Potential Areas in Poland for Forestry Plantation
Abstract
:1. Introduction
2. Materials and Methods
- Fast-growing tree plantations (in SILP, a specific separation is marked), with a poplar or larch in the main layer with a total share of at least 50%.
- Area lists include the entire surface of the plantation areas that were not reduced by any fraction of a dominant species in the main layer.
- The thickness of the selected species and not the entire plantation was specified in the thickness records.
- The plantation-grown species for the wood industry are poplar cultivar “Hybrid 275” and European larch (Larix decidua Mill.).
- An analysis of the division of the surveying area and land use in 2016 refers to the specification presented in the characteristics of the agricultural holdings [46].
- The land shares to be dedicated to plantations:
- ▪
- not less than 5% and not more than 10% of the sown areas, permanent crop areas and forest land and
- ▪
- not less than 5% and not more than 30% of the areas of fallow land, wasteland and other land.
- Potential plantation land will be allotted completely for the cultivation of fast-growing trees; assuming a 100% production capacity of 14 m3 × ha−1 (annually) for larch and 25 m3 × ha−1 (annually) for the poplar cultivar “Hybrid 275” and 50% production capacity from the plantation [16], the production cycle should take 40 years in the case of European larch and 25 years in case of the poplar cultivar “Hybrid 275”).
- Total cover of the plantation with European larch, total cover of the plantation with poplar cultivar “Hybrid 275”, 50% cover with larch and 50% cover with poplar.
3. Results and Discussion
3.1. The Area and Stock of Raw Material from Plantation of Poplar Cultivar “Hybrid 275” and Larch (Larix decidua Mill.) in Poland—Current State
3.2. The Assessment of the Potential Area of Land for Plantations of Fast-Growing Trees in Poland
3.3. The Assessment of Potentially Available Quantities of Alternative Raw Material for the Wood Industry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EPF. Available online: www.europanels.org/facts--figures/market-information (accessed on 17 March 2021).
- Respondek, T.; Adamowicz, M.; Wiktorski, T. Drewno—Strategiczny surowiec branży meblarskiej (Wood—A strategic raw material of furniture industry). In Drewno—Surowiec Strategiczny? (Wood—A Strategic Raw Material?); Strykowski, W., Gałecka, A., Pawłowska, J., Eds.; Instytut Technologii Drewna, Centrum Informacyjne Lasów Państwowych: Warsaw, Poland, 2012; pp. 57–64. [Google Scholar]
- Boruszewski, P. Raw materials for the wood based composites industry. In Raw Materials and Particleboards—A Current Status and Perspectives; Boruszewski, P., Mamiński, M., Ružinska, E., Eds.; Warsaw University of Life Sciences—SGGW Press: Warsaw, Poland, 2012; pp. 5–20. [Google Scholar]
- European Economic and Social Committee. Opinion of the European Economic and Social Committee on ‘Opportunities and Challenges for a More Competitive European Woodworking and Furniture Sector’ (Own-Initiative Opinion); European Parliament: Brussels, Belgium, 2011. [Google Scholar]
- Strykowski, W. Czy drewno jest surowcem strategicznym? (Is wood a strategic raw material?). In Drewno—Surowiec Strategiczny? (Wood—A Strategic Raw Material?); Strykowski, W., Gałecka, A., Pawłowska, J., Eds.; Instytut Technologii Drewna, Centrum Informacyjne Lasów Państwowych: Warsaw, Poland, 2012; pp. 11–25. [Google Scholar]
- Kelty, M.J. The role of species mixtures in plantation forestry. For. Ecol. Manag. 2006, 233, 195–204. [Google Scholar] [CrossRef]
- Dimitriou, I.; Rutz, D. Sustainable Short Rotation Coppice—A Handbook; WIP Renewable Energies: Munich, Germany, 2015. [Google Scholar]
- Baum, S.; Weih, M.; Busch, G.; Kroiher, F.; Bolte, A. The impact of Short Rotation Coppice plantations on phytodiversity. Landbauforsch. Vti Agric. For. Res. 2009, 3, 163–170. [Google Scholar]
- Baum, C.; Leinweber, P.; Weih, M.; Lamersdorf, N.; Dimitriou, I. Effects of short rotation coppice with willows and poplar on soil ecology. Landbauforsch. Vti Agric. For. Res. 2009, 3, 183–196. [Google Scholar]
- Mola-Yudego, B. Regional Potential Yields of Short Rotation Willow Plantations on Agricultural Land in Northern Europe. Silva Fenn. 2010, 44, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Liesebach, M. Poplars and Other Fast Growing Tree Species in Germany: Report of the National Poplar Commission. 2016–2019; Thünen Working Paper, No. 141a; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2020. [Google Scholar] [CrossRef]
- Szostak, A.; Bidzińska, G.; Ratajczak, E.; Herbeć, M. Wood biomass from plantations of fast-growing trees as an alternative source of wood raw material in Poland. Drewno 2013, 56, 85–113. [Google Scholar] [CrossRef]
- Xu, X.; Mola-Yudego, B. Where and when are plantations established? Land-use replacement patterns of fast-growing plantations on agricultural land. Biomass Bioenergy 2021, 144, 105921. [Google Scholar] [CrossRef]
- Thoemen, H.; Irle, M.; Sernek, M. Wood-Based Panels: An. Introduction for Specialists, 1st ed.; Brunel University Press: London, UK, 2010. [Google Scholar]
- Bielawska, K. Uprawy plantacyjne alternatywą? (Plantation crops as an alternative?). Głos Lasu 2009, 12, 6–8. [Google Scholar]
- Zajączkowski, J.; Zajączkowski, K. Hodowla Lasu (Silviculture); Państwowe Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 2013. [Google Scholar]
- Warmbier, K.; Wilczyński, A.; Danecki, L. Properties of one-layer experimental particleboards from willow (Salix viminalis) and industrial wood particles. Eur. J. Wood Wood Prod. 2013, 71, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Sean, S.T.; Labrecque, M. Use of short-rotation coppice willow clones of Salix viminalis as furnish in panel production. For. Prod. J. 2006, 56, 47–52. [Google Scholar]
- Warmbier, K.; Wilczyński, A.; Danecki, L. Particle size dependent properties of three-layer particleboards with the core layer made from willow (Salix viminalis). Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2010, 71, 405–409. [Google Scholar]
- Suchsland, O.; Woodson, G.E. Fiberboard Manufacturing Practices in the United States; Forest Products Research Society USDA Forest Service: Madison, WI, USA, 1991. [Google Scholar]
- Chen, T.Y.; Wu, J.P. Studies on the manufacturing of particleboard from fast-growing tree species (IV-1)—Effect of particleboard density on the properties of the PMDI and UF glue bonded particleboard. For. Prod. Ind. 1993, 12, 72–88. [Google Scholar]
- Medved, S. Impact of wood species used in surface layer on density distribution of particleboard. Drewno 2007, 50, 17–26. [Google Scholar]
- Irle, M.; Barbu, M.C. Chapter 1 Wood-based panels technology. In Wood-Based Panels. An introduction for Specialists; Thoemen, H., Irle, M., Sernek, M., Eds.; Brunel University Press: London, UK, 2010; pp. 1–94. [Google Scholar]
- Habibi, M.R.; Hosseinkhani, H.; Mahdavi, S.; Sepidehdam, J. Effect of wood species on particleboard properties. Iran. J. Wood Pap. Sci. Res. 2011, 26, 58–71. [Google Scholar]
- Boruszewski, P.; Borysiuk, P.; Mamiński, M.; Czechowska, J. Mat compression measurements during low-density particleboard manufacturing. BioResources 2016, 11, 6909–6919. [Google Scholar] [CrossRef] [Green Version]
- Zaraziński, K.; Boruszewski, P. Analysis of the influence of particle and poplar fibres share on selected properties of particle-fibre bords. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2020, 112, 22–31. [Google Scholar] [CrossRef]
- Pazio, B.; Boruszewski, P. Analysis of the influence of larch fibers and particles on selected properties of fiber- and particleboards. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2020, 111, 43–52. [Google Scholar] [CrossRef]
- European Parliament. Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A new EU Forest Strategy: For Forests and the Forest-Based Sector; European Parliament: Brussels, Belgium, 2013. [Google Scholar]
- State Forest Information System (SILP). (accessed on 17 March 2021).
- Zajączkowski, K. Dobór odmian topól i wierzb do uprawy na plantacjach drzew szybko rosnących (Selection of varieties of poplar and larch for plantations of fast-growing trees). In Elementy Genetyki i Hodowli Selekcyjnej Drzew Leśnych (Elements of Genetics and Selective Cultivation of Forest Trees); Sabor, J., Ed.; Centrum Informacyjne Lasów Państwowych: Warsaw, Poland, 2006; pp. 281–301. [Google Scholar]
- Bradshaw, H.D., Jr.; Strauss, S.H. Breeding strategies for the 21st Century: Domestication of poplar. In Poplar Culture in North America; Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.H., Richardson, J., Eds.; National Research Council Press: Ottawa, ON, Canada, 2001; pp. 383–394. [Google Scholar]
- Strauss, S.H.; Brunner, A.M.; Busov, V.B.; Ma, C.; Meilan, R. Ten lessons from 15 years of transgenic Populus research. Forestry 2004, 77, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Brunner, A.M.; Li, J.; DiFazio, S.P.; Shevchenko, O.; Montgomery, B.E.; Mohamed, R.; Wei, H.; Ma, C.; Elias, A.A.; Van Wormer, K.; et al. Genetic containment of forest plantations. Tree Genet. Genomes 2007, 3, 75–100. [Google Scholar] [CrossRef]
- Flachowsky, H.; Hanke, H.; Peil, M.V.; Strauss, S.H.; Fladung, M. A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed. 2009, 128, 217–226. [Google Scholar] [CrossRef]
- Strauss, S.H.; Raffa, K.F.; List, P.C. Ethics and Genetically Engineered Plantations. J. For. 2000, 98, 47–48. [Google Scholar]
- Lang, C. Genetically Modified Trees. The Ultimate Threat to Forests; World Rainforest Movement and Friends of the Earth: Montevideo, Uruguay, 2004. [Google Scholar]
- Gamborg, C.; Sandøe, P. Ethical considerations regarding genetically modified trees. In Forests and Genetically Modified Trees; El-Kassaby, Y.A., Prado, J.A., Eds.; The Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; pp. 163–175. [Google Scholar]
- Muhs, H.J. Regulation for genetically modified forest reproductive material moving in international trade. In Forests and Genetically Modified Trees; El-Kassaby, Y.A., Prado, J.A., Eds.; The Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; pp. 227–235. [Google Scholar]
- Rowe, R.L.; Hanley, M.E.; Goulson, D.; Clarke, D.J.; Doncaster, C.P.; Taylor, G. Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 2011, 35, 325–336. [Google Scholar] [CrossRef]
- Rodriguez-Pleguezuelo, C.R.; Duran-Zuazo, V.H.; Bielders, C.; Jimenez-Bocanegra, J.A.; Perea-Torres, F.; Francia Martinez, J.R. Bioenergy farming using woody crops. A review. Agron. Sustain. Dev. 2015, 35, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Parmar, K.; Keith, A.M.; Rowe, R.L.; Sohi, S.P.; Moeckel, C.; Pereira, M.G.; McNamara, N.P. Bioenergy driven land use change impacts on soil greenhouse gas regulation under Short Rotation Forestry. Biomass Bioenergy 2015, 82, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Niemczyk, M.; Wojda, T.; Kaliszewski, A. Biomass productivity of selected poplar (Populus spp.) cultivars in short rotations in northern Poland. N. Z. J. For. Sci. 2016, 46, 22. [Google Scholar] [CrossRef] [Green Version]
- Zajączkowski, K.; Wojda, T. Plantacje topolowe w przyrodniczych warunkach Polski (Poplar plantations in the environmental conditions in Poland). Studia Mater. CEPL Rogowie 2012, 33, 136–142. [Google Scholar]
- Zabielski, S. Plantacyjna Uprawa Drzew i Krzewów Szybko Rosnących (Plantations of Fast-Growing Trees and Bushes); Akademia Rolnicza: Poznań, Poland, 1998. [Google Scholar]
- Karp, A.; Shield, I. Bioenergy from plants and the sustainable yield challenge. New Phytol. 2008, 179, 15–32. [Google Scholar] [CrossRef]
- GUS. Available online: https://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/rolnictwo/charakterystyka-gospodarstw-rolnych-w-2016-r-,5,5.html (accessed on 31 March 2021).
- Sajnóg, N.; Wójcik, J. Możliwości zagospodarowania gruntów marginalnych i nieużytków gruntowych w scalaniu gruntów (Possibilities of developing degraded and unculitivated lands in land consolidation). Infrastrukt. Iekologia Teren. Wiej. 2013, 2, 155–166. [Google Scholar]
- Cubbage, F.; Koesbandana, S.; Mac Donagh, P.; Rubilar, R.; Balmelli, G.; Olmos, V.M.; De La Torre, R.; Murara, M.; Hoeflich, V.A.; Kotze, H.; et al. Global timber investments, wood costs, regulation, and risk. Biomass Bioenergy 2010, 34, 1667–1678. [Google Scholar] [CrossRef]
- Walker, J. Wood Quality: A Perspective from New Zealand. Forests 2013, 4, 234–250. [Google Scholar] [CrossRef]
- Korhonen, J.; Toppinen, A.; Cubbage, F.; Kuuluvainen, J. Factors Driving Investment in Planted Forests: A Comparison between OECD and Non-OECD Countries. Int. For. Rev. 2014, 16, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Carle, J.; Vuorinen, P.; Del Lungo, A. Status and Trends in Global Forest Plantation Development. For. Prod. J. 2002, 52, 1–13. [Google Scholar]
- GUS. Available online: http://stat.gov.pl/obszary-tematyczne/rolnictwo-lesnictwo/psr-2010/powszechny-spis-rolny-2010-obszary-wiejskie,1,1.html (accessed on 16 March 2021).
- ARMA. Available online: https://www.gov.pl/web/arimr/srednia-powierzchnia-w-2020r (accessed on 12 July 2021).
- Grzegorzewska, E.; Burawska-Kupniewska, I.; Boruszewski, P. Economic profitability of particleboards production with a diversified raw material structure. Maderas. Cienc. Tecnol. 2020, 22, 537–548. [Google Scholar] [CrossRef]
- Zitzmann, F.; Rode, M. Short-Rotation Coppice Managed According to Ecological Guidelines—What Are the Benefits for Phytodiversity? Forests 2021, 12, 646. [Google Scholar] [CrossRef]
- Wójcik, J.; Balawejder, M.; Leń, P. Grunty marginalne, propozycje sposobów ich zagospodarowania w pracach scaleniowych w powiecie brzozowskim (Marginal lands, proposals for their management in the consolidating works in the District of Brzozów). Infrastrukt. Ekol. Teren. Wiej. 2014, 2, 399–410. [Google Scholar]
- Węgorek, T. Warunki produkcji leśnej na skarpach zwałowiska zewnętrznego po kopalni siarki w Piasecznie w aspekcie pozyskania drewna opałowego (The conditions of forest production on scarps of the externalwaste bank after sulphur mine in piaseczno in the aspect of firewood logging). In Tereny Zdegradowane i Rekultywowane—Możliwości ich Zagospodarowania (Reclaimed and Degraded Areas—Possibilities of Their Development); Stankowski, S., Pacewicz, K., Eds.; P.P.H. Zapol Dmochowski, Sobczyk Sp. j.: Szczecin, Poland, 2009; pp. 219–229. [Google Scholar]
- Niemczyk, M.; Wojda, T.; Kantorowicz, W. Przydatność hodowlana wybranych odmian topoli w plantacjach energetycznych o krótkim cyklu produkcji. Sylwan 2016, 160, 292–298. [Google Scholar]
- Kabała, C.; Karczewska, A.; Kozak, M. Przydatność roślin energetycznych do rekultywacji i zagospodarowania gleb zdegradowanych (Energetic plants in reclamation and management of degraded soils). Zesz. Nauk. Uniw. Przyr. Wrocławiu Rol. 2010, 576, 97–118. [Google Scholar]
- Muñoz-Flores, H.J.; Castillo-Quiroz, D.; Castillo-Reyes, F.; Sáenz-Reyes, J.T.; Avila-Flores, D.; Rueda-Sánchez, A. Potential Areas for Commercial Timber Plantations of Tabebuia rosea (Bertol.) DC. in Michoacan, Mexico. Open J. For. 2017, 7, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, A.; Bagherzadeh, A.; Keshavarzi, A. Model application in evaluating land suitability for OAK and PINE forest plantations in Northeast of Iran. Geol. Ecol. Landsc. 2020, 4, 236–250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Polyakov, M. The geographical distribution of plantation forests and land resources potentially available for pine plantations in the U.S. South. Biomass Bioenergy 2010, 34, 1643–1654. [Google Scholar] [CrossRef]
- Lindegaard, K.N.; Adams, P.W.R.; Holley, M.; Lamley, A.; Henriksson, A.; Larsson, S.; Von Engelbrechten, H.G.; Lopez, G.E.; Pisarek, M. Short Rotation Plantations Policy History in Europe: Lessons from the Past and Recommendations for the Future. Food Energy Secur. 2016, 5, 125–152. [Google Scholar] [CrossRef]
- Haughton, A.J.; Bohan, D.A.; Clark, S.J.; Mallott, M.D.; Mallott, V.; Sage, R.; Karp, A. Dedicated biomass crops can enhance biodiversity in the arable landscape. GCB Bioenergy 2015, 8, 1071–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Land Type | The Area (ha) | The Use of Land for Plantations of Fast-Growing Trees in Poland (%) | |||
---|---|---|---|---|---|
5 | 10 | 20 | 30 | ||
The Area (ha) | |||||
I. Agricultural land area | 14,543,282 | - | - | - | - |
1. In good agricultural condition | 14,405,650 | - | - | - | - |
sown area | 10,639,984 | 531,999 | 1,063,998 | - | - |
fallow land | 165,627 | 8281 | 16,563 | 33,125 | 49,688 |
permanent crops | 393,457 | 19,673 | 39,346 | - | - |
kitchen gardens | 31,084 | - | - | - | - |
permanent meadows | 2,698,018 | 134,901 | 269,802 | - | - |
permanent pastures | 477,479 | - | - | - | - |
2. Others | 137,632 | 6882 | 13,763 | 27,526 | 41,290 |
II. Forest land as well as woody and bushy land | 944,031 | 47,202 | 94,403 | - | - |
III. Wasteland | 748,884 | 37,444 | 74,888 | 149,777 | 224,665 |
Total | 16,236,196 | 786,382 | 1,572,763 | 210,428 | 315,643 |
Voivodships * | Average Area of Land in an Agricultural Farm (ha) |
---|---|
Małopolskie | 4.16 |
Podkarpackie | 4.94 |
Świętokrzyskie | 5.88 |
Lubelskie | 7.98 |
Łódzkie | 7.98 |
Śląskie | 8.14 |
Mazowieckie | 8.77 |
Podlaskie | 12.55 |
Wielkopolskie | 14.09 |
Kujawsko-Pomorskie | 16.58 |
Dolnośląskie | 17.29 |
Opolskie | 19.16 |
Pomorskie | 19.62 |
Lubuskie | 22.29 |
Warmińsko-Mazurskie | 23.25 |
Zachodniopomorskie | 31.75 |
Annual Increase in the Tree Stand Thickness | Cultivation Type/Plantation Coverage Level | ||
---|---|---|---|
100% of Larch | 100% of Poplar | 50% of Larch | |
and 50% of Poplar | |||
from Sown Land (MM m3 per year) | |||
14 (m3 × ha−1) | 7.45 | - | 3.72 |
25 (m3 × ha−1) | - | 13.30 | 6.65 |
For 50% capacity (MM m3) | 3.72 | 6.65 | 5.17 |
from Forest Land (MM m3 per year) | |||
14 (m3 × ha−1) | 0.66 | - | 0.33 |
25 (m3 × ha−1) | - | 1.18 | 0.59 |
For 50% capacity (MM m3) | 0.33 | 0.59 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boruszewski, P.; Laskowska, A.; Jankowska, A.; Klisz, M.; Mionskowski, M. Potential Areas in Poland for Forestry Plantation. Forests 2021, 12, 1360. https://doi.org/10.3390/f12101360
Boruszewski P, Laskowska A, Jankowska A, Klisz M, Mionskowski M. Potential Areas in Poland for Forestry Plantation. Forests. 2021; 12(10):1360. https://doi.org/10.3390/f12101360
Chicago/Turabian StyleBoruszewski, Piotr, Agnieszka Laskowska, Agnieszka Jankowska, Marcin Klisz, and Marcin Mionskowski. 2021. "Potential Areas in Poland for Forestry Plantation" Forests 12, no. 10: 1360. https://doi.org/10.3390/f12101360
APA StyleBoruszewski, P., Laskowska, A., Jankowska, A., Klisz, M., & Mionskowski, M. (2021). Potential Areas in Poland for Forestry Plantation. Forests, 12(10), 1360. https://doi.org/10.3390/f12101360