Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Lab Analysis
2.3. Extraction of Environmental Factors
2.4. RDA and Multiple Linear Regression
2.5. Random Forest Regression Trees
3. Results
3.1. Comparison between SOM, TN, and AP in Pre- and Post-Mining Soil
3.2. The Relationship between the Decrease of Soil Nutrients and Environmental Factors
3.3. Modelling DSOM, DTN, and DAP Using Random Forest
3.4. Predicting the Spatial Distribution of DSOM, DTN, and DAP by Combining Random Forest and Kriging
4. Discussion
4.1. Effects of Mining Disturbance on Soil Nutrient Loss
4.2. Effects of Environmental Factors on Soil Nutrient Loss
4.3. Optimized Spatial Distribution Modelling Based on RF
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saygin, D.; Kempener, R.; Wagner, N.; Ayuso, M.; Gielen, D. The implications for renewable energy innovation of doubling the share of renewables in the global energy mix between 2010 and 2030. Energies 2015, 8, 5828–5865. [Google Scholar] [CrossRef]
- Jing, Z.R.; Wang, J.M.; Zhu, Y.C.; Feng, Y. Effects of land subsidence resulted from coal mining on soil nutrient distributions in a loess area of China. J. Clean. Prod. 2018, 177, 350–361. [Google Scholar] [CrossRef]
- Yang, D.; Bian, Z.; Lei, S. Impact on soil physical qualities by the subsidence of coal mining: A case study in western China. Environ. Earth Sci. 2016, 75, 652. [Google Scholar]
- Yuan, J.H. The future of coal in China. Resour. Conserv. Recycl. 2018, 129, 290–292. [Google Scholar] [CrossRef]
- Topp, W.; Thelen, K.; Kappes, H. Soil dumping techniques and afforestation drive ground-dwelling beetle assemblages in a 25-year-old open-cast mining reclamation area. Ecol. Eng. 2010, 36, 751–756. [Google Scholar] [CrossRef]
- Neshat, A.; Pradhan, B.; Dadras, M. Groundwater vulnerability assessment using an improved drastic method in GIS. Resour. Conserv. Recycl. 2014, 86, 74–86. [Google Scholar] [CrossRef]
- Qian, T.N.; Bagan, H.; Kinoshita, T.; Yamagata, Y. Spatial-temporal analyses of surface coal mining dominated land degradation in Holingol, Inner Mongolia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1675–1687. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.; Chen, X. Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. Hum. Ecol. Risk Assess. 2016, 22, 1359–1374. [Google Scholar] [CrossRef]
- Liu, D.; Quan, Y.; Ren, Z.; Wu, G. Assessment of heavy metal contamination in soil associated with Chinese coal-fired power plants: A case study in Xilingol, Inner Mongolia. Int. J. Sustain. Dev. World Ecol. 2017, 24, 439–443. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, G.C.; Ren, T.Y.; Wang, H.B.; Xu, Q.Y.; Zhang, G.H. Assessment of soil fertility degradation affected by mining disturbance and land use in a coalfield via machine learning. Ecol. Indic. 2021, 125, 107608. [Google Scholar] [CrossRef]
- Qiao, H.; Chen, S.; Dong, X.; Dong, K. Has China′s coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity. Energy Econ. 2019, 84, 104509. [Google Scholar] [CrossRef]
- Bi, Y.L.; Xie, L.L.; Wang, J.; Zhang, Y.X.; Wang, K. Impact of host plants, slope position and subsidence on arbuscular mycorrhizal fungal communities in the coal mining area of north-central China. J. Arid Environ. 2018, 163, 68–76. [Google Scholar] [CrossRef]
- Burke, R.A.; Fritz, K.M.; Barton, C.D.; Johnson, B.R.; Fulton, S.; Hardy, D.; Word, D.A.; Jack, J.D. Impacts of mountaintop removal and valley fill coal mining on c and n processing in terrestrial soils and headwater streams. Water Air Soil Pollut. 2014, 225, 2081. [Google Scholar] [CrossRef]
- Gong, Y.; Hu, Z.; McSweeney, K. Reclaiming subsidized land: An evaluation of coal gangue interlayers. Adv. Mater. Sci. Eng. 2020, 2020, 5740659. [Google Scholar] [CrossRef] [Green Version]
- Mi, J.X.; Liu, R.; Zhang, S.L.; Hou, H.; Yang, Y.; Chen, F.; Zhang, L. Vegetation patterns on a landslide after five years of natural restoration in the Loess Plateau mining area in China. Ecol. Eng. 2019, 136, 46–54. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, G.C.; Zhang, Y.G.; Wang, R.X. Quantification of the effect of soil erosion factors on soil nutrients at a small watershed in the Loess Plateau, Northwest China. J. Soils Sediments 2019, 20, 745–755. [Google Scholar] [CrossRef]
- He, T.T.; Xiao, W.; Zhao, Y.L.; Deng, X.Y.; Hu, Z.Q. Identification of waterlogging in eastern China induced by mining subsidence: A case study of Google Earth engine time-series analysis applied to the Huainan Coal Field. Remote Sens. Environ. 2020, 242, 111742. [Google Scholar] [CrossRef]
- Zhao, D.W.; Wu, K.; Bai, Z.H.; Hu, Z.Q.; Li, L.; Xu, Y.K.; Diao, X.P. Formation and development mechanism of ground crack caused by coal mining: Effects of overlying key strata. Bull. Eng. Geol. Environ. 2019, 78, 1025–1044. [Google Scholar]
- Peng, J.B.; Wang, F.; Cheng, Y.; Lu, Q. Characteristics and mechanism of Sanyuan ground fissures in the Weihe Basin, China. Eng. Geol. 2018, 247, 48–57. [Google Scholar] [CrossRef]
- Peng, J.B.; Sun, X.H.; Lu, Q.Z.; Meng, L.C.; He, H.Q.; Qiao, J.W.; Wang, F.Y. Characteristics and mechanisms for origin of earth fissures in Fenwei basin, China. Eng. Geol. 2020, 266, 105445. [Google Scholar] [CrossRef]
- Jia, Z.J.; Peng, J.B.; Lu, Q.Z.; Meng, L.C.; Qiao, J.W.; Wang, F.Y.; Zhao, J.Y. Characteristics and genesis mechanism of ground fissures in Taiyuan basin, northern China. Eng. Geol. 2020, 275, 105783. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Z.Q.; Wu, Y.J.; Yuan, Y.M. Physical and Chemical Properties of Soil at Different Mining Subsidence Areas in Windy and Sandy Regions. Land Reclamation in Ecological Fragile Areas; CRC Press: Boca Raton, FL, USA, 2017; pp. 349–355. [Google Scholar]
- Guo, J.; Zhang, Y.X.; Huang, H.; Yang, F. Deciphering soil bacterial community structure in subsidence area caused by underground coal mining in arid and semiarid area. Appl. Soil Ecol. 2021, 163, 103916. [Google Scholar] [CrossRef]
- Jing, Z.R.; Wang, J.M.; Wang, R.G.; Wang, P. Using multi-fractal analysis to characterize the variability of soil physical properties in subsided land in coal-mined area. Geoderma 2020, 361, 114054. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.J.; Deng, N.R.; Tang, Z.H.; Fan, L.; Wu, L.Q. Effect of coal mining subsidence on soil physical properties of rice field in mountain region of Southwest China. Trans. Chin. Soc. Agric. Eng. 2014, 30, 276–285. [Google Scholar]
- Neumann, D.; Heuer, A.; Hemkemeyer, M.; Martens, R.; Tebbe, C.C. Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants. ISME J. 2014, 8, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.H.; Yang, L.; Wei, J.; Quan, J.; Yang, X.T. The responses of soil bacterial communities and enzyme activities to the edaphic properties of coal mining areas in Central China. PLoS ONE 2020, 15, e0231198. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.K. Ecorestoration of the Coalmine Degraded Lands; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Janssens, M.; Pohlan, J.; Mulindabigwa, V.; Sonwa, D.; Deng, Z.; Torrico, J.C.; Callado, S.; Jende, O. Relative importance of soil organic matter, soil litter and litter fall in the tropics. Acta Hortic. 2015, 1076, 85–95. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Xiao, W. Optimization of concurrent mining and reclamation plans for single coal seam: A case study in northern Anhui. China Environ. Earth Sci. 2013, 68, 1247–1254. [Google Scholar] [CrossRef]
- Osorio, N.W.; Habte, M. Phosphate desorption from the surface of soil mineral particles by a phosphate-solubilizing fungus. Biol. Fertil. Soils 2013, 49, 481–486. [Google Scholar] [CrossRef]
- Shi, P.L.; Zhang, Y.X.; Hu, Z.Q.; Ma, K.; Wang, H.; Chai, T.Y. The response of soil bacterial communities to mining subsidence in the west China aeolian sand area. Appl. Soil. Eco. 2017, 121, 1–10. [Google Scholar] [CrossRef]
- Zhen, Q.; Ma, W.M.; Li, M.M.; He, H.H.; Zhang, X.C.; Wang, Y. Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China. CATENA 2017, 148, 17–25. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Ruan, M.; Guo, J.; Chai, T. Land subsidence in a coal mining area reduced soil fertility and led to soil degradation in arid and semi-arid regions. Int. J. Env. Res. Public Health 2019, 16, 3929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.T.; Guan, Y.B.; Zhao, C.S.; Zhang Cb Bai, J.; Chen, K. Determining the influence of catchment area on intensity of gully erosion using high-resolution aerial imagery: A 40-year case study from the Loess Plateau, northern China. Geoderma 2019, 347, 90–102. [Google Scholar] [CrossRef]
- Guan, Y.B.; Yang, S.T.; Zhao, C.S.; Lou, H.Z.; Chen, K.; Zhang, C.B.; Wu, B.W. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau. Soil Tillage Res. 2021, 205, 104800. [Google Scholar] [CrossRef]
- Gomez-Gutierrez, Á.; Conoscenti, C.; Angileri, S.E.; Rotigliano, E.; Schnabel, S. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two editerranean basins: Advantages and limitations. Nat. Hazards 2015, 79, 291–314. [Google Scholar] [CrossRef]
- Reed, M.; Kite, S. Peripheral gully and landslide erosion on an extreme anthropogenic landscape produced by mountaintop removal coal mining. Earth Surf. Process. Landf. 2020, 45, 4867. [Google Scholar] [CrossRef]
- Wang, Y.C.; Bian, Z.F.; Lei, S.G.; Zhang, Y. Investigating spatial and temporal variations of soil moisture content in an arid mining area using an improved thermal inertia model. J. Arid. Land 2017, 9, 712–726. [Google Scholar] [CrossRef]
- Song, Z.S.; Seitz, S.; Li, J.; Goebes, P.; Schmidt, K.; Kuhn, P.; Shi, X.Z.; Scholten, T. Tree diversity reduced soil erosion by affecting tree canopy and biological soil crust development in a subtropical forest experiment. For. Ecol. Manag. 2019, 444, 69–77. [Google Scholar] [CrossRef]
- Chagas, C.D.S.; Junior, W.D.C.; Bhering, S.B.; Filho, B.C. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. CATENA 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Lechner, A.M.; Baumgartl, T.; Matthew, P.; Glenn, V. The impact of underground longwall mining on prime agricultural land: A review and research agenda. Land Degrad. Dev. 2016, 27, 1650–1663. [Google Scholar] [CrossRef]
- Qu, S.; Shi, Z.M.; Wang, G.C.; Han, J.Q. Application of multiple approaches to investigate hydraulic connection in multiple aquifers system in coalfield. J. Hydrol. 2020, 595, 125673. [Google Scholar] [CrossRef]
- Zhang, B.J.; Zhang, G.H.; Yang, H.Y.; Wang, H.; Li, N.N. Soil erodibility affected by vegetation restoration on steep gully slopes on the Loess Plateau of China. Soil Res. 2018, 56, 712–723. [Google Scholar] [CrossRef]
- Roy, J.; Saha, S. GIS-based gully erosion susceptibility evaluation using frequency ratio, cosine amplitude and logistic regression ensembled with fuzzy logic in hinglo river basin, India. Remote Sens. Appl. Soc. Environ. 2019, 15, 100247. [Google Scholar] [CrossRef]
- Kadel, S.; Persico, M.; Thibodeau, J.; Lainé, C.; Bazinet, L. Use of redundancy analysis and multivariate regression models to select the significant membrane properties affecting peptide migration during electrodialysis with filtration membranes. Sep. Purif. Technol. 2019, 221, 114–125. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, P.; Xu, G.; Li, Z.; Gao, H.; Zhao, B.; Wang, T.; Wang, F.; Cheng, S. Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China. Soil Tillage Res. 2018, 184, 142–152. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Yamani, M.; Pradhan, B.; Melesse, A.; Shirani, K.; Bui, D.T. Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility. Sci. Total Environ. 2019, 688, 903–916. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Pourghasemi, H.R.; Besalatpour, A.A.; Conoscenti, C.; Van Oost, K. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma 2018, 330, 65–78. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.H. Temporal variation in soil erodibility indices for five typical land use types on the Loess Plateau of China. Geoderma 2020, 381, 114695. [Google Scholar] [CrossRef]
- Zhang, T.H.; Yong-Zhong, S.U.; Jian-Yuan, C.U.I.; Zhang, Z.H.; Chang, X.X. A leguminous shrub (Caragana microphylla) in semiarid sandy soils of north China. Pedosphere 2006, 16, 319–325. [Google Scholar] [CrossRef]
- Yao, Y.; Shao, M.; Fu, X.; Wang, X.; Wei, X. Effect of grassland afforestation on soil N mineralization and its response to soil texture and slope position. Agric. Ecosyst. Environ. 2019, 276, 64–72. [Google Scholar] [CrossRef]
- Frouz, J.; Prach, K.; Pizl, V.; Hanel, L.; Stary, J.; Tajovsky, K.; Materna, J.; Balik, V.; Kalcik, J.; Rehounkova, K. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol. 2008, 44, 109–121. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Oost, K. Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.B.; Xu, J.S.; Ma, R.Y.; Wang, F.Y. Characteristic and mechanism of the Longyao ground fissures on North China Plain, China. Eng. Geol. 2016, 214, 136–146. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Bui, D.T. Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques. CATENA 2020, 190, 104545. [Google Scholar] [CrossRef]
- Nuraini, Y.; Arfarita, N.; Siswanto, B. Isolation and characteristic of nitrogen-fixing bacteria and phosphate-solubilizing bacteria from soil high in mercury in tailings and compost areas of artisanal gold mine. Agrivita 2015, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | t | Sig. (2-Tailed) | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
SOM PRE-SOM POST | 2.347 | 3.144 | 0.703 | 0.875 | 3.818 | 3.338 | 0.003 |
TN PRE-TN POST | 0.127 | 0.125 | 0.028 | 0.068 | 0.186 | 4.539 | 0.000 |
AP PRE-AP POST | 2.938 | 2.771 | 0.620 | 1.641 | 4.234 | 4.742 | 0.000 |
ID | DSOM | DTN | DAP |
---|---|---|---|
CJT-1 | −3.287 | −0.019 | −0.1 |
CJT-2 | −5.862 | −0.126 | −1.75 |
CJT-3 | −3.02 | −0.241 | −1.7 |
CJT-4 | −4.756 | −0.234 | −9.1 |
CJT-5 | −0.095 | −0.023 | −2.6 |
CJT-6 | −0.793 | −0.343 | −0.2 |
CJT-7 | −2.036 | −0.354 | −1.45 |
CJT-8 | −0.181 | −0.001 | −1 |
CJT-9 | −0.116 | −0.01 | −0.05 |
CJT-10 | −0.686 | −0.018 | −6.2 |
CJT-11 | −7.1 | −0.364 | −4.75 |
CJT-12 | −4.563 | −0.172 | −1.85 |
CJT-13 | −2.072 | −0.034 | −2.6 |
CJT-14 | −4.484 | −0.017 | −1.25 |
CJT-15 | −4.488 | −0.107 | −7.8 |
CJT-16 | −4.011 | −0.23 | −7.7 |
CJT-17 | −0.157 | −0.092 | −1.55 |
CJT-18 | −1.921 | −0.041 | −2.75 |
CJT-19 | −1.994 | −0.02 | −0.3 |
CJT-20 | −5.511 | −0.094 | −4.1 |
Soil Nutrients | Dis.to Margin | Slope | Slope Variation | Plan Curvature | Profile Curvature | Density | Roughness | Relief Amplitude | NDVI | TWI | Total Explanation |
---|---|---|---|---|---|---|---|---|---|---|---|
DSOM | 2.9 | 0.1 | 0.9 | 2.0 | 0.7 | 2.7 | 3.3 | 2.6 | 0.4 | 0.1 | 15.7 |
DTN | 0.2 | 1.7 | 1.6 | 0.2 | 9.0 | 0.2 | 2.8 | 3.0 | 0.2 | 0.1 | 19.0 |
DAP | 5.5 | 2.6 | 1.7 | 1.2 | 5.9 | 3.9 | 0.6 | 21.4 | 1.0 | 1.0 | 44.8 |
20 Points-SOM | 40 Points-SOM | 20 Points-TN | 40 Points-TN | 20 Points-AP | 40 Points-AP | |
---|---|---|---|---|---|---|
ME | 0.504 | 0.053 | −0.051 | −0.002 | −0.094 | −0.025 |
RMSE | 2.351 | 1.556 | 0.112 | 0.065 | 2.896 | 2.244 |
MSE | 0.146 | 0.029 | −0.620 | −0.020 | −0.041 | −0.010 |
RMSSE | 1.081 | 0.985 | 0.904 | 0.987 | 0.864 | 0.975 |
ASE | 2.205 | 1.564 | 0.128 | 0.069 | 2.986 | 2.250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, G.; Wang, C.; Wang, X.; Li, M.; Ren, T. Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield. Forests 2021, 12, 1370. https://doi.org/10.3390/f12101370
Wang Z, Wang G, Wang C, Wang X, Li M, Ren T. Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield. Forests. 2021; 12(10):1370. https://doi.org/10.3390/f12101370
Chicago/Turabian StyleWang, Ziguan, Guangcai Wang, Chengshu Wang, Xiaohui Wang, Meiling Li, and Tingyu Ren. 2021. "Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield" Forests 12, no. 10: 1370. https://doi.org/10.3390/f12101370
APA StyleWang, Z., Wang, G., Wang, C., Wang, X., Li, M., & Ren, T. (2021). Effect of Environmental Factors on Soil Nutrient Loss under Conditions of Mining Disturbance in a Coalfield. Forests, 12(10), 1370. https://doi.org/10.3390/f12101370