Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Field
2.2. DNA Analysis
2.3. Statistical Analysis
3. Results
3.1. Inference of Origin and Genetic Structure in Iki-no-Matsubara Based on DBH
3.2. Genetic Diversity and Genetic Structure of PWN-P. thunbergii Resistant Trees
4. Discussion
4.1. Inference of Origin and Genetic Structure in Iki-no-Matsubara based on DBH
4.2. Genetic Management of P. thunbergii in Iki-no-Matsubara with Kyushu PWN-P. thunbergii Resistant Trees
4.3. Kyushu PWN-P. thunbergii Resistant Trees Deployment Management as Part of Genetic Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No | DBH Class Range | Number of Trees | Loci |
---|---|---|---|
1 | 1–30 cm | 82 | bcpt2532 |
1 | bcpt1823 | ||
2 | 31–60 cm | 5 | bcpt1671 |
1 | bcpt834 | ||
3 | 61–90 cm | 1 | bcpt1671 |
4 | bcpt834 |
No | PWN-P. thunbergii Resistant Trees | |||
---|---|---|---|---|
Tohoku | Kansai | Kanto | Kyushu | |
1 | Naruse39 | Tanabe54 | Odaka37 | Shima64 |
2 | Naruse72 | Bizen143 | Odaka203 | Tsuyazaki50 |
3 | Naruse6 | Mitoyo103 | Iwaki27 | Karatsu1 |
4 | Watari5 | Namikata37 | Osuga5 | Karatsu4 |
5 | Yamamoto82 | Namikata73 | Osuga6 | Karatsu7 |
6 | Yamamoto84 | Misaki90 | Osuga12 | Karatsu9 |
7 | Yamamoto90 | Yoshida2 | Osuga15 | Karatsu11 |
8 | Yuza27 | Yasu37 | Osuga23 | Karatsu16 |
9 | Yuza72 | Tosashimizu63 | Utchihara5 | Karatsu17 |
10 | Yuza33 | Kumihama10 | Tomiura7 | Obama30 |
11 | Yuza54 | Kumihama21 | Okazaki25 | Oseto12 |
12 | Yuza56 | Kumihama109 | Okazaki34 | Kawaura8 |
13 | Yuza58 | Amino31 | Okazaki35 | Kawaura13 |
14 | Yuza60 | Amino43 | Amakusa20 | |
15 | Yuza57 | Tango47 | Oita8 | |
16 | Yuza59 | Tango50 | Sadowara8 | |
17 | Yuza77 | Tango51 | Sadowara14 | |
18 | Murakami2 | Tango58 | Sadowara15 | |
19 | Murakami5 | Tango60 | Miyazaki20 | |
20 | Murakami11 | Tango65 | Sendai20 | |
21 | Murakami16 | Tango69 | Ei425 | |
22 | Murakami44 | Tango71 | Hiyoshi1 | |
23 | Murakami9 | Totori7 | Hiyoshi5 | |
24 | Murakami15 | Totori13 | Hukiage25 | |
25 | Nigata8 | Iwami63 | Okagaki1 | |
26 | Nigata40 | Nisinosima142 | Okagaki5 | |
27 | Nigata3 | Komatsu99 | Okagaki6 | |
28 | Aikawa27 | Ota39 | Okagaki8 | |
29 | Nagaoka15 | Hamada6 | Okagaki25 | |
30 | Nagaoka8 | Hamada12 | Okagaki29 | |
31 | Ozika151 | Hamada24 | Okagaki31 | |
32 | Sendai35 | Hamada28 | Okagaki32 | |
33 | Ishimaki251 | Gotsu29 | Okagaki35 | |
34 | Ishimaki260 | Yunotsu52 | Okagaki20 | |
35 | Ishimaki259 | Hukube51 | Munakata2 | |
36 | Atsumi43 | Hukube54 | Munakata4 | |
37 | Tsuruoka38 | Hukube60 | Munakata12 | |
38 | Tsuruoka44 | Hukube61 | Munakata19 | |
39 | Tsuruoka46 | Hukube71 | Shingu2 | |
40 | Zyoetsu1 | Koryo60 | Shingu5 | |
41 | Zyoetsu10 | Koryo77 | Shingu11 | |
42 | Kaga387 | Shingu14 | ||
43 | Kaga388 | Shingu17 | ||
44 | Kaga295 | |||
45 | Shiga396 | |||
46 | Tsuruga14 | |||
47 | Tsuruga15 |
Pop1 | Pop2 | FST | Nm |
---|---|---|---|
Hukiage | Kyushu PWN-P. thunbergii resistant trees | 0.020 | 12.308 |
Soo | Kyushu PWN-P. thunbergii resistant trees | 0.033 | 7.349 |
Miyazaki | Kyushu PWN-P. thunbergii resistant trees | 0.027 | 8.956 |
Minamishimabara | Kyushu PWN-P. thunbergii resistant trees | 0.007 | 34.354 |
Amakusa | Kyushu PWN-P. thunbergii resistant trees | 0.008 | 32.530 |
Kitsuki | Kyushu PWN-P. thunbergii resistant trees | 0.016 | 15.698 |
Karatsu | Kyushu PWN-P. thunbergii resistant trees | 0.008 | 32.144 |
Iki-no-Matsubara (Fukuoka) | Kyushu PWN-P. thunbergii resistant trees | 0.010 | 25.961 |
Okagaki | Kyushu PWN-P. thunbergii resistant trees | 0.010 | 24.077 |
References
- Fuhrer, E. Forest function, ecosystem stability and management. For. Ecol. Manag. 2000, 132, 29–38. [Google Scholar] [CrossRef]
- Krott, M. Forest Policy Analysis; European Forest Institute; Springer: Amsterdam, The Netherlands, 2005; ISBN 978-1-4020-3485-5. [Google Scholar]
- Santika, T.; Meijaard, E.; Wilson, K.A. Designing multifunctional landscapes for forest conservation. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Benz, J.P.; Chen, S.; Dang, S.; Dieter, M.; Labelle, E.R.; Liu, G.; Hou, L.; Mosandl, R.M.; Pretzsch, H.; Pukall, K.; et al. Multifunctionality of forests: A white paper on challenges and opportunities in China and Germany. Forests 2020, 11, 266. [Google Scholar] [CrossRef] [Green Version]
- Aravanopoulos, F. Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests 2018, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Ratnam, W.; Rajora, O.P.; Finkeldey, R.; Aravanopoulos, F.; Bouvet, J.M.; Vaillancourtf, R.E.; Kanashiro, M.; Fady, B.; Tomita, M.; Vinson, C. Genetic effects of forest management practices: Global synthesis and perspectives. For. Ecol. Manag. 2014, 333, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Tubby, K.V.; Webber, J.F. Pests and diseases threatening urban trees under a changing climate. For. Int. J. For. Res. 2010, 83, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Milner-Gulland, E.J. Interactions between human behaviour and ecological systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Aravanopoulos, F.A. Conservation and monitoring of tree genetic resources in temperate forests. Curr. For. Rep. 2016, 2, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Ledig, F.T. The conservation of diversity in forest trees: Why and how should genes be conserved? BioScience 1988, 38, 471–479. [Google Scholar] [CrossRef]
- Rajora, O.P.; Pluhar, S.A. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theor. Appl. Genet. 2003, 106, 1203–1212. [Google Scholar] [CrossRef]
- White, T.L.; Adams, W.T.; Neale, D.B. Forest Genetics; Cabi: Cambridge, MA, USA, 2007; ISBN 978-0-85199-083-5. [Google Scholar]
- Japan Meteorological Agency. Climate Change Monitoring Report 2017; Japan Meteorological Agency: Tokyo, Japan, 2018; pp. 31–55.
- Ministry of the Environment; Ministry of the Education Culture, Sports, Science, and Technology; Ministry of the Agriculture, Forestry, and Fisheries; Ministry of the Land, Infastructure, Transport, and Tourism; Japan Meteorological Agency. Synthesis Report on Observations, Projections, and Impact Assesments of Climate Change, 2018: Climate Change in Japan and It’s Impacts; Ministry of the Environment: Tokyo, Japan, 2018; pp. 1–7.
- Sturrock, R.N.; Frankel, S.J.; Brown, A.V.; Hennon, P.E.; Kliejunas, J.T.; Lewis, K.J.; Worrall, J.J.; Woods, A.J. Climate change and forest diseases. Plant Pathol. 2011, 60, 133–149. [Google Scholar] [CrossRef]
- Forestry Agency. State of Japan’s Forest and Forest Management: 3rd Country Report of Japan to the Montreal Process; Forest Agency: Tokyo, Japan, 2019.
- Ministry of Agriculture, Forestry, and Fisheries. Niji-no-Matsubara (Pine Grove) Recreation Forest. Available online: https://www.rinya.maff.go.jp/e/national_forest/recreation_forest/niji.html (accessed on 20 April 2020).
- Iwaizumi, M.G.; Miyata, S.; Hirao, T.; Tamura, M.; Watanabe, A. Historical seed use and transfer affect geographic specificity in genetic diversity and structure of old planted Pinus thunbergii population. For. Ecol. Manag. 2018, 408, 211–219. [Google Scholar] [CrossRef]
- Suwa, R. Evaluation of the wave attenuation function of a coastal black pine Pinus thunbergii forest using the individual-based dynamic vegetation model SEIB-DGVM. J. For. Res. 2013, 18, 238–245. [Google Scholar] [CrossRef]
- Ichihara, Y.; Fukuda, K.; Suzuki, K. Early symptom development and histological change associated with migration of Bursaphelenchus xylophilus in seedling tissues of Pinus thunbergii. Plant Dis. 2000, 84, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, R.; Matsunaga, K.; Watanabe, A. Influence of temperature on pine wilt disease progression in Pinus thunbergii seedlings. Eur. J. Plant Pathol. 2019, 156, 1–10. [Google Scholar] [CrossRef]
- Linnakoski, R.; Kasanen, R.; Dounavi, A.; Forbes, K.M. Forest health under climate change: Effects on tree resilience, and pest and pathogen dynamics. In Frontiers in Plant Science; Frontiers Media SA: Lausanne, Switzerland, 2019; pp. 5–7. [Google Scholar] [CrossRef]
- Hirata, A.; Nakamura, K.; Nakao, K.; Kominami, Y.; Tanaka, N.; Ohashi, H.; Takano, K.T.; Takeuchi, W.; Matsui, T. Potential distribution of pine wilt disease under future climate change scenarios. PLoS ONE 2017, 12, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, Y.; Toda, T.; Nishimura, K.; Yamate, H.; Fuyuno, S. Breeding project on resistance to pine-wood nematode-an outline of the research and the achievement of the project for ten years. Bull. For. Tree Breed. Inst. 1989, 3, 1–84. [Google Scholar]
- Kurinobu, S. Current status of resistance breeding of Japanese pine species to pine wilt disease. For. Sci. Technol. 2008, 4, 51–57. [Google Scholar] [CrossRef]
- Matsunaga, K.; Watanabe, A. characterization of pine wood nematode and development of more improved second generation resistant trees [In Japanese]. For. Genet. Tree Breed. 2018, 7, 115–119. [Google Scholar] [CrossRef]
- FFPRI. Forest tree breeding center and forest bio-research center brochure. In Forest Research and Management Organization National Research and Development Agency; FFPRI: Tokyo, Japan, 2018. [Google Scholar]
- Aitken, S.N.; Whitlock, M.C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 367–388. [Google Scholar] [CrossRef]
- Içgen, Y.; Kaya, Z.; Çengel, B.; Velioǧlu, E.; Öztürk, H.; Önde, S. Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey. For. Ecol. Manag. 2006, 225, 328–336. [Google Scholar] [CrossRef]
- Konnert, M.; Fady, B.; Gomory, D.; A’Hara, S.; Wolter, F.; Ducci, F.; Koskela, J.; Bozzano, M.; MaKowalczyk, J. Use and transfer of forest reproductive material in europe in the context of climate change. In European Forest Genetic Resources Programme (EUFORGEN), Bioversity International; Euforgen: Rome, Italy, 2015; ISBN 978-92-9255-031-8. [Google Scholar]
- Ingvarsson, P.K.; Dahlberg, H. The effect of clonal forestry on genetic diversity in wild and domesticated stands of forest trees. Scandinavian J. For. Res. 2019, 34, 370–379. [Google Scholar] [CrossRef]
- Kavaliauskas, D.; Fussi, B.; Westergren, M.; Aravanopoulos, F.; Finzgar, D.; Baier, R.; Alizoti, P.; Bozic, G.; Avramidou, E.; Konnert, M.; et al. The interplay between forest management practices, genetic monitoring, and other long-term monitoring systems. Forests 2018, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Bailey, J.K.; Schweitzer, J.A.; Ubeda, F.; Koricheva, J.; LeRoy, C.J.; Madritch, M.D.; Rehill, B.J.; Bangert, R.K.; Fischer, D.G.; Allan, G.J.; et al. From genes to ecosystems: A synthesis of the effects of plant genetic factors across levels of organization. Philos. Trans. Royal Soc. B Biol. Sci. 2009, 364, 1607–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuoka City. The Iki-no-Matsubara pine forest and genko borui. Hakata Cult. 2016, 133. Available online: http://www.fukuoka-now.com (accessed on 23 December 2019).
- Awano, T. An evaluation of the intrinsic value of the takada pine forest (Takakada-no-Matsubara) as a scenic beauty spot in japan. Urban Reg. Plan. Rev. 2015, 2, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Park, K.W.; Sokh, H.; Inoue, S. Local inhabitants consciousness of using and managing urban forest Aaea-a case study of iki no matsubara in fukuoka city. J. Fac. Agric. Kyushu Univ. 2003, 47, 267–275. [Google Scholar]
- Studhalter, R.A.; Glock, W.S.; Agerter, S.R. Tree gowth: Some historical chapters in the study of diameter growth. Bot. Rev. 1963, 29, 245–365. [Google Scholar] [CrossRef]
- Pilcher, J.R. Sample preparation, cross-dating, and measurement. In Method of Dendrochronology: Application in the Environmental Sciences; Editor Cook, E., Kairiukstis, L., Eds.; Springer Science & Business Media Dordrecht: Berlin, Germany, 1992; pp. 40–50. ISBN 978-94-015-7879-0. [Google Scholar]
- Omura, H. Tree, forests, and religion in japan. Mt. Res. Dev. 2004, 24, 179–182. [Google Scholar] [CrossRef]
- Fukatsu, E.; Isoda, K.; Hirao, T.; Watanabe, A. Development and characterization of simple sequence repeat dna markers for Zelkova serrata. Mol. Ecol. Notes 2005, 5, 378–380. [Google Scholar] [CrossRef]
- Korbie, D.J.; Mattick, J.S. Protocol: Touchdown pcr for increased specifiy and sensitivity in pcr amplification. Nat. Protoc. 2008, 3, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GENALEX 6.5: Genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3.2). 2001. Available online: http://www2.unil.ch/popgen/softwares/fstat.html (accessed on 20 December 2019).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; von Holdt, B.M. Stcuture harvester: A website and program for visualizing structure output and implementing the evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Welt, R.S.; Litt, A.; Franks, S.J. Analysis of population genetic structure and gene fow in an annual plant before and after a rapid evolutionary response to drought. AoB Plants 2015, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Funda, T.; lstibůrek, M.; Lachout, P.; Klápště, J.; El-Kassaby, Y.A. Optimization of combine genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genet. Genomes 2009, 5, 583–593. [Google Scholar] [CrossRef]
- Kang, K.S.; Lindgren, D.; Mullin, T.J. Prediction of genetic gain and genetic diversity in seed orchard crops under alternative management strategies. Theor. Appl. Genet. 2001, 103, 1099–1107. [Google Scholar] [CrossRef]
- David, A.; Pike, C.; Stine, R. Comparison of selection methods for optimizing genetic gain and gene diversity in a red pine (Pinus resinosa Ait.). Theor. Appl. Genet. 2003, 107, 843–849. [Google Scholar] [CrossRef]
- Funda, T. Population Genetics of Conifer Seed Orchard. Ph.D. Thesis, The Faculty of Graduate Studies (Forestry), The University of British Columbia, Vancouver, BC, Canada, 2012. [Google Scholar]
- Kitzmiller, J.H. Managing genetic diversity in a tree improvement program. For. Ecol. Manag. 1990, 35, 131–149. [Google Scholar] [CrossRef]
- Wheeler, N.C.; Jech, K.S. The use of electrophoretic markers in seed orchard research. New For. 1992, 6, 311–328. [Google Scholar] [CrossRef]
- Slatkin, M. Gene flow and the geographic structure of natural population. Science 1987, 236, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Stefenon, V.M.; Gailing, O.; Finkeldey, R. The role of gene flow in shaping genetic structures of the subtropical conifer species Araucaria angustifolia. Plant Biol. 2008, 10, 356–364. [Google Scholar] [CrossRef]
- Lindgren, D.; Mullin, T.J. Relatedness and status number in seed orchard crops. Can. J. For. Res. 1998, 28, 276–283. [Google Scholar] [CrossRef]
- Crow, J.F.; Kimura, M. An Introduction to Population Genetic Theory; Blackburn Press: Caldwell, NJ, USA, 2009; pp. 345–364. ISBN 978-1-932846-12-6. [Google Scholar]
- Wu, H.X. Benefits and risks of using clones in forestry-a review. Scandinavian J. For. Res. 2018, 34, 352–359. [Google Scholar] [CrossRef]
- Lindgren, D.; El-Kassaby, Y. Genetic consequences of combining selective cone harvesting and genetic thinning in clonal seed orchards. Silvae Genet. 1989, 38, 65–70. [Google Scholar]
- Iwaizumi, M.; Kawai, Y.; Miyamoto, N.; Nasu, J.; Kubota, M.; Mukasyaf, A.A.; Tamura, M.; Watanabe, A. Evaluation of Genetic Diversity of Mother Trees and Seed Pool for Gene Conservation of A Pinus thunbergii Population. Jpn. For. Soc. Congr. 2020, 131. (In Japanese) [Google Scholar] [CrossRef]
- Jost, L.; Archer, F.; Flanagan, S.; Gaggiotti, O.; Hoban, S.; Latch, E. Differentiation measures for conservation genetics. Evol. Appl. 2018, 11, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.R.; Sorensen, F.C.; St Clair, J.B.; Cronn, R.C. Pacific northwest forest tree seed zones-a template for native plants? Nativ. Plants J. 2004, 5, 131–140. [Google Scholar] [CrossRef]
- O’Brien, E.K.; Krauss, S.L. Testing the home-site advantage in forest trees on disturbed and undisturbed sites. Restor. Ecol. 2010, 18, 359–372. [Google Scholar] [CrossRef]
- Nagamitsu, T.; Shimada, K.; Kanazashi, A. A reciprocal transplant trial suggests a disadvantage of northward seed transfer in survival and growth of japanese red pine (Pinus densiflora) trees. Tree Genet. Genomes 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Adams, W.T.; Burczyk, J. Magnitude and implications of gene flow in gene conservation reserves. In Forest Conservation Genetics: Principles and Practice; CABI: Wallingford, UK, 2000; pp. 215–224. ISBN 0-643-06260-2. [Google Scholar]
- Jump, A.S.; Marchant, R.; Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 2009, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.J.; Underwood, N.; Vellen, M. Ecological consequences of genetic diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef] [PubMed]
- FFPRI. Variety of Pine Wood Nematode Resistant Tree Brochure; Forest Tree Breeding Center and Forest Bio-Research Center; Forest Research and Management Organization National Research and Development Agency: Tokyo, Japan, 2019. Available online: https://www.ffpri.affrc.go.jp/ftbc/business/sinhijnnsyu/teikousei.html (accessed on 21 April 2020). (In Japanese)
No | DBH Class Range (cm) | DBH Stump (cm) | Replication | Estimation of the Age (Years) | Sample (Trees) | |||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Mean | ||||
1 | 1–30 | 4 | 29 | 9 | 12 | 36 | 23 | 109 |
2 | 31–60 | 32 | 51 | 9 | 32 | 190 | 84 | 108 |
3 | 61–90 | 65 | 85 | 7 | 170 | 195 | 178 | 52 |
Total: | 269 |
Locus | Size Range (bp) | Na | Ne | AR | HO | HE | FIS | HWE |
---|---|---|---|---|---|---|---|---|
bcpt1075 | 141–201 | 18 | 5.62 | 7.42 | 0.85 | 0.82 | −0.03 | ns |
bcpt1671 | 162–225 | 22 | 5.79 | 8.25 | 0.82 | 0.83 | 0.01 | ns |
bcpt834 | 139–183 | 16 | 5.3 | 7.83 | 0.74 | 0.81 | 0.09 | * |
bcpt1823 | 128–169 | 15 | 5.71 | 7.51 | 0.62 | 0.82 | 0.25 | *** |
bcpt2532 | 128–190 | 29 | 7.83 | 11.49 | 0.57 | 0.87 | 0.35 | *** |
bcpt1549 | 93–130 | 14 | 3.18 | 5.75 | 0.67 | 0.69 | 0.03 | ns |
Mean | 19 | 5.57 | 8.04 | 0.71 | 0.81 | 0.12 |
Pop | Locus | PA | Pop | Locus | PA | Pop | Locus | PA | Pop | Locus | PA |
---|---|---|---|---|---|---|---|---|---|---|---|
Fukiage | bcpt1075 | 1 | Miyajima | bcpt1549 | 1 | Oki | bcpt2532 | 1 | Jusan | bcpt2532 | 1 |
Miyazaki | bcpt1075 | 1 | Kubokawa | bcpt1075 | 2 | Kaga | bcpt834 | 1 | Wakinosawa | bcpt2532 | 1 |
Karatsu | bcpt1075 | 1 | Imabari | bcpt2532 | 1 | Komatsu | bcpt1549 | 1 | |||
Iki-no-Matsubara (Fukuoka) | bcpt1671 | 3 | Tsuda | bcpt1075 | 1 | bcpt1075 | 1 | ||||
bcpt834 | 2 | Kaihu | bcpt834 | 1 | |||||||
bcpt1823 | 1 | bcpt1823 | 1 | ||||||||
bcpt2532 | 12 | Suzuka | bcpt834 | 2 |
Locus | Na | Ne | AR | HO | HE | FIS | HWE |
---|---|---|---|---|---|---|---|
bcpt1075 | 12 | 6.29 | 8.23 | 0.7 | 0.84 | 0.18 | ns |
bcpt1671 | 14 | 5.34 | 8.85 | 0.81 | 0.81 | 0.01 | ns |
bcpt834 | 9 | 3.88 | 6.05 | 0.67 | 0.74 | 0.1 | ns |
bcpt1823 | 9 | 3.77 | 6.14 | 0.51 | 0.73 | 0.31 | *** |
bcpt2532 | 14 | 7.07 | 10.06 | 0.51 | 0.86 | 0.41 | *** |
bcpt1549 | 7 | 2.86 | 4.84 | 0.63 | 0.65 | 0.05 | ns |
Mean | 10.83 | 4.87 | 7.36 | 0.64 | 0.77 | 0.18 | |
Overall Populations in Kyushu Area | 12.22 | 5.17 | 7.57 | 0.68 | 0.78 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukasyaf, A.A.; Matsunaga, K.; Tamura, M.; Iki, T.; Watanabe, A.; Iwaizumi, M.G. Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). Forests 2021, 12, 72. https://doi.org/10.3390/f12010072
Mukasyaf AA, Matsunaga K, Tamura M, Iki T, Watanabe A, Iwaizumi MG. Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). Forests. 2021; 12(1):72. https://doi.org/10.3390/f12010072
Chicago/Turabian StyleMukasyaf, Aziz Akbar, Koji Matsunaga, Miho Tamura, Taiichi Iki, Atsushi Watanabe, and Masakazu G. Iwaizumi. 2021. "Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan)" Forests 12, no. 1: 72. https://doi.org/10.3390/f12010072
APA StyleMukasyaf, A. A., Matsunaga, K., Tamura, M., Iki, T., Watanabe, A., & Iwaizumi, M. G. (2021). Reforestation or Genetic Disturbance: A Case Study of Pinus thunbergii in the Iki-no-Matsubara Coastal Forest (Japan). Forests, 12(1), 72. https://doi.org/10.3390/f12010072