The Influence of Thickness on the Tensile Strength of Finnish Birch Veneers under Varying Load Angles
Abstract
:1. Introduction
- Q1.
- How does the thickness influence the tensile strength and stiffness of thin birch veneers and solid wood with a thickness of multiple millimetres?
- Q2.
- How do the load angles of 0°, 45° and 90° influence the relationship between thickness and strength and stiffness of thin birch veneers?
- Q3.
- Is it possible to accurately quantify a transition from a strengthening to a weakening effect?
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Characterization
2.3. Statistics
3. Results and Discussion
3.1. Mechanical Properties
3.2. Size Effect
3.2.1. Parallel Load Angle
3.2.2. Perpendicular Load Angle
3.2.3. Intermediate Load Angle
3.3. Possible Benefits of the Size Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Group | 0° | 45° | 90° | ||||
---|---|---|---|---|---|---|---|
(I) | (J) | σ | E | σ | E | σ | E |
V0.5 | V1.0 | 0.079 | 0.166 | 0.001 | 0.730 | 0.000 | 0.000 |
V1.5 | 0.000 | 0.000 | 0.144 | 0.052 | 0.000 | 0.000 | |
S1.5 | 0.725 | 0.945 | 0.000 | 0.000 | |||
S3.0 | 0.000 | 1.000 | 0.000 | 0.000 | |||
S5.0 | 0.167 | 0.021 | 0.000 | 0.000 | |||
V1.0 | V0.5 | 0.079 | 0.166 | 0.001 | 0.730 | 0.000 | 0.000 |
V1.5 | 0.000 | 0.000 | 0.253 | 0.322 | 0.000 | 0.001 | |
S1.5 | 1.000 | 0.997 | 0.000 | 0.000 | |||
S3.0 | 0.017 | 0.979 | 0.000 | 0.000 | |||
S5.0 | 0.000 | 0.491 | 0.000 | 0.000 | |||
V1.5 | V0.5 | 0.000 | 0.000 | 0.144 | 0.052 | 0.000 | 0.000 |
V1.0 | 0.000 | 0.000 | 0.253 | 0.322 | 0.000 | 0.001 | |
S1.5 | 0.002 | 0.000 | 0.000 | 0.000 | |||
S3.0 | 0.000 | 0.000 | 0.000 | 0.000 | |||
S5.0 | 0.146 | 0.000 | 0.000 | 0.000 | |||
S1.5 | V0.5 | 0.725 | 0.945 | 0.000 | 0.000 | ||
V1.0 | 1.000 | 0.997 | 0.000 | 0.000 | |||
V1.5 | 0.002 | 0.000 | 0.000 | 0.000 | |||
S3.0 | 0.224 | 1.000 | 0.000 | 0.919 | |||
S5.0 | 0.110 | 0.529 | 0.000 | 1.000 | |||
S3.0 | V0.5 | 0.000 | 1.000 | 0.000 | 0.000 | ||
V1.0 | 0.017 | 0.979 | 0.000 | 0.000 | |||
V1.5 | 0.000 | 0.000 | 0.000 | 0.000 | |||
S1.5 | 0.224 | 1.000 | 0.000 | 0.919 | |||
S5.0 | 0.000 | 0.526 | 0.002 | 0.929 | |||
S5.0 | V5.0 | 0.167 | 0.021 | 0.000 | 0.000 | ||
V1.0 | 0.000 | 0.491 | 0.000 | 0.000 | |||
V1.5 | 0.146 | 0.000 | 0.000 | 0.000 | |||
S1.5 | 0.110 | 0.529 | 0.000 | 1.000 | |||
S3.0 | 0.000 | 0.526 | 0.002 | 0.929 | |||
post hoc test | Games–Howell | Gabriel | Games–Howell |
References
- Bodig, J.; Jayne, B.A. Mechanic of Wood and Wood Composites; Van Nostrand Reinhold: New York, NY, USA, 1982. [Google Scholar]
- Madsen, B. Structural Beahviour of Timber; Timber Engineering Ltd.: Vanvouver, BC, Canada, 1992. [Google Scholar]
- Schneeweiß, G. Der Einflus der Abmessungen auf die Biegefestigkeit von Holzbalken. Holz Roh- Werkst. 1969, 27, 23–29. [Google Scholar] [CrossRef]
- Johnson, A.I. Strength, Safety and Economical Dimensions of Structure; Royal Institute of Technology: Stockholm, Sweden, 1953. [Google Scholar]
- Weibull, W. A Statistical Theory of the Strength of Materials; IVB-Handl: Stockholm, Sweden, 1939. [Google Scholar]
- Bohannan, B. Effect of Size on Bending Strength of Wood Members; Res. Pap. FPL-56; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1966.
- Zhou, H.; Han, L.; Ren, H.; Lu, J. Size effect on strength properties of Chinese larch dimension lumber. BioResources 2015, 10, 3790–3797. [Google Scholar] [CrossRef] [Green Version]
- Madsen, B.; Buchanan, A. Size Effects in Timber Explained by a Modified Weakest Link Theory. Can. J. Civ. Eng. 1986, 13, 218–232. [Google Scholar] [CrossRef]
- Ylinen, A. Über den Einfluß der Probekörpergröße auf die Biegefestigkeit des Holzes. Holz Roh- Werkst. Eur. J. Wood Wood Ind. 1942, 5, 299–305. [Google Scholar] [CrossRef]
- Chaplin, C.J.; Nevard, E.H. Strength Tests of Structural Timbers. Part 3: Development of Safe Loads and Stresses, with Data on Baltic Redwood and Eastern Canadian Spruce; For. Prod. Res. Rec. No. 15; Her Majesty’s Stationary Office: London, UK, 1937. [Google Scholar]
- Barrett, J.D. Effect of size on tension perpendicular to-grain strength of douglas-fir. Wood Fiber Sci. 1974, 6, 126–143. [Google Scholar]
- Kunesh, R.H.; Johnson, J.W. Effect of Size on Tensile Strength of Clear Douglas-fir and Hem-fir Dimension Lumber. For. Prod. J. 1974, 24, 35–37. [Google Scholar]
- Pedersen, M.U.; Clorius, C.O.; Damkilde, L.; Hoffmeyer, P. A simple size effect model for tension perpendicular to the grain. Wood Sci. Technol. 2003, 37, 125–140. [Google Scholar] [CrossRef]
- Astrup, T.; Clorius, C.O.; Damkilde, L.; Hoffmeyer, P. Size effect of glulam beams in tension perpendicular to grain. Wood Sci. Technol. 2007, 41, 361–372. [Google Scholar] [CrossRef]
- Mukam Fotsing, J.A.; Foudjet, A. Size Effect of two Cameroonian Hardwoods in Compression and Bending Parallel to the Grain. Holzforschung 1995, 49, 376–378. [Google Scholar] [CrossRef]
- Zauner, M.; Niemz, P. Uniaxial compression of rotationally symmetric Norway spruce samples: Surface deformation and size effect. Wood Sci. Technol. 2014, 48, 1019–1032. [Google Scholar] [CrossRef] [Green Version]
- Schlotzhauer, P.; Nelis, P.A.; Bollmus, S.; Gellerich, A.; Militz, H.; Seim, W. Effect of size and geometry on strength values and MOE of selected hardwood species. Wood Mater. Sci. Eng. 2017, 12, 149–157. [Google Scholar] [CrossRef]
- Hu, W.; Wan, H.; Guan, H. Size effect on the elastic mechanical properties of beech and its application in finite element analysis of wood structures. Forests 2019, 10, 783. [Google Scholar] [CrossRef] [Green Version]
- Biblis, E.J. Effect of thickness of microtome sections on their tensile properties. Wood Fiber Sci. 2007, 2, 19–30. [Google Scholar]
- Yu, Y.; Jiang, Z.H.; Tian, G.L. Size effect on longitudinal MOE of microtomed wood sections and relevant theoretical explanation. For. Stud. China 2009, 11, 243–248. [Google Scholar] [CrossRef]
- Büyüksarı, Ü.; As, N.; Dündar, T.; Sayan, E. Micro-Tensile and Compression Strength of Scots Pine Wood and Comparison with Standard-Size Test Results. Drv. Ind. 2017, 68, 129–136. [Google Scholar] [CrossRef]
- Buchelt, B.; Pfriem, A. Influence of wood specimen thickness on its mechanical properties by tensile testing: Solid wood versus veneer. Holzforschung 2011, 65, 249–252. [Google Scholar] [CrossRef]
- Buchelt, B.; Wagenführ, A. The mechanical behaviour of veneer subjected to bending and tensile loads. Holz Roh- Werkst. 2008, 66, 289–294. [Google Scholar] [CrossRef]
- Graf, O.; Egner, K. Über die Veränderlichkeit der Zugfestigkeit von Fichtenholz mit der Form und Größe der Einspannköpfe der Normenkörper und mit Zunahme des Querschnitts der Probekörper. Holz Roh- Werkst. 1938, 1, 384–388. [Google Scholar] [CrossRef]
- Madsen, B. Size effects in defect-free Douglas fir. Can. J. Civ. Eng. 1990, 17, 238–242. [Google Scholar] [CrossRef]
- Madsen, B.; Tomoi, M. Size effects occurring in defect-free spruce-pine-fir bending specimens. Can. J. Civ. Eng. 1991, 18, 637–643. [Google Scholar] [CrossRef]
- Aicher, S.; Reinhardt, H.W. Einfluß der Bauteilgröße in der linearen und nichtlinearen (Holz-)Bruchmechanik. Eur. J. Wood Wood Prod. 1993, 51, 215–220. [Google Scholar] [CrossRef]
- Glos, P.; Burger, N. Einfluß der Holzabmessungen auf die Zugfestigkeit von Bauschnittholz; Frauenhofer IRB Verlag: Stuttgart, Germany, 1995. [Google Scholar]
- Burger, N.; Glos, P. Einflußder Holzabmessungen auf die Zugfestigkeit von Bauschnittholz. Holz Roh- Werkst. 1996, 54, 333–340. [Google Scholar] [CrossRef]
- Fonselius, M. Effect of size on the bending strength of laminated veneer lumber. Wood Sci. Technol. 1997, 31, 399–413. [Google Scholar] [CrossRef]
- Clouston, P.; Lam, F.; Barrett, J.D. Incorporating size effects in the Tsai-Wu strength theory for Douglas-fir laminated veneer. Wood Sci. Technol. 1998, 32, 215–226. [Google Scholar] [CrossRef]
- Schneeweiß, G.; Felber, S. Review on the Bending Strength of Wood and Influencing Factors. Am. J. Mater. Sci. 2013, 3, 41–54. [Google Scholar] [CrossRef]
- Živković, V.; Turkulin, H. Ispitivanje mikrovlačne čvrstoće drva—Pregled praktičnih aspekata metodologije. Drv. Ind. 2014, 65, 59–70. [Google Scholar] [CrossRef]
- Koskisen Birch Veneer Grades. Available online: https://www.koskisen.com/file/birch-veneer-grades/?download (accessed on 17 March 2020).
- ISO 554. Normalklimate für die Konditionierung und/oder Prüfung: Anforderungen; Internation Organization for Standardization: Geneva, Switzerland, 1976. [Google Scholar]
- DIN 52188. Bestimmung der Zugfestigkeit parallel zur Faser; Dtsch. Inst. für Norm.: Berlin, Germany, 1979. [Google Scholar]
- DIN EN 789. Holzbauwerke—Prüfverfahren—Bestimmung der mechanischen Eigenschaften von Holzwerkstoffen; Dtsch. Inst. für Norm.: Berlin, Germany, 2005. [Google Scholar]
- Hays, W.L. Statistics for Psychologists; Holt, Rinehart and Winston: New York, NY, USA, 1963. [Google Scholar]
- Sell, J. Eigenschaften und Kenngrößen von Holzarten; Baufachverlag AG: Zürich, Switzerland, 1989. [Google Scholar]
- Ross, R.J. Wood Handbook—Wood as an Egnineering Material; Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Pramreiter, M.; Bodner, S.C.; Keckes, J.; Stadlmann, A.; Kumpenza, C.; Müller, U. Influence of Fiber Deviation on Strength of Thin Birch (Betula pendula Roth.) Veneers. Materials 2020, 13, 1484. [Google Scholar] [CrossRef] [Green Version]
- Hankinson, R.L. Investiagtion of Crushing Strength of Spruce at Varying Angles of Grain. Air Serv. Inf. Circ. 1921, 3, 130. [Google Scholar]
- Kollmann, F. Die Abhängigkeit der Festigkeit und der Dehnungszahlen der Hölzer vom Faserverlauf. Der Bauing. 1934, 19/20, 198–200. [Google Scholar]
- Wagenführ, R. Holzatlas; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2006; ISBN 978-3-446-40649-0. [Google Scholar]
- Niemz, P.; Sonderegger, W. Holzphysik: Physik des Holzes und der Holzwerkstoff; Hanser Verlag: Munich, Germany, 2017. [Google Scholar]
- Buchelt, B.; Wagenführ, A.; Dietzel, A.; Raßbach, H. Quantification of cracks and cross-section weakening in sliced veneers. Eur. J. Wood Wood Prod. 2018, 76, 381–384. [Google Scholar] [CrossRef]
- Kollmann, F.; Cote, W.A. Principles of Wood Science and Technology; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Lukacevic, M.; Füssl, J.; Eberhardsteiner, J. Discussion of common and new indicating properties for the strength grading of wooden boards. Wood Sci. Technol. 2015, 49, 551–576. [Google Scholar] [CrossRef]
- Dinwoodie, J.M. Timber—A review of the structure-mechanical property relationship. J. Microsc. 1975, 104, 3–32. [Google Scholar] [CrossRef]
- Antikainen, T.; Eskelinen, J.; Rohumaa, A.; Vainio, T.; Hughes, M. Simultaneous measurement of lathe check depth and the grain angle of birch (Betula pendula Roth) veneers using laser trans-illumination imaging. Wood Sci. Technol. 2015, 49, 591–605. [Google Scholar] [CrossRef]
- Koch, P. Wood Machining Processes; The Ronald Press Company: New York, NY, USA, 1964. [Google Scholar]
- Tomppo, L.; Tiitta, M.; Lappalainen, R. Bestimmung der risstiefe in birkenfurnier mittels ultraschall. Eur. J. Wood Wood Prod. 2009, 67, 27–35. [Google Scholar] [CrossRef]
- Pałubicki, B.; Marchal, Ŕ.; Butaud, J.C.; Denaud, L.E.; Bléron, L.; Collet, R.; Kowaluk, G. A method of lathe checks measurement; SMOF device and its Software. Eur. J. Wood Wood Prod. 2010, 68, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Bekhta, P.; Hiziroglu, S.; Shepelyuk, O. Properties of plywood manufactured from compressed veneer as building material. Mater. Des. 2009, 30, 947–953. [Google Scholar] [CrossRef]
- Purba, C.Y.C.; Pot, G.; Viguier, J.; Ruelle, J.; Denaud, L. The influence of veneer thickness and knot proportion on the mechanical properties of laminated veneer lumber (LVL) made from secondary quality hardwood. Eur. J. Wood Wood Prod. 2019, 77, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Daoui, A.; Descamps, C.; Marchal, R.; Zerizer, A. Influence of veneer quality on beech LVL mechanical properties. Maderas. Cienc. Tecnol. 2011, 13, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Rohumaa, A.; Viguier, J.; Girardon, S.; Krebs, M.; Denaud, L. Lathe check development and properties: Effect of log soaking temperature, compression rate, cutting radius and cutting speed during peeling process of European beech (Fagus sylvatica L.) veneer. Eur. J. Wood Wood Prod. 2018, 76, 1653–1661. [Google Scholar] [CrossRef] [Green Version]
- Mattheck, C.; Kubler, H. Wood—The Internal Optimization of Trees; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 9783540620198. [Google Scholar]
- Beery, W.H.; Ifju, G.; McLain, T.E. Quantitative wood anatomy-relating anatomy to transverse tensile strength. Wood Fiber Sci. 1983, 15, 395–407. [Google Scholar]
- Burgert, I.; Bernasconi, A.; Eckstein, D. Evidence for the strength function of rays in living trees. Holz Roh- Werkst. 1999, 57, 397–399. [Google Scholar] [CrossRef]
- Burgert, I.; Eckstein, D. The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees—Struct. Funct. 2001, 15, 168–170. [Google Scholar] [CrossRef]
- Burgert, I. Über die mechanische Bedeutung der Holzstrahlen. Schweiz. Z. Forstwes. 2003, 154, 498–503. [Google Scholar] [CrossRef]
- Pizzi, A. Handbook of Adhesive Technology: Second Edition, Revised and Expanded; Marcel Dekker: New York, NY, USA, 2017; ISBN 9781498736473. [Google Scholar]
- Eberhardsteiner, J. Mechanisches Verhalten von Fichtenholz—Experimentelle Bestimmung der biaxialen Festigkeitseigenschaften; Springer: Wien, Austria, 2002; ISBN 9783709173299. [Google Scholar]
- Müller, U.; Jost, T.; Kurzböck, C.; Stadlmann, A.; Wagner, W.; Kirschbichler, S.; Baumann, G.; Pramreiter, M.; Feist, F. Crash simulation of wood and composite wood for future automotive engineering. Wood Mater. Sci. Eng. 2019, 15, 312–324. [Google Scholar] [CrossRef]
- Müller, U.; Feist, F.; Jost, T. Wood composites in the automotive industry of the future? Assumed crash tests and simulation of wood materials. Holztechnologie 2019, 1, 5–15. [Google Scholar]
Reference | LD | MAC | MIC | TEN | COM | BEN | Comment |
---|---|---|---|---|---|---|---|
Chaplin and Nevard [10] | ∥ | x | no | no | Constant length in bending | ||
Graf and Egner [24] | ∥ | x | yes ↓ | Increasing cross section | |||
Ylinen [9] | ∥ | x | yes ↓ | Constant length, defects and defect free samples | |||
Bohannan [6] | ∥ | x | yes ↓ | Increasing length and cross section | |||
Schneeweiß [3] | ∥ | x | yes ↓ | Increasing length and cross section | |||
Barrett [11] | ⟂ | x | yes ↓ | Theoretical approach | |||
Kunesh and Johnson [12] | ∥ | x | yes ↓ | Constant thickness, increasing width | |||
Madsen and Buchanan [8] | ∥ | x | yes ↓ | yes ↓ | Length effect in bending does not apply in tension | ||
Madsen [25] | ∥ | x | yes ↓ | Size effect is best shown as volume effect | |||
Madsen [26] | ∥ | x | yes ↓ | Length is superior to depth and width | |||
Madsen [2] | ∥ ⟂ | x | Literature review (book) | ||||
Aicher and Reinhardt [27] | ∥ | x | Theoretical approach | ||||
Glos and Burger [28] | ∥ | x | yes ↓ | Length effect in tension applies | |||
Mukam Fotsing and Foudjet [15] | ∥ | x | no | yes ↓ | Hardwood samples | ||
Burger and Glos [29] | ∥ | x | yes ↓ | Length effect, no depth or width effect | |||
Fonselius [30] | ∥ | x | yes ↓ | Length is superior to depth and no effect of width | |||
Clouston et al. [31] | ∥ ⟂ | x | Theoretical approach to predict strength | ||||
Pedersen et al. [13] | ⟂ | x | yes ↓ | Loaded in tangential direction | |||
Astrup et al. [14] | ⟂ | x | yes ↓ | Loaded in radial direction | |||
Biblis [19] | ⟂ | x | yes ↑ | Sliced early and latewood specimens | |||
Yu et al. [20] | ∥ | x | yes ↑ | Longitudinal stiffness | |||
Buchelt and Pfriem [22] | ∥ ⟂ | x | (x) | yes ↑ no | No effect parallel and an increase perpendicular | ||
Schneeweiß and Felber [32] | ∥ | x | yes ↓ | Load configuration influences size effect | |||
Zauner and Niemz [16] | ∥ | x | yes ↓ | Hourglass specimens, with increasing diameter | |||
Živković and Turkulin [33] | ∥ | x | yes | No tendency is described | |||
Zhou et al. [7] | ∥ | x | yes ↓ | yes ↓ | yes ↓ | bending and tension superior to compression | |
Schlotzhauer et al. [17] | ∥ | x | no | yes ↓↑ | yes ↓ | Compression is species dependent | |
Büyüksarı et al. [21] | ∥ | x | x | yes ↓ | yes ↑ | Compression strength increases with size | |
Hu et al. [18] | ∥ ⟂ | x | yes ↓ | Different effect on strength and stiffness |
Group | 0° | 45° | 90° | ||||||
---|---|---|---|---|---|---|---|---|---|
t (mm) | n (–) | σ ± sd (MPa) | E ± sd (GPa) | n (–) | σ ± sd (MPa) | E ± sd (GPa) | n (–) | σ ± sd (MPa) | E ± sd (GPa) |
V0.5 | 76 | 121 ± 26 | 13.7 ± 1.6 | 20 | 3.78 ± 0.83 | 0.728 ± 0.243 | 72 | 1.90 ± 0.34 | 0.270 ± 0.629 |
V1.0 | 74 | 108 ± 30 | 14.4 ± 2.0 | 21 | 4.59 ± 0.64 | 0.785 ± 0.152 | 76 | 2.53 ± 0.43 | 0.327 ± 0.679 |
V1.5 | 75 | 149 ± 30 | 18.7 ± 3.7 | 18 | 4.22 ± 0.51 | 0.884 ± 0.186 | 63 | 2.94 ± 0.41 | 0.390 ± 0.105 |
S1.5 | 19 | 108 ± 38 | 14.1 ± 2.1 | - | - | - | 39 | 10.7 ± 1.80 | 0.924 ± 0.145 |
S3.0 | 13 | 84 ± 21 | 13.9 ± 2.4 | - | - | - | 12 | 6.37 ± 1.32 | 0.996 ± 0.240 |
S5.0 | 42 | 134 ± 31 | 15.3 ± 3.0 | - | - | - | 82 | 8.45 ± 2.04 | 0.924 ± 0.286 |
Veneer | 225 | 126 ± 34 | 15.6 ± 3.4 | 59 | 4.20 ± 0.75 | 0.796 ± 0.204 | 211 | 2.44 ± 0.58 | 0.326 ± 0.093 |
Solid wood | 74 | 119 ± 37 | 14.8 ± 2.7 | - | - | - | 133 | 8.92 ± 2.30 | 0.931 ± 0.250 |
0° | 45° | 90° | ||||
---|---|---|---|---|---|---|
ANOVA | ω2 | ANOVA | ω2 | ANOVA | ω2 | |
σ | F(5, 293) = 22.173, p = 0.000 | 0.261 | F(3, 56) = 7.325, p = 0.001 | 0.177 | F(5, 338) = 444.116, p = 0.000 | 0.866 |
E | F(5, 293) = 34.805, p = 0.000 | 0.361 | F(3, 56) = 3.029, p = 0.056 | 0.064 | F(5, 338) = 215.973, p = 0.000 | 0.758 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramreiter, M.; Stadlmann, A.; Huber, C.; Konnerth, J.; Halbauer, P.; Baumann, G.; Müller, U. The Influence of Thickness on the Tensile Strength of Finnish Birch Veneers under Varying Load Angles. Forests 2021, 12, 87. https://doi.org/10.3390/f12010087
Pramreiter M, Stadlmann A, Huber C, Konnerth J, Halbauer P, Baumann G, Müller U. The Influence of Thickness on the Tensile Strength of Finnish Birch Veneers under Varying Load Angles. Forests. 2021; 12(1):87. https://doi.org/10.3390/f12010087
Chicago/Turabian StylePramreiter, Maximilian, Alexander Stadlmann, Christian Huber, Johannes Konnerth, Peter Halbauer, Georg Baumann, and Ulrich Müller. 2021. "The Influence of Thickness on the Tensile Strength of Finnish Birch Veneers under Varying Load Angles" Forests 12, no. 1: 87. https://doi.org/10.3390/f12010087
APA StylePramreiter, M., Stadlmann, A., Huber, C., Konnerth, J., Halbauer, P., Baumann, G., & Müller, U. (2021). The Influence of Thickness on the Tensile Strength of Finnish Birch Veneers under Varying Load Angles. Forests, 12(1), 87. https://doi.org/10.3390/f12010087