.5 |
S. lorentzii | Basal | 0 | 6 ± 11 | 0.16 ± 0.17 a | 0.33 ± 0.30 | 40 | 9.6 |
S. mistol | - | 0 | 0 ± 0 | - | - | 0 | 0.0 |
Number of Resprouts | Maximum Height of Resprouts | Diameter of Resprouts | Resprouting Capacity | |
---|---|---|---|---|
Species | 0.96 | 2.93 * | 9.52 ** | 1.92 |
Growth habit | 6.99 * | 13.10 ** | 4.88 * | 22.30 ** |
Resprouting Capacity (R2 = 0.50) | |
---|---|
Total chlorophylls | 0.39 |
Chlorophyll a | 13.69 ** |
Chlorophyll b | 5.85 |
Total carotenoids | 6.31 |
Total phenolic contents | 9.87 ** |
Tannin contents | 8.69 ** |
Number of Resprouts | Maximum Height of Resprouts | Diameter of Resprouts | |
---|---|---|---|
A. quebracho blanco | |||
Total chlorophylls | 6.01 | 7.86 * | 5.82 |
Chlorophyll a | 5.61 | 7.55 | 5.40 |
Chlorophyll b | 7.26 | 8.59 * | 7.21 |
Total carotenoids | 6.38 | 8.19 * | 6.09 |
Total phenolic contents | 16.86 * | 13.07 * | 18.46 * |
Tannin contents | 9.24 * | 11.89 * | 9.48 * |
S. lorentzii | |||
Total chlorophylls | 3.63 | 6.26 | 4.24 |
Chlorophyll a | 3.78 | 6.86 | 4.62 |
Chlorophyll b | 2.49 | 4.24 | 3.02 |
Total carotenoids | 3.80 | 5.58 | 3.69 |
Total phenolic contents | 1.13 | 8.54 | 18.65 * |
Tannin contents | 2.69 | 6.83 | 6.25 |
A. emarginata | |||
Total chlorophylls | 4.24 | 10.88 * | 10.45 * |
Chlorophyll a | 4.03 | 10.93 * | 10.27 * |
Chlorophyll b | 4.70 | 10.66 * | 10.72 * |
Total carotenoids | 5.55 | 10.09 * | 12.15 * |
Total phenolic contents | 14.22 * | 9.56 * | 22.54 ** |
Tannin contents | 4.60 | 25.57 ** | 16.53 * |
C. ehrenbergiana | |||
Total chlorophylls | 20.15 * | 36.15 ** | 69.32 ** |
Chlorophyll a | 21.78 ** | 36.49 ** | 65.48 ** |
Chlorophyll b | 17.37 * | 34.47 ** | 72.95 ** |
Total carotenoids | 11.07 * | 19.69 *** | 39.19 ** |
Total phenolic contents | 14.20 * | 28.26 ** | 45.08 ** |
Tannin contents | 11.72 | 45.20 ** | 182.90 ** |
S. johnstonii | |||
Total chlorophylls | 8.92 * | 14.13 * | 17.74 * |
Chlorophyll a | 10.09 * | 16.46 * | 21.62 ** |
Chlorophyll b | 6.48 | 9.65 * | 11.18 * |
Total carotenoids | 12.21 * | 16.14 * | 21.38 ** |
Total phenolic contents | 10.04 * | 14.05 * | 24.84 ** |
Tannin contents | 13.82 * | 31.29 ** | 50.41 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santacruz-García, A.C.; Bravo, S.; del Corro, F.; García, E.M.; Molina-Terrén, D.M.; Nazareno, M.A. How Do Plants Respond Biochemically to Fire? The Role of Photosynthetic Pigments and Secondary Metabolites in the Post-Fire Resprouting Response. Forests 2021, 12, 56. https://doi.org/10.3390/f12010056
Santacruz-García AC, Bravo S, del Corro F, García EM, Molina-Terrén DM, Nazareno MA. How Do Plants Respond Biochemically to Fire? The Role of Photosynthetic Pigments and Secondary Metabolites in the Post-Fire Resprouting Response. Forests. 2021; 12(1):56. https://doi.org/10.3390/f12010056
Chicago/Turabian StyleSantacruz-García, Ana Carolina, Sandra Bravo, Florencia del Corro, Elisa Mariana García, Domingo M. Molina-Terrén, and Mónica Azucena Nazareno. 2021. "How Do Plants Respond Biochemically to Fire? The Role of Photosynthetic Pigments and Secondary Metabolites in the Post-Fire Resprouting Response" Forests 12, no. 1: 56. https://doi.org/10.3390/f12010056
APA StyleSantacruz-García, A. C., Bravo, S., del Corro, F., García, E. M., Molina-Terrén, D. M., & Nazareno, M. A. (2021). How Do Plants Respond Biochemically to Fire? The Role of Photosynthetic Pigments and Secondary Metabolites in the Post-Fire Resprouting Response. Forests, 12(1), 56. https://doi.org/10.3390/f12010056