Thermally Modified Wood Exposed to Different Weathering Conditions: A Review
Abstract
:1. Introduction
1.1. Context
1.2. Exterior Wood
1.3. Wood Modification
2. Wood Modification
3. Weathering
3.1. Natural Weathering
3.2. Artificial Weathering
4. Conclusions
- The main factors with a significant impact on thermally modified wood degradation were moisture content and UV radiation. The UV radiation promotes color loss and photodegradation of the wood surface, leading to cracks in the wood structure in both unmodified and modified wood. The moisture content promotes mold, blue stain, and fungal growth, affecting the wood color.
- The advantages and disadvantages of thermally modified wood were identified. Benefits were the improvement of dimensional stability with thermal modification, promoting some weathering protection. The disadvantages were that thermal change was not beneficial in some wood species, and the modified wood can be sensitive to UV radiation.
- Species are structurally different, with notable performances in particular environments. It will be essential to consider more studies with a wider range of species (temperate and tropical) and environments, for example, in industrial and maritime environments where the effect of the salinity and pollutant gases are very aggressive for metallic materials; the same effects are unknown for modified wood. In addition, more studies on thermally modified wood are needed for wooden constructions in coastal areas (urban centers with a higher population density). It is necessary to conduct long-term weathering exposure to know how thermally modified woods will be affected by atmospheric contaminants and to predict their behavior under current climatic change scenarios.
- More field and laboratory tests, including different thermal modification settings and weathering factors, should be conducted to identify which environmental parameters affect wood the most.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ding, G.K.C. Sustainable construction—The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandberg, D.; Kutnar, A. Thermally modified timber: Recent developments in Europe and North America. Wood Fiber Sci. 2016, 48, 28–39. [Google Scholar]
- Herrera, R.; Arrese, A.; de Hoyos-Martinez, P.L.; Labidi, J.; Llano-Ponte, R. Evolution of thermally modified wood properties exposed to natural and artificial weathering and its potential as an element for façades systems. Constr. Build. Mater. 2018, 172, 233–242. [Google Scholar] [CrossRef]
- Ruuska, A.; Häkkinen, T. Characterization and Monitoring of Surface Weathering on Exposed Timber Structures With a Multi-Sensor Approach. Int. J. Archit. Herit. 2014, 4, 266–294. [Google Scholar] [CrossRef]
- Ugovšek, A.; Šubic, B.; Starman, J.; Rep, G.; Humar, M.; Lesar, B.; Thaler, N.; Brischke, C.; Meyer-Veltrup, L.; Jones, D.; et al. Short-term performance of wooden windows and facade elements made of thermally modified and non-modified Norway spruce in different natural environments. Wood Mater. Sci. Eng. 2018, 14, 42–47. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a global carbon sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Evert, R. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Zobel, B.J.; Van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer: Berlin, Germany, 1989. [Google Scholar]
- Machado, J.S.; Pereira, F.; Quilhó, T. Assessment of old timber members: Importance of wood species identification and direct tensile test information. Constr. Build. Mater. 2019, 207, 651–660. [Google Scholar] [CrossRef]
- Sandberg, D.; Haller, P.; Navi, P. Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Mater. Sci. Eng. 2013, 8, 64–88. [Google Scholar] [CrossRef] [Green Version]
- Evans, P.; Haase, J.; Seman, A.; Kiguchi, M. The Search for Durable Exterior Clear Coatings for Wood. Coatings 2015, 5, 830–864. [Google Scholar] [CrossRef] [Green Version]
- Marais, B.N.; Brischke, C.; Militz, H. Wood durability in terrestrial and aquatic environments—A review of biotic and abiotic influence factors. Wood Mater. Sci. Eng. 2020, 1–24. [Google Scholar] [CrossRef]
- Agresti, G.; Bonifazi, G.; Calienno, L.; Capobianco, G.; Lo Monaco, A.; Pelosi, C.; Picchio, R.; Serranti, S. Surface investigation of photo-degraded wood by colour monitoring, infrared spectroscopy, and hyperspectral imaging. J. Spectrosc. 2013, 2013, 380536. [Google Scholar] [CrossRef]
- Teodorescu, I.; Ţăpuși, D.; Erbașu, R.; Bastidas-Arteaga, E.; Aoues, Y. Influence of the Climatic Changes on Wood Structures Behaviour. Energy Procedia 2017, 112, 450–459. [Google Scholar] [CrossRef]
- Santos, J.A.; Duarte, C. Degradação e proteção superficial da madeira em exterior. Corros. Prot. Mater. 2013, 32, 10–18. [Google Scholar]
- Kránitz, K.; Sonderegger, W.; Bues, C.-T.; Niemz, P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016, 50, 7–22. [Google Scholar] [CrossRef]
- Gérardin, P. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Ann. For. Sci. 2016, 73, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. IForest 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Sandberg, D.; Karlsson, O.; Kutnar, A.; Jones, D. Wood Modification Technologies. Principles, Sustainability, and the Need for Innovation; CRC Press: Baton Rouge, FL, USA, 2021; ISBN 978-1-138-49177-9. [Google Scholar]
- Jones, D.; Sandberg, D.; Goli, G.; Todaro, L. Wood Modification in Europe: A State-of-the-Art about Processes, Products and Applications; Online PDF; Firenze University Press: Firenze, Italy, 2019; 113p, ISBN 978-88-6453-970-6. [Google Scholar]
- Herrera, R.; Labidi, J.; Krystofiak, T.; Llano-Ponte, R. Characterization of thermally modified wood at different industrial conditions. Drewno 2016, 59, 151–164. [Google Scholar] [CrossRef]
- Hill, C. Wood Modification—Chemical, Thermal and Other Processes; Stevens, C.V., Ed.; John Wiley & Sons: West Sussex, UK, 2006; ISBN 9780470021729. [Google Scholar]
- Stamm, A.J.; Burr, H.K.; Kline, A.A. Staybwood—Heat-Stabilized Wood. Ind. Eng. Chem. 1946, 38, 630–634. [Google Scholar] [CrossRef]
- International Thermowood Association. ThermoWood Handbook; International ThermoWood Association: Helsinki, Finland, 2003. [Google Scholar]
- Boonstra, M.J.; Rijsdijk, J.F.; Sander, C.; Kegel, E.; Tjeerdsma, B.; Militz, H.; van Acker, J.; Stevens, M. Microstructural and physical aspects of heat treated wood. Part 1. Softwoods. Maderas. Cienc. Technol. 2006, 8, 209–217. [Google Scholar]
- Awoyemi, L.; Jones, I.P. Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Sci. Technol. 2011, 45, 261–267. [Google Scholar] [CrossRef]
- Jang, E.S.; Kang, C.W. Changes in gas permeability and pore structure of wood under heat treating temperature conditions. J. Wood Sci. 2019, 65, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vital, B.R.; Oliveira, B.; Carneiro, O.; Pereira, H. Physical and Mechanical Properties of Heat Treated Wood from Aspidosperma populifolium, Dipteryx odorata and Mimosa scabrella. Maderas. Cienc. Tecnol. 2016, 18, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.; Korkut, S.; Hiziroglu, S.; Sevik, H. An evaluation of properties of four heat treated wood species. Ind. Crop. Prod. 2014, 60, 60–65. [Google Scholar] [CrossRef]
- Salca, E.A.; Hiziroglu, S. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Mater. Des. 2014, 62, 416–423. [Google Scholar] [CrossRef]
- Priadi, T.; Hiziroglu, S. Characterization of heat treated wood species. Mater. Des. 2013, 49, 575–582. [Google Scholar] [CrossRef]
- Tomak, E.D.; Ustaomer, D.; Yildiz, S.; Pesman, E. Changes in surface and mechanical properties of heat treated wood during natural weathering. Measurement 2014, 53, 30–39. [Google Scholar] [CrossRef]
- Costa, J.C.; Branco, J.M.; Camões, A.F. Thermal modification of most representative Portuguese wood species. A preliminary study. Rev. Constr. 2019, 18, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Čabalová, I.; Kacík, F.; Lagaňa, R.; Výbohová, E.; Bubeníková, T.; Čaňová, I.; Ďurkovič, J. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources 2018, 13, 157–170. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Lourenço, A.; Araújo, S.; Gominho, J.; Evtuguin, D. Cellulose structural changes during mild torrefaction of Eucalyptus wood. Polymers 2020, 12, 2831. [Google Scholar] [CrossRef] [PubMed]
- Fengel, D.; Wegener, G. Wood; Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Boonstra, M.J.; Rijsdijk, J.F.; Sander, C.; Kegel, E.; Tjeerdsma, B.; Militz, H.; van Acker, J.; Stevens, M. Microstructural and physical aspects of heat treated wood. Part 2. Hardwoods. Maderas. Cienc. Technol. 2006, 8, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; Taylor & Francis: Madison, WI, USA, 2005; ISBN 0849315883. [Google Scholar]
- Feist, W.C. Natural weathering of wood and its control by water-repellent preservatives. Am. Paint. Contract. 1992, 69, 18–25. [Google Scholar]
- Tomak, E.D.; Ustaomer, D.; Ermeydan, M.A.; Yildiz, S. An investigation of surface properties of thermally modified wood during natural weathering for 48 months. Meas. J. Int. Meas. Confed. 2018, 127, 187–197. [Google Scholar] [CrossRef]
- Candelier, K.; Thevenon, M.F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, M. Control of wood thermal treatment and its effects on decay resistance: A review. Ann. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.C.; Uetimane, E.; Råberg, U.; Terziev, N. Comparative natural durability of five wood species from Mozambique. Int. Biodeterior. Biodegrad. 2011, 65, 768–776. [Google Scholar] [CrossRef]
- Candelier, K.; Hannouz, S.; Thévenon, M.F.; Guibal, D.; Gérardin, P.; Pétrissans, M.; Collet, R. Resistance of thermally modified ash (Fraxinus excelsior L.) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termites. Eur. J. Wood Wood Prod. 2017, 75, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Oliver-Villanueva, J.V.; Gascón-Garrido, P.; Ibiza-Palacios, M.D.S. Evaluation of thermally-treated wood of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) against Mediterranean termites (Reticulitermes spp.). Eur. J. Wood Wood Prod. 2013, 71, 391–393. [Google Scholar] [CrossRef]
- Kržišnik, D.; Lesar, B.; Thaler, N.; Humar, M. Influence of Natural and Artificial Weathering on the Colour Change of Different Wood and Wood-Based Materials. Forests 2018, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Janesch, J.; Czabany, I.; Hansmann, C.; Mautner, A.; Rosenau, T.; Gindl-Altmutter, W. Transparent layer-by-layer coatings based on biopolymers and CeO2 to protect wood from UV light. Progess Org. Coat. 2020, 138, 105409. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Riggio, M. Estimation of physical and mechanical properties of timber members in service by means of infrared spectroscopy. Constr. Build. Mater. 2015, 101, 1197–1205. [Google Scholar] [CrossRef]
- Mohebby, B.; Saei, A.M. Effects of geographical directions and climatological parameters on natural weathering of fir wood. Constr. Build. Mater. 2015, 94, 684–690. [Google Scholar] [CrossRef]
- Treu, A.; Zimmer, K.; Brischke, C.; Larnøy, E.; Ross, L. Durability and Protection of Timber Structures in Marine Environments in Europe: An Overview Timber Structures in the Marine Environment. BioResources 2019, 14, 10161–10184. [Google Scholar] [CrossRef]
- Nuopponen, M.; Wikberg, H.; Vuorinen, T.; Maunu, S.L.; Jämsä, S.; Viitaniemi, P. Heat-treated softwood exposed to weathering. J. Appl. Polym. Sci. 2004, 91, 2128–2134. [Google Scholar] [CrossRef]
- Domingos, I.; Ferreira, J.; Cruz-Lopes, L.; Carmo, J.; Martins, J.; Herrera, R.; Nunes, L.; Esteves, B. Determination of resistance of thermally treated wood to weather conditions in different countries (HTW)—Preliminary results. In Proceedings of the 9th European Conference on Wood Modification 2018; Creemers, J., Houben, T., Tjeerdsma, B., Mili8tz, H., Junge, B., Gootjes, J., Eds.; SHR B.V: Arnhem, The Netherlands, 2018; pp. 126–130. [Google Scholar]
- Humar, M.; Kržišnik, D.; Lesar, B.; Brischke, C. The performance of wood decking after five years of exposure: Verification of the combined effect of wetting ability and durability. Forests 2019, 10, 903. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Krause, C. Structural analysis of heat-treated birch (Betula papyrifera) surface during artificial weathering. Appl. Surf. Sci. 2013, 264, 117–127. [Google Scholar] [CrossRef]
- Lesar, B.; Humar, M.; Kržišnik, D.; Thaler, N.; Žlahtič, M. Performance of façade elements made of five different thermally modified wood species on model house in Ljubljana. In Proceedings of the WCTE 2016—World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016. [Google Scholar]
- Yildiz, S.; Tomak, E.D.; Yildiz, U.C.; Ustaomer, D. Effect of artificial weathering on the properties of heat treated wood. Polym. Degrad. Stab. 2013, 98, 1419–1427. [Google Scholar] [CrossRef]
- Ayadi, N.; Lejeune, F.; Charrier, F.; Charrier, B.; Merlin, A. Color stability of heat-treated wood during artificial weathering. Holz Roh-Werkst. 2003, 61, 221–226. [Google Scholar] [CrossRef]
- Huang, X.; Kocaefe, D.; Kocaefe, Y.; Boluk, Y.; Pichette, A. Changes in wettability of heat-treated wood due to artificial weathering. Wood Sci. Technol. 2012, 46, 1215–1237. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood degradation under U.V. irradiation: A lignin characterization. J. Photochem. Photobiol. B Biol. 2016, 158, 184–191. [Google Scholar] [CrossRef]
- Liu, R.; Pang, X.; Yang, Z. Measurement of three wood materials against weathering during long natural sunlight exposure. Meas. J. Int. Meas. Confed. 2017, 102, 179–185. [Google Scholar] [CrossRef]
- Srinivas, K.; Pandey, K.K. Photodegradation of thermally modified wood. J. Photochem. Photobiol. B Biol. 2012, 117, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Diamantino, T.C.; Gonçalves, R.; Nunes, A.; Páscoa, S.; Carvalho, M.J. Durability of different selective solar absorber coatings in environments with different corrosivity. Sol. Energy Mater. Sol. Cells 2017, 166, 27–38. [Google Scholar] [CrossRef]
- Slamova, K.; Schill, C.; Wiesmeie, S.; Köhl, M.; Glaser, R. Mapping atmospheric corrosion in coastal regions: Methods and results. J. Photonics Energy 2012, 2, 022003. [Google Scholar] [CrossRef]
- García-Segura, A.; Fernández-García, A.; Ariza, M.J.; Sutter, F.; Diamantino, T.C. Solar Energy Materials and Solar Cells Influence of gaseous pollutants and their synergistic effects on the ageing of reflector materials for concentrating solar thermal technologies. Sol. Energy Mater. Sol. Cells 2019, 200, 109955. [Google Scholar] [CrossRef] [Green Version]
- Feller, R.L. Accelerated Ageing—Photochemical and Thermal Aspects; Berland, D., Ed.; Edwards Bros.: Ann Arbor, MI, USA, 1994; ISBN 0-89236-125-5. [Google Scholar]
- Yildiz, S.; Yildiz, U.C.; Tomak, E.D. The effects of natural weathering on the properties of heat-treated alder wood. BioResources 2011, 6, 2504–2521. [Google Scholar] [CrossRef]
- Klüppel, A.; Mai, C. Effect of seawater wetting on the weathering of wood. Eur. J. Wood Wood Prod. 2018, 76, 1029–1035. [Google Scholar] [CrossRef]
- Kiker, G.T.; Zelinka, S.L.; Passarini, L. Avast Ye Salty Dogs: Salt Damage in the Context of Coastal Residential Construction and Historical Maritime Timbers. In Proceedings of the 112th Annual Meeting of the American Wood Protection Association, San Juan, PR, USA, 1–3 May 2016. [Google Scholar]
- ISO/TR 16335:2012. Corrosion of Metals and Alloys—Corrosion Tests in Artificial Atmospheres—Guideline for Selection of Accelerated Corrosion Test for Product Qualification; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
Process | App. Year | Temperature (°C) | Process Duration (h) | Pressure (MPa) | Atmosphere | System Type |
---|---|---|---|---|---|---|
FWD | 1979 | 120–180 | 15 | 0.5–0.6 | Steam | Closed system |
Plato | 1980 | 150–180/ 170–190 | 4–5/70–120 up to weeks | Super atmospheric pressure (partly) | Saturated steam/ heated air | A four-stage process |
ThermoWood | 1990 | 130/185–215/80–90 | 30–70 | Atmospheric | Steam | Continuous steam flow through the wood under processing removes volatile degradation products. |
Le Bois Perdure | 1990 | 200–230 | 12–36 | Atmospheric | Steam | The process involves drying and heating the wood in steam. |
Retification | 1997 | 160–240 | 8–24 | - | Nitrogen or other gas | The nitrogen atmosphere guarantees a maximum oxygen content of 2%. |
OHT | 2000 | 180–220 | 24–36 | - | Vegetable oils | Closed system |
Softwood Species | Hardwood Species |
---|---|
Pine (Pinus sylvestris) | Birch (Betula pendula) |
Spruce (Picea abies) | Aspen (Populus tremula) |
Radiata pine (Pinus radiata) | Ash (Fraxinus excelsior) |
Maritime pine (Pinus pinaster) | Larch (Larix sibirica) |
Alder (Alnus glutinosa) | |
Beech (Fagus sylvatica) | |
Eucalyptus (Eucalyptus sp.) |
Species | Thermal Modification | Time | MOE (MPa) | MOR (MPa) | Roughness (µm) | Hardness (kg) | Reference |
---|---|---|---|---|---|---|---|
Ash (Fraxinus excelsior) | Control | 90 min in steam atmosphere | 7760 (850.94) | 90.68 (5.78) | - | - | [33] |
212 °C | 9990 (1838.94) | 74.04 (7.59) | |||||
Iroko (Milicia excelsa) | Control | 90 min in steam atmosphere | 11960 (1719.88) | 121.90 (18.85) | - | - | |
212 °C | 12860 (960.73) | 114.83 (16.14) | |||||
Scots pine (Pinus sylvestris) | Control | 90 min in steam atmosphere | 9644 (498.33) | 89.54 (7.45) | - | - | |
190 °C | 8808 (1219.58) | 74.18 (9.77) | |||||
Spruce (Picea orientalis) | Control | 90 min in steam atmosphere | 7618 (320.66) | 75.20 (3.00) | - | - | |
190 °C | 8985 (1244.55) | 72.50 (8.92) | |||||
Black Alder (Alnus glutinosa) | 190 °C | 3 h | - | - | 36.08 (1.5) | 341.6 (26.1) | [31] |
35.35 (1.6) | 361.29 (24.3) | ||||||
Red Oak (Quercus rubra) | 190 °C | 3 h | - | - | 57.82 (6.5) | 662.00 (73.7) | |
54.28 (3.1) | 533.72 (38.3) | ||||||
Southern Pine (Pinus taeda) | 190 °C | 3 h | - | - | 27.16 (1.4) | 263.44 (28.4) | |
27.00 (1.4) | 270.97 (29.5) | ||||||
Yellow Poplar (Liriodendron tulipifera) | 190 °C | 3 h | - | - | 44.08 (1.8) | 352.34 (50.8) | |
44.01 (1.4) | 354.65 (46.3) | ||||||
Maritime pine (Pinus pinaster) | Control | 2 h | 1110 (13.5%) | 130 (21.5%) | - | - | [34] |
200 °C | 1130 16.4%) | 127 (17.4%) | |||||
240 °C | 1070 (17.2%) | 104 (12.2%) | |||||
260 °C | 1130 (34.9%) | 76 (24.2%) | |||||
300 °C | 7800 (<2%) | 51 (11.0%) | |||||
Eucalyptus (Eucalyptus globulus) | Control | 2 h | 1440 (5.5%) | 129 (5.9%) | - | - | |
200 °C | 1580 (14.9%) | 105 (21.7%) | |||||
240 °C | 1260 (14.9%) | 86 (25.6%) | |||||
260 °C | 1410 (8.6%) | 91 (13.9%) | |||||
300 °C | 4600 (< 2%) | 28 (8.2%) | |||||
Beech (Fagus sylvatica) | Control | 2 h | 1190 (24.0%) | 146 (26.6%) | - | - | |
200 °C | 1230 (18.5%) | 167 (6.5%) | |||||
240 °C | 9600 (25.8%) | 124 (11.5%) | |||||
260 °C | 1040 (20.2%) | 105 (21.6%) | |||||
300 °C | 8140 (<2%) | 52 (12.0%) | |||||
Acacia (Acacia melanoxylon) | Control | 2 h | 1610 (4.1%) | 138 (6.7%) | - | - | |
200 °C | 1640 (7.5%) | 141 (2.8%) | |||||
240 °C | 1040 (14.9%) | 83 (9.7%) | |||||
260 °C | 1300 (5.9%) | 82 (2.8%) | |||||
300 °C | 8400 (13.8%) | 47 (28.9%) | |||||
Oak (Quercus faginea) | Control | 2 h | 1130 (9.9%) | 102 (9.2%) | - | - | [34] |
200 °C | 1150 (13.3%) | 91 (12.6%) | |||||
240 °C | 1090 (16.4%) | 83 (20.2%) | |||||
260 °C | 1120 (5.2%) | 74 (3.0%) | |||||
300 °C | 1010 (12.8%) | 68 (12.8%) | |||||
Pedunculate Oak (Quercus robur) | Control | 11731 (4219) | - | - | - | [35] | |
160 °C | 11021 (350) | ||||||
180 °C | 10846 (1168) | ||||||
200 °C | 11639 (1028) |
Species | Thermal Modification | Time of Exposure (Months) | Roughness (µm) | Color (CIE*Lab) | MOR (MPa) | MOE (MPa) | |||
---|---|---|---|---|---|---|---|---|---|
ΔL* | Δa* | Δb* | ΔE | ||||||
Ash (Fraxinus excelsior) | 190 °C for 90 min | 0 | 34.72 (6.81) | –37.57 (2.17) | 2.73 (0.27) | –5.61 (0.65) | 38.09 (2.17) | 74.04 (7.59) | 9990 (1838.94) |
24 | 41.40 (9.29) | 14.91 (3.81) | –6.60 (1.70) | –9.66 (3.11) | 19.55 (3.16) | 72.29 (9.14) | 11845 (1775.12) | ||
Iroko (Chlorophora excelsa) | 190 °C for 90 min | 0 | 36.81 (7.11) | –6.81 (0.95) | 1.05 (0.42) | –3.07 (0.86) | 7.61 (0.82 | 114.83 (16.14) | 12860 (960.73) |
24 | 52.08 (6.05) | 11.35 (5.33) | –9.14 (0.55) | –16.61 (1.30) | 21.70 (3.10) | 91.09 (10.65) | 10049 (1666) | ||
Scots pine (Pinus sylvestris) | 212 °C for 90 min | 0 | 32.57 (4.12) | –25.69 (2.45) | 6.04 (0.63) | 2.35 (0.75) | 26.51 (2.31) | 74.18 (9.77) | 8808 (1219.5) |
24 | 48.75 (8.84) | 3.54 (1.11) | –10.42 (1.15) | –20.98 (2.42) | 23.61 (2.46) | 66.01 (9.64) | 7487.14 (743.34) | ||
Spruce (Picea orientalis) | 212 °C for 90 min | 0 | 33.64 (7.30) | –27.94 (2.78) | 7.27 (0.72) | 4.52 (1.07) | 29.20 (2.83) | 72.50 (8.92) | 8985 (1244.55) |
24 | 45.71 (8.47) | 2.22 (2.71) | –10.39 (1.08) | –21.56 (2.26) | 24.13 (2.27) | 70.60 (9.94) | 7726 (1066.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godinho, D.; Araújo, S.d.O.; Quilhó, T.; Diamantino, T.; Gominho, J. Thermally Modified Wood Exposed to Different Weathering Conditions: A Review. Forests 2021, 12, 1400. https://doi.org/10.3390/f12101400
Godinho D, Araújo SdO, Quilhó T, Diamantino T, Gominho J. Thermally Modified Wood Exposed to Different Weathering Conditions: A Review. Forests. 2021; 12(10):1400. https://doi.org/10.3390/f12101400
Chicago/Turabian StyleGodinho, Delfina, Solange de Oliveira Araújo, Teresa Quilhó, Teresa Diamantino, and Jorge Gominho. 2021. "Thermally Modified Wood Exposed to Different Weathering Conditions: A Review" Forests 12, no. 10: 1400. https://doi.org/10.3390/f12101400
APA StyleGodinho, D., Araújo, S. d. O., Quilhó, T., Diamantino, T., & Gominho, J. (2021). Thermally Modified Wood Exposed to Different Weathering Conditions: A Review. Forests, 12(10), 1400. https://doi.org/10.3390/f12101400