Heavy Metals and Sulphur in Needles of Pinus sylvestris L. and Soil in the Forests of City Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analyses
2.3. Plant Sampling and Laboratory Analyses
2.4. Statistical Analysis and Mathematical Calculations
3. Results and Discussion
3.1. Physical and Chemical Properties
3.2. Content of TSs, Zns, Cus, Mns, Fes and the Activity of DHA in Soils
3.3. Chemical and Physiological Pine Needle Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Achilles, F.; Tischer, A.; Bernhardt-Römermann, M.; Chmara, I.; Achilles, M.; Michalzik, B. Effects of Moderate Nitrate and Low Sulphate Depositions on the Status of Soil Base Cation Pools and Recent Mineral Soil Acidification at Forest Conversion Sites with European Beech (“Green Eyes”) Embedded in Norway Spruce and Scots Pine Stands. Forests 2021, 12, 573. [Google Scholar] [CrossRef]
- Czyzyk, K. Radial Growth Response of Scots Pine (Pinus sylvestris L.) after Increasing the Availability of Water Resources. Forests 2021, 12, 1053. [Google Scholar] [CrossRef]
- Nisca, A.; Ștefănescu, R.; Stegăruș, D.I.; Mare, A.D.; Farczadi, L.; Tanase, C. Comparative Study Regarding the Chemical Composition and Biological Activity of Pine (Pinus nigra and P. sylvestris) Bark Extracts. Antioxidants 2021, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Magdziak, Z.; Gasecka, M.; Waliszewska, B.; Zborowska, M.; Mocek, A.; Cichy, W.J.; Mazela, B.; Kozubik, T.; Mocek-Plociniak, A.; Niedzielski, P.; et al. The influence of environmental condition on the creation of organic compounds in Pinus sylvestris L. rhizosphere, roots and needles. Trees 2021, 35, 1–17. [Google Scholar] [CrossRef]
- Dziedziński, M.; Kobus-Cisowska, J.; Stachowiak, B. Pinus Species as Prospective Reserves of Bioactive Compounds with Potential Use in Functional Food—Current State of Knowledge. Plants 2021, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Salamon, I.; Kryvtsova, M.; Bucko, D.; Amer, H.; Tarawneh, A.H. Chemical Characterization and Antimicrobial Activity of Some Essential Oils After Their Industrial Large-Scale Distillation. J. Microbiol. Biotechnol. Food Sci. 2019, 8, 965–969. [Google Scholar] [CrossRef] [Green Version]
- Oyewole, K.A.; Oyedara, O.O.; Awojide, S.H.; Olawade, M.O.; Charles, O. Adetunji Chemical Constituents and Antibacterial Activity of Essential Oils of Needles of Pinus Sylvestris (Scots Pine) from South West Nigeria. Res. Sq. 2021, 1–15. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils, 3rd ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2001. [Google Scholar]
- Luo, C.; Yang, R.; Wang, Y.; Li, Y.; Zhang, G.; Li, X. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China. Sci. Total Environ. 2012, 431, 26–32. [Google Scholar] [CrossRef]
- Likus-Cieślik, J.; Socha, J.; Gruba, P.; Pietrzykowski, M. The current state of environmental pollution with sulfur dioxide (SO2) in Poland based on sulfur concentration in Scots pine needles. Environ. Pollut. 2020, 258, 113559. [Google Scholar] [CrossRef] [PubMed]
- Gamrat, R.; Ligocka, K. Concentrations of selected heavy metals in Scots pine needles from selected areas of Poland. Ecol. Eng. 2018, 1, 61–65. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Parzych, A.; Jonczak, J. Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. J. Ecol. Eng. 2014, 15, 29–38. [Google Scholar] [CrossRef]
- Lehndorff, E.; Schwarz, L. Accumulation histories of major and trace elements on pine needles in the cologne conurbation as function of air quality. Atmos. Environ. 2008, 42, 833–845. [Google Scholar] [CrossRef]
- Pająk, M.; Halecki, W.; Gąsiorek, M. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly Spatial Considerations of Ordinary Kriging Based on a GIS Approach. Chemosphere 2017, 168, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Sha, C.; Wang, T.; Lu, J. Relative sensitivity of wetland plants to SO2 pollution. Wetlands 2010, 30, 1023–1030. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Soil-plant transfer of trace elements—An Environmental Issue. Geoderma 2004, 122, 143–149. [Google Scholar] [CrossRef]
- Vinodhini, R.; Narayan, M. The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iran J. Environ. Health Sci. Eng. 2009, 6, 23–28. [Google Scholar]
- He, C.Q.; Tan, G.E.; Liang, X.; Du, W.Y.L.; Zhi, G.Y.; Xhu, Y. Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl. Soil Ecol. 2010, 44, 1–5. [Google Scholar] [CrossRef]
- Mocek-Płóciniak, A. Impact of havy metals on microorganisms and the soil enzymatic activity. Soil Sci. Annual. 2011, 62, 211–220. (In Polish) [Google Scholar]
- Lemanowicz, J.; Brzezińska, M.; Siwik-Ziomek, A.; Koper, J. Activity of selected enzymes and phosphorus content in soils of former sulphur mines. Sci. Total Environ. 2020, 708, 134545. [Google Scholar] [CrossRef]
- Aponte, H.; Meli, P.; Butler, B.; Paolini, J.; Matus, F.; Merino, C.; Cornejo, P.; Kuzakov, Y. Meta-analysis of heavy metals effects on soil enzyme activities. Sci. Total Environ. 2020, 737, 139744. [Google Scholar] [CrossRef]
- ISO 10390:2005. Soil Quality–Determination of pH. International Organization for Standardization. Geneva, Switzerland, 2005. Available online: https://www.isoorg/standard/40879.html (accessed on 1 February 2005).
- Crock, J.G.; Severson, R. Four reference soil and rock samples for measuring element availability in the western energy regions. U.S. Geol. Surv. Circular. 1980, 841, 16. [Google Scholar] [CrossRef]
- Kobierski, M.; Dąbkowska-Naskręt, H. Local background concentration of heavy metals in various soil types formed from glacial till of the Inowrocławska Plain. J. Elementol. 2012, 17, 559–585. [Google Scholar] [CrossRef]
- Thalmann, A. Zurmethodik der bestimmung der dehydrogenases aktivität in bodenmittelstriphenyl tetrazoliumchlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. [Google Scholar]
- Arnon, D.I.; Allen, M.B.; Whatley, F.R. Photosynthesis by isolated chloroplasts IV. General concept and comparison of three photochemical reactions. Biochim. Biophys. Acta 1956, 20, 449–461. [Google Scholar] [CrossRef]
- Hager, A.; Mayer-Berthenrath, T. Die isolierung und Quantitative bestimmung der carotinoide und chlorophylle von blattern, algen und isolierten chloroplasten mit hilfe dunnschichtchromatographischer methoden. Planta 1996, 69, 198–217. Available online: https://www.jstor.org/stable/23366270 (accessed on 13 September 2021). [CrossRef]
- Bardsley, C.E.; Lancaster, J.D. Determination of reserve sulfur and soluble sulfates in soil. Soil Sci. Soc. Am. J. 1960, 24, 265–268. [Google Scholar] [CrossRef]
- StatSoft Inc. OK, USA, STATISTICA, Version 12.0. Data Analysis Software System. 2012. Available online: https://statisticasoftware.wordpress.com/2013/05/15/statsoft-releases-version-12-of-statistica-software (accessed on 7 May 2013).
- Siwik-Ziomek, A.; Figas, A.; Tomaszewska-Sowa, M.; Kobierski, M. Pine bark and activity of arylsulphatase and rhodanese as biological quality indicators of the Bydgoszcz agglomeration. Infrastruct. Environ. 2019, 225–233. [Google Scholar] [CrossRef]
- Wilding, L.P. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys. In Soil Spatial Variability; Nielsen, D.R., Bouma, J., Eds.; PUDOC: Wageningen, The Netherlands, 1985; pp. 166–194. [Google Scholar]
- Martin, J.M.; Meybeck, M. Elemental mass-balance of material carried by major world rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Tolosa, C.A.; Tack, F.M.G.; Verloo, M.G. Characterization of selected element concentration and enrichment ratios in background and anthropogenically impacted roadside areas. Arch. Environ. Contam. Toxicol. 2000, 38, 428–438. [Google Scholar] [CrossRef]
- USDA (United States Department of Agriculture). Soil Mechanics Level I-Module 3: USDA Textural Classification Study Guide; National Employee Development Staff; Soil Conservation Service: Washington, DC, USA, 1987. [Google Scholar]
- Motowicka-Terelak, T.; Terelak, H. Sulphur in Soils of Poland. The Status and the Risks; Library of Environmental Monitoring: Warsaw, Poland, 1998; ISBN 83-7217-37-1. [Google Scholar]
- Journal of Laws, Item 1395. Regulation of the Minister of the Environment of 1 September 2016 on the Method for Assessment of Land Surface Contamination. 2016. Available online: www.gdos.gov.pl (accessed on 5 September 2016). (In Polish)
- Vega, F.A.; Covelo, E.F.; Cerqueira, B.; Andrade, M.L. Enrichment of marsh soils with heavy metals by effect of anthropic pollution. J. Hazard. Mater. 2009, 170, 1056–1063. [Google Scholar] [CrossRef]
- Ociepa, E. The effect of fertilization on yielding and heavy metals uptake by maize and virgina fanpetals (Sida Hermaphrodita). Arch. Environ. Prot. 2011, 37, 123–129. [Google Scholar]
- Skwaryło-Bednarz, B.; Kwapisz, M.; Onuch, J.; Krzepiłko, A. Assessment of the content of heavy metals and catalase activity in soils located in protected zone of the Roztocze National Park. Acta Agrophys. 2014, 21, 351–359. [Google Scholar]
- Navnage, N.; Patle, P.; Ramteke, P. Dehydrogenase activity (DHA): Measure of Total Microbial Activity and as Indicator of Soil Quality. Int. J. Chem. Stud. 2018, 6, 456–458. [Google Scholar]
- Chaperon, S.; Sauvé, S. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol. Biochem. 2007, 39, 2329–2338. [Google Scholar] [CrossRef]
- Fotovat, A.; Naidu, R. Ion exchange resin and MINTEQA2 speciation of Zn and Cu in alkaline sodic and acidic soil extracts. Aust. J. Soil Res. 1997, 35, 711–726. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.S.; Bhuyan, M.H.M.B.; Al Mahmud, J.; Naha, K.; Fujita, M. The role of sulfur in plant abiotic stress tolerance, molecular interactions and defense mechanisms. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 221–252. [Google Scholar] [CrossRef]
- Wei, H.; Liu, W.; Zhang, J.; Qin, J. Effects of simulated acid rain on soil fauna community composition and their ecological niches. Environ. Pollut. 2017, 220, 460–e468. [Google Scholar] [CrossRef] [PubMed]
- Dmuchowski, W.; Bytnerowicz, A. Monitoring environmental pollution in Poland by chemical analysis of Scots Pine (Pinus sylvestris L.) needles. Environ. Pollut. 1995, 87, 84. [Google Scholar] [CrossRef]
- Marska, E.; Wróbel, J. Znaczenie siarki dla roślin uprawnych (The importance of sulfur for arable crops). Folia Pomeranae Univ. Technol. Stetin. Agric. 2000, 204, 69–76. (In Polish) [Google Scholar]
- Fober, H. Nutrient supply. In Scots Pine Biology. The Institute of Dendrology, Polish Academy of Sciences; Białobok, S., Boratynski, A., Bugała, W., Eds.; Sorous Press: Poznan-Kornik, Poland, 1993; pp. 182–193. (In Polish) [Google Scholar]
- Baciak, M.; Warmiński, K.; Bęs, A. The effect of selected gaseous air pollutants on woody plants. For. Res. Pap. 2015, 76, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Griffin, K.L.; Winner, W.E.; Strain, B.R. Construction cost of loblolly and ponderosa pine leaves grown with varying carbon and nitrogen availability. Plant Cell Environ. 1996, 19, 729–738. [Google Scholar] [CrossRef]
- Raven, J.A.; Handley, L.L.; Andrews, M. Global aspects of C/N interactions determining plant-environment interactions. J. Exp. Bot. 2004, 55, 11–25. [Google Scholar] [CrossRef]
- Devlin, R.M.; Barker, A.V. Photosynthesis; Van Nostrand Reinhold Co.: New York, NY, USA, 1971. [Google Scholar]
- Zaïka, V.; Bondarenko, T. The content of chlorophyll a and chlorophyll b in leaves of undergrowth species in hornbeam-oak forest stands of the forest-steppe zone in Western Ukraine. For. Res. 2018, 79, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Miazek, K.; Ledakowicz, S. Chlorophyll extraction from leaves, needles and microalgae: A Kinetic Approach. Int. J. Agric. Biol. Eng. 2013, 6, 107–115. [Google Scholar] [CrossRef]
- Skwaryło-Bednarz, B.; Krzepiłko, A. Effect of various doses of NPK fertilisers on chlorophyll content in the leaves of two varieties of amaranth (Amaranthus cruentus L.) in wide-row cultivation. Acta Agrophys. 2009, 16, 469–477. (In Polish) [Google Scholar]
- Samecka-Cymerman, A.; Kosior, G.; Kempers, A.J. Comparison of the moss Pleurozium schreberi with needles and bark of Pine sylvestris as biomonitors of pollution by industry in Stalowa Wola (southeast Poland). Ecotoxicol. Environ. Saf. 2006, 65, 108–117. [Google Scholar] [CrossRef]
- Parzych, A.; Jonczak, J. Content of heavy metals in needles of Scots Pine (Pinus sylvestris L.) in selected pine forests in Słowiński National Park. Arch. Environ. Prot. 2013, 39, 41–51. [Google Scholar] [CrossRef]
- Tomaszewska-Sowa, M.; Kobierski, M.; Sawilska, A.K.; Figas, A. Assessment the phytoaccumulation of heavy metals in medicinal plants from the forest areas of Kuyavia-Pomerania provinces. Herba Pol. 2018, 64, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Gałuszka, A. Biogeochemical background of selected trace elements in mosses Pleurozium schreberi (Brid.) Mitt. and Hylocomium splendens (Hedw.) B.S.G. from Wigierski. National Park. Pol. J. Environ. Stud. 2006, 15, 72–77. [Google Scholar]
- Malzahn, E. The monitoring of threat to and pollution of the forest environment in Białowieża primeval forest. Cosmos 2002, 51, 435–441. (In Polish) [Google Scholar]
- Ociepa-Kubicka, A.; Ociepa, E. Toxic effects of heavy metals on plants, animals and humans. Eng. Prot. Environ. 2012, 15, 169–180. (In Polish) [Google Scholar]
- Zhang, N.; He, X.-D.; Gao, Y.-B.; Li, Y.-H.; Wang, H.-T.; Ma, D.; Zhang, R.; Yang, S. Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere 2010, 20, 229–235. [Google Scholar] [CrossRef]
- Wiatrowska, K.; Komisarek, J.; Olejnik, J. Variations in Organic Carbon Content and Dehydrogenases Activity in Post-Agriculture Forest Soils: A Case Study in South-Western Pomerania. Forests 2021, 12, 459. [Google Scholar] [CrossRef]
Sampling Location * | TSs ** | SO42−s ** | Cus | Mns | Zns | Fes | EF | EF | EF |
---|---|---|---|---|---|---|---|---|---|
mg kg−1 | % | Cus | Mns | Zns | |||||
A | 340.0 ± 22.25 CV = 6.54% | 14.76 ± 2.87 CV = 19.44% | 2.82 ± 0.16 CV = 5.67% | 293.0 ± 9.87 CV = 3.37% | 19.5 ± 1.22 CV = 6.26% | 0.58 ± 0.03 CV = 5.17% | 0.64 | 2.69 | 1.22 |
B | 202.0 ± 1.70 CV = 0.84% | 22.69 ± 0.97 CV = 4.28% | 3.53 ± 0.21 CV = 5.95% | 109.0 ± 6.61 CV = 6.06% | 22.8 ± 1.36 CV = 5.96% | 0.53 ± 0.02 CV = 1.06% | 0.88 | 1.09 | 1.75 |
C | 343.0 ± 6.32 CV = 1.84% | 21.75 ± 1.45 CV = 6.67% | 15.70 ± 0.82 CV = 5.22% | 117.0 ± 6.01 CV = 5.14% | 84.2 ± 3.13 CV = 3.72% | 0.71 ± 0.03 CV = 4.22% | 2.91 | 0.88 | 4.82 |
D | 337.0 ± 9.55 CV = 2.83% | 21.94 ± 1.70 CV = 7.75% | 13.40 ± 0.77 CV = 1.40% | 88.1 ± 3.34 CV = 3.86% | 70.9 ± 3.41 CV = 4.81% | 0.42 ± 0.02 CV = 4.76% | 4.20 | 1.12 | 6.86 |
E | 171.0 ± 18.21 CV = 10.65% | 21.08 ± 2.23 CV = 10.58% | 5.37 ± 0.21 CV = 3.91% | 177.0 ± 7.11 CV = 4.02 | 27.7 ± 1.40 CV = 5.05% | 0.57 ± 0.03 CV = 5.26% | 1.24 | 1.65 | 1.97 |
Sampling Location | Cusa | Mnsa | Znsa | Fesa | ||||
---|---|---|---|---|---|---|---|---|
mg kg−1 | Content * Rating | mg kg−1 | Content Rating | mg kg−1 | Content Rating | g kg−1 | Content Rating | |
A | 1.10 ± 0.03 CV = 2.72% | medium | 161.0 ± 9.11 CV = 5.66% | high | 13.10 ± 0.62 CV = 4.73% | high | 1.53 ± 0.05 CV = 3.27% | medium |
B | 1.02 ± 0.02 CV = 1.96% | medium | 28.9 ± 0.77 CV = 2.66% | medium | 5.96 ± 0.26 CV = 4.36% | high | 0.55 ± 0.03 CV = 5.45% | low |
C | 6.70 ± 0.39 CV = 5.82% | high | 28.2 ± 0.96 CV = 3.40% | medium | 27.50 ± 1.42 CV = 5.16% | high | 0.71 ± 0.04 CV = 5.63% | medium |
D | 5.95 ± 0.36 CV = 6.05% | high | 26.5 ± 0.93 CV = 3.51% | medium | 33.90 ± 1.50 CV = 4.42 | high | 0.74 ± 0.03 CV = 4.05% | medium |
E | 1.41 ± 0.06 CV = 4.26% | medium | 85.0 ± 4.12 CV = 4.85% | medium | 5.26 ± 0.26 CV = 4.94% | medium | 0.97 ± 0.05 CV = 5.15% | medium |
Sampling Location | TOCn | TNn | TOCn/TNn | TSn | Cun | Fen | Mnn | Znn |
---|---|---|---|---|---|---|---|---|
g kg−1 d.w. | mg kg−1 d.w. | |||||||
A | 487.5 | 17.03 a | 28.6 | 972.0 ± 3.907 a CV = 0.40% | 5.13 ± 0.092 a CV = 1.79% | 248.6 ± 4.738 a CV = 1.91% | 109.2 ± 0.778 b CV = 0.71% | 58.75 ± 1.485 a CV = 2.53% |
B | 485.3 | 15.72 b | 30.9 | 890.6 ± 6.664 a CV = 0.75% | 4.56 ± 0.001 b CV = 0.02% | 102.6 ± 12.586 d CV = 12.27% | 65.00 ± 2.263 c CV = 3.48% | 64.05 ± 0.919 a CV = 1.43% |
C | 485.3 | 15.60 b | 31.1 | 825.4 ± 1.950 b CV = 0.24% | 4.91 ± 0.163 b CV = 3.32% | 203.3 ± 4.950 b CV = 2.43% | 182.0 ± 1.909 a CV = 1.05% | 54.30 ± 1.979 b CV = 3.64% |
D | 478.1 | 14.84 c | 32.2 | 815.9 ± 2.36 b CV = 0.29% | 5.51 ± 0.170 a CV = 3.09% | 159.6 ± 12.021 c CV = 7.53% | 104.5 ± 4.242 b CV = 4.06% | 48.80 ± 2.404 c CV = 4.93% |
E | 478.4 | 14.21 d | 33.7 | 657.9 ± 2.134 c CV = 0.32% | 4.36 ± 0.064 c CV = 1.47% | 154.6 ± 0.182 c CV = 0.12% | 120.6 ± 13.152 b CV = 10.91% | 56.10 ± 0.283 b CV = 0.50% |
Sampling Location | Assimilation Pigments Content mg g−1 f.w. | Chl a/Chl b | |||
---|---|---|---|---|---|
Chl a | Chl b | Chl a+b | Carot | ||
A | 1.860 ± 0.12 a CV = 6.51% | 0.736 ± 0.097 a CV = 13.18% | 2.594 ± 0.222 a CV = 8.55% | 0.539 ± 0.046 a CV = 8.53% | 2.52 |
B | 1.753 ± 0.17 a CV = 9.75% | 0.621 ± 0.126 a CV = 20.29% | 2.237 ± 0.254 a CV = 11.35% | 0.377 ± 0.044 b CV = 11.67% | 2.82 |
C | 1.958 ± 0.123 a CV = 6.28% | 0.660 ± 0.063 a CV = 9.54% | 2.618 ± 0.387 a CV = 14.78% | 0.573 ± 0.150 a CV = 26.18% | 2.96 |
D | 1.280 ± 0.191 b CV = 14.92% | 0.620 ± 0.092 a CV = 14.84% | 1.900 ± 0.183 b CV = 9.63% | 0.619 ± 0.047 a CV = 7.59% | 2.06 |
E | 1.880 ± 0.108 a CV = 5.74% | 0,821 ± 0.097 a CV = 11.81% | 2.701 ± 0.305 a CV = 11.29% | 0.526 ± 0.081 a CV = 15.40% | 2.28 |
Variables | Regression Equation | R | R2 | |
---|---|---|---|---|
Dependent | Independent | |||
Znsa | Zns | y = −0.6987 + 0.19686x | 0.998 | 0.996 |
Cus | Zns | y = −0.6987 + 0.19686x | 0.997 | 0.994 |
Zns | DHA | y = 4.0819 + 40.959x | 0.935 | 0.874 |
Znsa | DHA | y = 0.06016 + 8.1080x | 0.939 | 0.882 |
DHA | Cus | y = 0.11242 + 0.10866x | 0.939 | 0.882 |
TNn | TOSn | y = 8.3151 + 0.00861x | 0.939 | 0.882 |
TOCn | TNn | y = 425.15 + 3.7316x | 0.908 | 0.824 |
Cusa | TOCs | y = −10.95 + 1.6991x | 0.906 | 0.821 |
Cus | TOCs | y = −22.48 + 3.6716x | 0.931 | 0.867 |
DHA | TOCs | y = −2.750 + 0.44927x | 0.985 | 0.970 |
TOCs | Zns | y = 6.2752 + 0.04600x | 0.919 | 0.045 |
TOCs | Cus | y = 6.4170 + 0.23628x | 0.931 | 0.867 |
TOCs | Cusa | y = 6.7837 + 0.48277x | 0.905 | 0.819 |
TOCs | DHA | y = 6.1897 + 2.1574x | 0.985 | 0.970 |
Elements | Components Matrix | |
---|---|---|
PCA 1 | PCA 2 | |
SO42−s | −0.077 | −0.982 |
Chl a | 0.529 | 0.043 |
Chl b | 0.324 | 0.307 |
Chl a+b | 0.473 | 0.017 |
Carot | −0.471 | −0.638 |
TNn | 0.766 | −0.550 |
TOCn | 0.725 | −0.396 |
TSn | 0.599 | −0.523 |
TSs | −0.781 | 0.439 |
Cus | −0.817 | −0.534 |
Fes | 0.232 | −0.292 |
Mns | 0.848 | −0.205 |
Zns | −0.787 | −0.570 |
Cusa | −0.774 | −0.612 |
Fesa | 0.703 | −0.343 |
Mnsa | 0.810 | −0.168 |
Znsa | −0.649 | −0.732 |
Cun | −0.232 | −0.763 |
Fen | 0.393 | −0.794 |
Mnn | −0.314 | −0.578 |
Znn | 0.731 | 0.458 |
sand | 0.662 | −0.658 |
clay | −0.672 | 0.658 |
silt | −0.558 | 0.625 |
TOCs | −0.700 | −0.545 |
pHKCl | −0.363 | 0.747 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figas, A.; Siwik-Ziomek, A.; Kobierski, M. Heavy Metals and Sulphur in Needles of Pinus sylvestris L. and Soil in the Forests of City Agglomeration. Forests 2021, 12, 1310. https://doi.org/10.3390/f12101310
Figas A, Siwik-Ziomek A, Kobierski M. Heavy Metals and Sulphur in Needles of Pinus sylvestris L. and Soil in the Forests of City Agglomeration. Forests. 2021; 12(10):1310. https://doi.org/10.3390/f12101310
Chicago/Turabian StyleFigas, Anna, Anetta Siwik-Ziomek, and Mirosław Kobierski. 2021. "Heavy Metals and Sulphur in Needles of Pinus sylvestris L. and Soil in the Forests of City Agglomeration" Forests 12, no. 10: 1310. https://doi.org/10.3390/f12101310
APA StyleFigas, A., Siwik-Ziomek, A., & Kobierski, M. (2021). Heavy Metals and Sulphur in Needles of Pinus sylvestris L. and Soil in the Forests of City Agglomeration. Forests, 12(10), 1310. https://doi.org/10.3390/f12101310