Greenhouse Gas Emission Offsets of Forest Residues for Bioenergy in Queensland, Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plantation Management Practices
2.3. Application of FullCAM to Estimate Carbon in Residues
2.4. Case Study Scenarios and Residue Utilization Alternatives
2.5. Estimating Energy Potential and GHG Emissions Avoided
2.5.1. Net GHG Emissions Avoided (CO2-eavoid)
2.5.2. CHP and Pellets (CO2-efossil and CO2-egen)
2.5.3. Renewable Diesel (CO2-efossil and CO2-egen)
2.5.4. Transport Emissions (CO2-etransp)
2.5.5. Annual Net GHG Emissions Avoided (CO2-eoffset_ha and CO2-eoffset_total)
2.6. Uncertainty and Sensitivity Analysis
3. Results
3.1. Carbon Stocks
3.2. Avoided GHG Emissions
3.3. Annual GHG Emissions and Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASA. Global Climate Change: Vital Signs of the Planet. Available online: https://climate.nasa.gov/causes/ (accessed on 20 August 2021).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, MA, USA, 2021; in press. [Google Scholar]
- World Resources Institute. 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors. Available online: https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors (accessed on 20 August 2021).
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, I., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2021; in press. [Google Scholar]
- Department of Industry, Science, Energy and Resources. Quarterly Update of Australia’s National Greenhouse Gas Inventory: March 2021; Australian Government: Canberra, Australia, 2021. [Google Scholar]
- State of the Environment Report 2020: Transport Sector Greenhouse Gas Emissions. Available online: https://www.stateoftheenvironment.des.qld.gov.au/pollution/greenhouse-gas-emissions/transport-sector-greenhouse-gas-emissions (accessed on 31 August 2021).
- United Nations Framework Convention on Climate Change (UNFCCC). Australia’s Intended Nationally Determined Contribution to a New Climate Change Agreement August 2015. Available online: https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/Australia/1/Australias%20Intended%20Nationally%20Determined%20Contribution%20to%20a%20new%20Climate%20Change%20Agreement%20-%20August%202015.pdf (accessed on 20 August 2021).
- Abbasi, T.; Abbasi, S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sust. Energy Rev. 2010, 14, 919–937. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050 (2019 Edition); IRENA: Abu Dhabi, UAE, 2019. [Google Scholar]
- Department of Industry, Science, Energy and Resources. Australian Energy Update 2020; Australian Government: Canberra, Australia, 2020. [Google Scholar]
- European Commission. Renewable Energy Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Share_of_renewable_energy_more_than_doubled_between_2004_and_2019 (accessed on 27 August 2021).
- World Bioenergy Association. Global Bioenergy Statistics. 2020. Available online: http://www.worldbioenergy.org/uploads/201210%20WBA%20GBS%202020.pdf (accessed on 24 October 2021).
- Syed, A. Australian Government Energy Projections to 2050. In Energy Outlook and Energy Saving Potential in East Asia; ERIA Research Project Report 2014-33; Kimura, S., Phoumin, H., Eds.; ERIA: Jakarta, Indonesia, 2015; pp. 49–68. [Google Scholar]
- International Energy Agency. Australia 2018 Update: Bioenergy Policies and Status of Implementation; Pelkmans, L., Ed.; Available online: https://www.ieabioenergy.com/wp-content/uploads/2018/10/CountryReport2018_Australia_final.pdf (accessed on 24 October 2021).
- Australian Government Clean Energy Regulator. Renewable Energy Target. Available online: http://www.cleanenergyregulator.gov.au/RET/About-the-Renewable-Energy-Target (accessed on 28 August 2021).
- Australian Government Clean Energy Regulator. Emissions Reduction Fund. Available online: http://www.cleanenergyregulator.gov.au/ERF (accessed on 28 August 2021).
- Department of State Development, Manufacturing, Infrastructure and Planning. Queensland Biofutures: 10-Year Roadmap and Action Plan, 2nd ed.; Queensland Government: Brisbane, Queensland, 2016. Available online: https://www.statedevelopment.qld.gov.au/__data/assets/pdf_file/0017/13337/biofutures-10yr-roadmap-actionplan.pdf (accessed on 20 August 2021).
- Australian Renewable Energy Agency: Bioenergy/Bioenergy from Waste. Available online: https://arena.gov.au/renewable-energy/bioenergy/ (accessed on 20 August 2021).
- Brack, D. Woody Biomass for Power and Heat: Impacts on the Global Climate; Chatham House, The Royal Institute of International Affairs: London, UK, 2017. [Google Scholar]
- Sims, R.; Taylor, M. From 1st to 2nd Generation Biofuel Technologies: An Overview of Current Industry and RD&D Activities; IEA Bioenergy: Paris, France, 2008. [Google Scholar]
- Berndes, G.; Abt, B.; Asikainen, A.; Cowie, A.; Dale, V.; Egnell, G.; Lindner, M.; Marelli, L.; Paré, D.; Pingoud, K.; et al. Forest Biomass, Carbon Neutrality and Climate Change Mitigation: From Science to Policy 3; European Forest Institute: Yonsu, Finland, 2016. [Google Scholar]
- Mateos, E.; Garrido, F.; Ormaetxea, L. Assessment of biomass energy potential and forest carbon stocks in Biscay (Spain). Forests 2016, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, E.; Paletto, A.; Russo, G.F.; Franzese, P.P. Indicators of environmental performance to assess wood-based bioenergy production: A case study in Northern Italy. J. Clean. Prod. 2019, 221, 242–248. [Google Scholar] [CrossRef]
- Yemshanov, D.; McKenny, D.W.; Hope, E.; Lempriere, T. Renewable energy from forest residues—How greenhouse gas emissions offsets can make fossil fuel substitution more attractive. Forests 2018, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Kline, K.L.; Dale, V.H.; Rose, E.; Tonn, B. Effects of production of woody pellets in the southeastern United States on the Sustainable Development Goals. Sustainability 2021, 13, 821. [Google Scholar] [CrossRef]
- Downham, R.; Gavran, M. Australian Plantation Statistics 2020 Update; Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES): Canberra, Australia, 2020. [Google Scholar]
- Locke, P.; Whittle, L. Future Opportunities for Using Forest and Sawmill Residues in Australia; Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES): Canberra, Australia, 2018. [Google Scholar]
- Ghaffariyan, M.R.; Apolit, R. Harvest residues assessment in pine plantations harvested by whole tree and cut-to-length harvesting methods (a case study in Queensland, Australia). Silva Balc. 2015, 16, 113–122. [Google Scholar]
- Greaves, B.; May, B. Australian Secondary Wood Products and Their Markets; Forest and Wood Products Australia (FWPA): Melbourne, Australia, 2012. [Google Scholar]
- Farine, D.R.; O’Connell, D.A.; Raison, R.J.; May, B.M.; O’Connor, M.H.; Crawford, D.F.; Herr, A.; Taylor, J.A.; Javanovic, T.; Campbell, P.K.; et al. An assessment of biomass for bioelectricity and biofuel, and for greenhouse gas emission reduction in Australia. GCB Bioenergy 2012, 4, 148–175. [Google Scholar] [CrossRef]
- Crawford, D.F.; O’Connor, M.H.; Jovanovic, T.; Herr, A.; Raison, R.J.; O’Connell, D.A.; Baynes, T. A spatial assessment of potential biomass for bioenergy in Australia in 2010, and possible expansion by 2030 and 2050. GCB Bioenergy 2016, 8, 707–722. [Google Scholar] [CrossRef]
- Rodriguez, L.C.; May, B.; Herr, A.; O’Connell, D. Biomass assessment and small scale biomass fired electricity generation in the Green Triangle, Australia. Biomass Bioenergy 2011, 35, 2589–2599. [Google Scholar] [CrossRef]
- Rothe, A.; Moroni, M.; Neyland, M.; Wilnhammer, M. Current and potential use of forest biomass for energy in Tasmania. Biomass Bioenergy 2015, 80, 162–172. [Google Scholar] [CrossRef]
- Murphy, H.T.; O’Connell, D.A.; Raison, R.J.; Warden, A.C.; Booth, T.H.; Herr, A.; Braid, A.L.; Crawford., D.F.; Hayward, J.A.; Jovanovic, T.; et al. Biomass production for sustainable aviation fuels: A regional case study in Queensland. Renew. Sustain. Energy Rev. 2015, 44, 738–750. [Google Scholar] [CrossRef]
- Booth, T.H.; Raison, R.J.; Crawford, D.F.; Jovanovic, T.; O’Connor, M.H.; Raisbeck-Brown, N.; O’Connell, D.A.; Hogg, B.W.; Lee, D.J. Biomass for aviation fuel production in the Fitzroy Basin, Queensland: A preliminary assessment of native and plantation forest potential. Aust. For. 2014, 77, 1–8. [Google Scholar] [CrossRef]
- Ngugi, M.R.; Neldner, V.J.; Ryan, S.; Lewis, T.; Li, J.; Norman, P.; Mogilski, M. Estimating potential harvestable biomass for bioenergy form sustainably managed private native forests in Southeast Queensland, Australia. For. Ecosyst. 2018, 5, 62–76. [Google Scholar] [CrossRef]
- Meadows, J.; Coote, D.; Brown, M. The potential supply of biomass for energy from hardwood plantations in the Sunshine Council region of south-east Queensland, Australia. Small Scale For. 2014, 13, 461–481. [Google Scholar] [CrossRef]
- Van Holsbeeck, S.; Srivastava, S.K. Feasibility of locating biomass-to-bioenergy conversion facilities using spatial information technologies: A case study on forest biomass in Queensland, Australia. Biomass Bioenergy 2020, 139, 105620. [Google Scholar] [CrossRef]
- Jayarathna, L.; Kent, G.; O’Hara, I.; Hobson, P. A geographical information System based framework to identify optimal location and size of biomass energy plansts using single or multiple biomass types. Appl. Energy 2020, 275, 115398. [Google Scholar] [CrossRef]
- Jayarathna, L.; Kent, G.; O’Hara, I. Spatial optimization of multiple biomass utilization for large-scale bioelectricity generation. J. Clean. Prod. 2021, 319, 128625. [Google Scholar] [CrossRef]
- Department of the Environment and Energy. National Inventory Report 2019, Volume 2. The Australian Government Submission to the United Nations Framework Convention on Climate Change. Australian National Greenhouse Accounts. April 2021; Australian Government: Canberra, Australia, 2021. Available online: https://www.industry.gov.au/sites/default/files/April%202021/document/national-inventory-report-2019-volume-2.pdf (accessed on 21 August 2021).
- HQPlantations. Forest Stewardship Plan: September 2020; HQPlantations: Brisbane, Australia, 2020; Available online: https://www.hqplantations.com.au/media/i2hnk22h/forest-stewardship-plan.pdf (accessed on 20 August 2021).
- Timberbiz. HQPlantations 85,000-Hectare Tuan-Toolara Plantation. Available online: https://www.timberbiz.com.au/hqplantations-85000-hectare-tuan-toolara-plantation/ (accessed on 30 August 2021).
- Richards, G.P. The FullCAM Carbon Accounting Model: Development, Calibration and Implementation for the National Carbon Accounting System Technical Report No. 28; Australian Greenhouse Office: Canberra, Australia, 2001. [Google Scholar]
- Altus Renewables. Available online: https://www.altusrenewables.com/company/ (accessed on 6 September 2021).
- Southern Oil. Our Refineries. Available online: https://www.sor.com.au/what-we-do/oil-refineries/ (accessed on 20 August 2021).
- Department of Industry, Science, Energy and Resources. National Greenhouse Accounts Factors; Australian Government: Canberra, Australia, 2021. Available online: https://www.industry.gov.au/sites/default/files/August%202021/document/national-greenhouse-accounts-factors-2021.pdf (accessed on 27 August 2021).
- Food and Agriculture Organization of the United Nations (FAO). Energy Conservation in the Mechanical Forest Industries: FAO Forestry Paper 93; FAO: Rome, Italy, 1990; Available online: http://www.fao.org/3/t0269e/t0269e04.htm#TopOfPage (accessed on 19 August 2021).
- International Renewable Energy Agency (IRENA). Biomass for Heat and Power: Technology Brief; IRENA: Abu Dhabi, United Arab Emirates, 2015; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA-ETSAP_Tech_Brief_E05_Biomass-for-Heat-and-Power.pdf (accessed on 20 August 2021).
- U.S. Department of Energy. Energy Saver; United States Government: Washington, DC, USA. Available online: https://www.energy.gov/energysaver/wood-and-pellet-heating (accessed on 24 October 2021).
- ARENAWIRE. Biodiesel and Bitumen to Be Made from Wood Waste. Available online: https://arena.gov.au/blog/biodiesel-and-bitumen-to-be-made-from-wood-waste/ (accessed on 31 August 2021).
- Neste. Neste Reviewable Diesel Handbook. Available online: https://www.neste.com/sites/default/files/attachments/neste_renewable_diesel_handbook.pdf (accessed on 6 September 2021).
- Paul, K.; Booth, T.; Elliot, A.; Jovanovic, T.; Polglase, P.; Kirschbaum, M. Life Cycle Assessment of Greenhouse Gas Emissions from Domestic Wood Heating: Greenhouse Gas Emissions from Firewood Production Systems; Australian Government Department of Environment and Heritage: Canberra, Australia, 2003; Available online: https://www.firewood.asn.au/images/downloads/greenhouse%20gas%20emissions.pdf (accessed on 31 August 2021).
- Clean Energy Finance Corporation (CEFC); Australian Renewable Energy Agency (ARENA). Biofuels and Transport: An Australian Opportunity. 2019. Available online: https://www.cefc.com.au/media/402280/biofuels-and-transport-an-australian-opportunity-november-2019.pdf (accessed on 30 August 2021).
- Department of Environment and Science. Energy from Waste Policy; Queensland Government: Brisbane, Queensland, 2020. Available online: https://www.qld.gov.au/__data/assets/pdf_file/0020/118433/energy-from-waste-policy.pdf (accessed on 24 October 2021).
- Australian Government. Renewable Energy (Electricity) Act 2000; Australian Government: Canberra, Australian, 2018. Available online: https://www.legislation.gov.au/Details/C2019C00061 (accessed on 30 August 2021).
- Campbell, J.L.; Sessions, J.; Smith, D.; Trippe, K. Potential carbon storage in biochar made from logging residue: Basic principles and Southern Oregon case studies. PLoS ONE 2018, 13, e0203475. [Google Scholar] [CrossRef]
- European Commission. Rethink All Plastic Packaging. Available online: https://cordis.europa.eu/article/id/239655-bioplastics-sourced-from-wood (accessed on 24 October 2021).
- Kraxner, F.; Aoki, K.; Leduc, S.; Kindermann, G.; Fuss, S.; Yang, J.; Yamagata, Y.; Tak, K.-I.; Obersteiner, M. BECCS in South Korea—Analyzing the negative emissions potential of bioenergy as a mitigation tool. Renew. Energy 2014, 61, 102–108. [Google Scholar] [CrossRef]
- Levihn, F.; Linde, L.; Gustafsson, K.; Dahlen, E. Introducing BECCS through HPC to the research agenda: The case of combined heat and power in Stockholm. Energy Rep. 2019, 5, 1381–1389. [Google Scholar] [CrossRef]
- Filbakk, T.; Jirjis, R.; Nurmi, J.; Høibø, O. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy 2011, 35, 3342–3349. [Google Scholar] [CrossRef]
- Valentine, D.; (Altus Renewables Limited, Queensland, Australia). Personal communication, 2021.
- Veneer Services. Debarkers and Fiber Loss. Available online: https://www.veneerservices.com/debarkers-and-fiber-loss/ (accessed on 25 October 2021).
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M.R. Methods to manage and optimize forest biomass supply chains: A review. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- The Guardian. ‘Carbon-Neutrality Is a Fairy Tale’: How the Race for Renewables Is Burning Europe’s Forests. Available online: https://www.theguardian.com/world/2021/jan/14/carbon-neutrality-is-a-fairy-tale-how-the-race-for-renewables-is-burning-europes-forests (accessed on 20 August 2021).
- Norton, M.; Baldi, A.; Buda, V.; Carli, B.; Cudlin, P.; Jones, M.B.; Korhola, A.; Michalski, R.; Novo, F.; Oszlányi, J.; et al. Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy 2019, 11, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Matthews, R.; Hogan, G.; Mackie, E. Carbon Impacts of Biomass Consumed in the EU: Supplementary Analysis and Interpretation for the European Climate Foundation; The Research Agency of The Forestry Commission: Edinburgh, UK, 2018. [Google Scholar]
- Nepal, P.; Abt, K.; Skog, K.E.; Prestemon, J.P.; Abt, R.C. Projected market competition for wood biomass between traditional products and energy: A simulated interaction of US regional, national and global forest product markets. For. Sci. 2019, 65, 14–26. [Google Scholar] [CrossRef]
- Last, I.; (HQPlantations, Toolara, Queensland, Australia). Personal communication, 2021.
Scenario | Bioenergy Product Type | Fossil Fuel Substitution | Residue Alternative | Forest Treatment | % Utilization | ||
---|---|---|---|---|---|---|---|
Stem | Branch | Bark | |||||
1 | CHP | Coal-fired electricity | 1 | Thin | 5 | 95 | 5 |
Final harvest | |||||||
2 | Thin | 95 | 95 | 95 | |||
Final harvest | 5 | 5 | |||||
2 | Pellets | Natural gas | 1 | Thin | 5 | 95 | 5 |
Final harvest | |||||||
2 | Thin | 95 | 95 | 95 | |||
Final harvest | 5 | 5 | |||||
3 | Renewable diesel | Diesel | 1 | Thin | 5 | 95 | 5 |
Final harvest | |||||||
2 | Thin | 95 | 95 | 95 | |||
Final harvest | 5 | 5 |
Parameter | Units | Values | ||
---|---|---|---|---|
Harvest Residue | ||||
Total available energy content in dry wood (Econtent(wood)) | GJ tbiomass−1 | 18.63 | ||
Carbon content (Ccontent) Total available energy content in carbon | % GJ tC−1 | 50 37.26 | ||
Renewable diesel | ||||
Total available energy content (Econtent(biofuel)) | GJ kL−1 | 34.60 | ||
Renewable diesel yield (Vprod) | kL tbiomass−1 | 0.36 | ||
Scenarios | CHP | Pellets | Biofuel | |
Conversion efficiencies (CF) Net available (useful) energy content (Eavail) | % GJ tC−1 | 70.00 26.08 | 75.00 27.95 | - 24.80 |
Product emission factors (EF) | kgCO2-e GJ−1 | 225 1 | 51.40 | 69.90 |
Non-CO2 emission factors (EFnon-CO2) | kgCO2-e GJ−1 | 1.20 | 1.20 | 2.50 |
Transport emissions | ||||
Diesel energy content (Econtent(diesel)) | GJ kL−1 | 38.6 | ||
Diesel fuel intensity (Fuelintens) | L tC−1 km−1 | 0.16 | ||
Transport distance | km | 50 | 50 | 300 |
Residue Alternative | Forest Treatment | Stems (tC ha−1) | Branches (tC ha−1) | Bark (tC ha−1) | Total (tC ha−1) |
---|---|---|---|---|---|
1 | Thinning | 0.84 | 4.79 | 0.12 | 5.75 |
Final harvest | 3.14 | 17.97 | 0.42 | 21.53 | |
Total | 3.98 | 22.76 | 0.54 | 27.28 | |
2 | Thinning | 15.92 | 4.79 | 2.04 | 22.75 |
Final harvest | 3.14 | 17.97 | 0.42 | 21.53 | |
Total | 19.06 | 22.76 | 2.46 | 44.28 |
Scenario 1 | Combustion Carbon Dioxide Emissions Avoided (t CO2-e tC−1) | Non-CO2 GHG Emissions Generated by Bioenergy (t CO2-e tC−1) | Transport Carbon Dioxide Emissions (t CO2-e tC−1) 2 | Net GHG Emissions Avoided (tCO2-e tC−1) |
---|---|---|---|---|
1 | 5.15 ± 0.30 | 0.031 ± 0.002 | 0.022 | 5.10 ± 0.30 |
2 | 1.44 ± 0.04 | 0.034 ± 0.001 | 0.022 | 1.38 ± 0.04 |
3 | 1.74 ± 0.20 | 0.062 ± 0.007 | 0.130 | 1.53 ± 0.19 |
Average per ha GHG Emissions Avoided per Year (±s.d.) (tCO2-e ha−1 year−1) | Average Site GHG Emissions Avoided per Year (±s.d.) (tCO2-e year−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Scenario | Residue Alternative | 50 km | 100 km | 200 km | 300 km | 50 km | 100 km | 200 km | 300 km |
1 | 1 | 4.61 ± 0.27 | 4.60 ± 0.27 | 4.53 ± 0.27 | 4.51 ± 0.27 | 13,064 ± 763 | 12,993 ± 761 | 12,894 ± 767 | 12,773 ± 772 |
2 | 7.36 ± 0.43 | 7.32 ± 0.43 | 7.24 ± 0.44 | 7.2 ± 0.44 | 20,798 ± 1228 | 20,681 ± 1242 | 20,595 ± 1230 | 20,443 ± 1228 | |
2 | 1 | 1.24 ± 0.04 | 1.23 ± 0.04 | 1.19 ± 0.04 | 1.15 ± 0.04 | 3538 ± 105 | 3480 ± 103 | 3364 ± 108 | 3251 ± 106 |
2 | 1.99 ± 0.07 | 1.96 ± 0.06 | 1.90 ± 0.06 | 1.84 ± 0.06 | 5653 ± 189 | 5548 ± 184 | 5380 ± 183 | 5194 ± 177 | |
3 | 1 | 1.49 ± 0.18 | 1.47 ± 0.17 | 1.44 ± 0.17 | 1.38 ± 0.17 | 4203 ± 493 | 4186 ± 487 | 4088 ± 495 | 3929 ± 490 |
2 | 2.38 ± 0.27 | 2.35 ± 0.28 | 2.29 ± 0.28 | 2.23 ± 0.29 | 6684 ± 781 | 6596 ± 810 | 6477 ± 789 | 6320 ± 782 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garvie, L.C.; Roxburgh, S.H.; Ximenes, F.A. Greenhouse Gas Emission Offsets of Forest Residues for Bioenergy in Queensland, Australia. Forests 2021, 12, 1570. https://doi.org/10.3390/f12111570
Garvie LC, Roxburgh SH, Ximenes FA. Greenhouse Gas Emission Offsets of Forest Residues for Bioenergy in Queensland, Australia. Forests. 2021; 12(11):1570. https://doi.org/10.3390/f12111570
Chicago/Turabian StyleGarvie, Leanda C., Stephen H. Roxburgh, and Fabiano A. Ximenes. 2021. "Greenhouse Gas Emission Offsets of Forest Residues for Bioenergy in Queensland, Australia" Forests 12, no. 11: 1570. https://doi.org/10.3390/f12111570
APA StyleGarvie, L. C., Roxburgh, S. H., & Ximenes, F. A. (2021). Greenhouse Gas Emission Offsets of Forest Residues for Bioenergy in Queensland, Australia. Forests, 12(11), 1570. https://doi.org/10.3390/f12111570