Using a Simple Model to Determine the Best Management Regimes for Plantations at the Stand Level: A Case Study of Moshao Forest Farm in the Red-Soil Hilly Region of Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Calculating Timber Production
2.3. Framework of BMR Modeling
2.3.1. BMR Modeling
2.3.2. Determining BMRs
2.3.3. Identification of Potential MRs
3. Results
3.1. STP of Sixteen MRs
3.2. FPS of Sixteen MRs
3.3. ACS of Sixteen MRs
3.4. Identify BMR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assessment, M.E. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Zhao, T.Q.; Ouyang, Z.Y.; Zheng, H.; Wang, X.K.; Miao, H. Forest ecosystem services and their valuation in China. J. Nat. Resour. 2004, 19, 480–491. [Google Scholar]
- Carle, J.; Holmgren, P. Wood from Planted Forests A Global Outlook 2005–2030. For. Prod. J. 2008, 58, 6–18. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020: Main Report; Food and Agriculture Organization: Rome, Italy, 2020; pp. 30–34. [Google Scholar]
- Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.C.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Zhang, Y.; Li, Z.; Shao, G.; Song, L.; Sun, Q. Comparison of Soil Properties, Understory Vegetation Species Diversities and Soil Microbial Diversities between Chinese Fir Plantation and Close-to-Natural Forest. Forests 2021, 12, 632. [Google Scholar] [CrossRef]
- Dai, E.; Zhu, J.; Wang, X.; Xi, W. Multiple ecosystem services of monoculture and mixed plantations: A case study of the Huitong experimental forest of Southern China. Land Use Policy 2018, 79, 717–724. [Google Scholar] [CrossRef]
- Stokely, T.D.; Kormann, U.G.; Verschuyl, J.; Kroll, A.J.; Frey, D.W.; Harris, S.H.; Mainwaring, D.; Maguire, D.; Hatten, J.A.; Rivers, J.W.; et al. Experimental evaluation of herbicide use on biodiversity, ecosystem services and timber production trade-offs in forest plantations. J. Appl. Ecol. 2021, 00, 1–15. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- China’s State Forestry Administration. China’s Forest Resources Report, 2004–2018; China Forestry Publishing House: Beijing, China, 2019. [Google Scholar]
- Zhang, H.R.; Tang, S.Z. Theory of ecology-based forest harvesting. Sci. Silvae Sin. 2008, 44, 127–131. [Google Scholar]
- Chen, X.; Ju, Q.; Lin, K. Development Status, Issues and Countermeasures of China’s Plantation. World For. Res. 2014, 27, 54–59. [Google Scholar]
- Liu, Q.; Yin, H.; Cheng, X.; Lin, B.; Hu, R.; Zhao, C.; Yin, C. Problems and Strategies of Sustainable Regeneration of Plantation Ecosystem in China. World For. Res. 2010, 23, 71–75. [Google Scholar]
- Pearse, P.H. Conflicting Objectives in Forest Policy: The Case of British Columbia. For. Chron. 1970, 46, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.L. The general situation of mathematical model used to foreign forest management. For. Investig. Des. 1977, 2, 34–40. [Google Scholar]
- Morgenstern, E.K. The origin and early application of the principle of sustainable forest management. For. Chron. 2007, 83, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Hirigoyen, A.; Acuna, M.; Rachid-Casnati, C.; Franco, J.; Navarro-Cerrillo, R. Use of Optimization Modeling to Assess the Effect of Timber and Carbon Pricing on Harvest Scheduling, Carbon Sequestration, and Net Present Value of Eucalyptus Plantations. Forests 2021, 12, 651. [Google Scholar] [CrossRef]
- Clements, S.E.; Dallain, P.L.; Jamnick, M.S. An operational, spatially constrained harvest scheduling model. Can. J. For. Res.-Rev. Can. Rech. For. 1990, 20, 1438–1447. [Google Scholar] [CrossRef]
- Gustafson, E.J. HARVEST: A timber harvest allocation model for simulating management alternatives. In Landscape Ecological Analysis; Springer: New York, NY, USA, 1996; pp. 109–124. [Google Scholar]
- Jemali, N.J.N.B.; Shiba, M.; Zawawi, A.A. Strategic Forest Management Options for Small-Scale Timber Harvesting on Okinawa Island, Japan. Small-Scale For. 2015, 14, 351–362. [Google Scholar] [CrossRef]
- Boston, K.; Bettinger, P. An analysis of Monte Carlo integer programming, simulated annealing, and tabu search heuristics for solving spatial harvest scheduling problems. For. Sci. 1999, 45, 292–301. [Google Scholar]
- Shabani, N.; Sowlati, T. Evaluating the impact of uncertainty and variability on the value chain optimization of a forest biomass power plant using Monte Carlo Simulation. Int. J. Green Energy 2016, 13, 631–641. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Jordan, G.A. Forest landscape management modeling using simulated annealing. For. Ecol. Manag. 2002, 165, 29–45. [Google Scholar] [CrossRef]
- Moriguchi, K. Acceleration and enhancement of reliability of simulated annealing for optimizing thinning schedule of a forest stand. Comput. Electron. Agric. 2020, 177, 105691. [Google Scholar] [CrossRef]
- Sacchelli, S.; Bernetti, I. Integrated Management of Forest Ecosystem Services: An Optimization Model Based on Multi-objective Analysis and Metaheuristic Approach. Nat. Resour. Res. 2019, 28, 5–14. [Google Scholar] [CrossRef]
- Tang, D.S.; Chen, S.J.; Bian, F.L.; Wan, X.X. Genetic Algorithms for Forest Harvest Adjustment. In International Conference on Future Computer and Communication (FCC 2009), 1st ed.; Peoples R China: Wuhan, China, 2009. [Google Scholar]
- Ministry of Water Resources of China; Chinese Academy of Engineering. Water and Soil Conservation and Ecological Security in the Red-Soil Hilly Region of South China; Science Press: Beijing, China, 2010.
- Benra, F.; De Frutos, A.; Gaglio, M.; Álvarez-Garretón, C.; Felipe-Lucia, M.; Bonn, A. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Gurav, C.; Rai, A.; Sharma, A.; Matli, C.; Biniwale, R. Quantification of heat mitigation by urban green spaces using InVEST model—a scenario analysis of Nagpur City, India. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Kim, S.-W.; Jung, Y.-Y. Application of the InVEST Model to Quantify the Water Yield of North Korean Forests. Forests 2020, 11, 804. [Google Scholar] [CrossRef]
- Li, K.; Cao, J.; Adamowski, J.F.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.; Qin, Y. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Liu, R.; Niu, X.; Wang, B.; Song, Q. InVEST Model-Based Spatiotemporal Analysis of Water Supply Services in the Zhangcheng District. Forests 2021, 12, 1082. [Google Scholar] [CrossRef]
- Research Institute of Wood Industry of Chinese Academy of Forestry. Physical and Mechanical Properties of Wood of Main Tree Species in China; China Forestry Publishing House: Beijing, China, 1982. [Google Scholar]
- Von Bertalanffy, L. Quantitative Laws in Metabolism and Growth. Q. Rev. Biol. 1957, 32, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Richards, F.J. A Flexible Growth Function for Empirical Use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Zeide, B. Accuracy of equations describing diameter growth. Can. J. For. Res.-Rev. Can. Rech. For. 1989, 19, 1283–1286. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Keles, S.; Yolasigmaz, H.A. Comparing multipurpose forest management with timber management, incorporating timber, carbon and oxygen values: A case study. Scand. J. For. Res. 2008, 23, 105–120. [Google Scholar] [CrossRef]
- Bradford, J.B.; D’Amato, A.W. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 2012, 10, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Braat, L.C.; Ten Brink, P. The Cost of Policy Inaction (COPI): The Case of Not Meeting the 2010 Biodiversity Target; Alterra: Wageningen, The Netherlands, 2008. [Google Scholar]
- Huth, A.; Ditzer, T. Long-term impacts of logging in a tropical rain forest—A simulation study. For. Ecol. Manag. 2001, 142, 33–51. [Google Scholar] [CrossRef]
- Baskent, E.Z.; Keleş, S. Developing Alternative Forest Management Planning Strategies Incorporating Timber, Water and Carbon Values: An Examination of their Interactions. Environ. Model. Assess. 2009, 14, 467–480. [Google Scholar] [CrossRef]
- McDonald, R.I.; Motzkin, G.; Foster, D.R. The effect of logging on vegetation composition in Western Massachusetts. For. Ecol. Manag. 2008, 255, 4021–4031. [Google Scholar] [CrossRef]
- Nolet, P.; Béland, M. Long-Term Susceptibility of Even- and Uneven-Aged Northern Hardwood Stands to Partial Windthrow. Forests 2017, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Zhou, L.; Zhou, W.; Ding, H.; Wang, Q.; Wang, Y.; Wu, X.; Dai, L. Forest Management in Northeast China: History, Problems, and Challenges. Environ. Manag. 2011, 48, 1122–1135. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Wang, Y.; Su, D.; Zhou, L.; Yu, D.; Lewis, B.J.; Qi, L. Major Forest Types and the Evolution of Sustainable Forestry in China. Environ. Manag. 2011, 48, 1066–1078. [Google Scholar] [CrossRef] [PubMed]
- Kizha, A.; Nahor, E.; Coogen, N.; Louis, L.; George, A. Residual Stand Damage under Different Harvesting Methods and Mitigation Strategies. Sustainability 2021, 13, 7641. [Google Scholar] [CrossRef]
Forest Types | Stand Growth Models |
---|---|
P. massoniana | y = e6.706−38.294/x (R2 = 0.984, p < 0.001, n = 42) |
M. macclurei | y = e6.198−27.263/x (R2 = 0.991, p < 0.001, n = 37) |
S. superba | y = e5.916−31.971/x (R2 = 0.990, p < 0.001, n = 37) |
C. lanceolata | y = e5.597−21.597/x (R2 = 0.982, p < 0.001, n = 20) |
C. camphora | y = e5.994−44.639/x (R2 = 0.977, p < 0.001, n = 24) |
MRs | Cutting Area (%) | Rotations/Year | Harvest Principles |
---|---|---|---|
MR1 | 10 | 20 | Small-area clear-cutting refers to cutting areas ≤ 5 ha and the adjacent non-harvested areas ≥ cutting area (Management Rules of Forest Cutting and Regeneration in China, 2017) |
MR2 | 15 | ||
MR3 | 20 | ||
MR4 | 25 | ||
MR5 | 15 | 10 | |
MR6 | 20 | ||
MR7 | 25 | ||
MR8 | 30 | ||
MR9 | 35 | ||
MR10 | 40 | ||
MR11 | 25 | 5 | Large-area clear-cutting (cutting area > 5 ha) |
MR12 | 30 | ||
MR13 | 35 | ||
MR14 | 40 | ||
MR15 | 45 | ||
MR16 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Dai, E.; Zheng, D.; Wang, S. Using a Simple Model to Determine the Best Management Regimes for Plantations at the Stand Level: A Case Study of Moshao Forest Farm in the Red-Soil Hilly Region of Southern China. Forests 2021, 12, 1358. https://doi.org/10.3390/f12101358
Zhu J, Dai E, Zheng D, Wang S. Using a Simple Model to Determine the Best Management Regimes for Plantations at the Stand Level: A Case Study of Moshao Forest Farm in the Red-Soil Hilly Region of Southern China. Forests. 2021; 12(10):1358. https://doi.org/10.3390/f12101358
Chicago/Turabian StyleZhu, Jianjia, Erfu Dai, Du Zheng, and Silong Wang. 2021. "Using a Simple Model to Determine the Best Management Regimes for Plantations at the Stand Level: A Case Study of Moshao Forest Farm in the Red-Soil Hilly Region of Southern China" Forests 12, no. 10: 1358. https://doi.org/10.3390/f12101358
APA StyleZhu, J., Dai, E., Zheng, D., & Wang, S. (2021). Using a Simple Model to Determine the Best Management Regimes for Plantations at the Stand Level: A Case Study of Moshao Forest Farm in the Red-Soil Hilly Region of Southern China. Forests, 12(10), 1358. https://doi.org/10.3390/f12101358