Effects of Aspen and Spruce Density on Size and Number of Lower Branches 20 Years after Thinning of Two Boreal Mixedwood Stands
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thinning Effects on Stand and Crown Characteristics
3.2. Treatment Effects on Number and Diameter of Branches
3.3. Models Describing Variation in Crown Characteristics, Branch Diameter, and Numbers of Branches
4. Discussion
4.1. Effects of Thinning and Stand Density on Tree and Crown Characteristics
4.2. Effects of Aspen and Spruce Density on Branch Diameter and Number
4.3. Relationships between Tree Dimensions, Crown Dimensions, and Branch Diameter
4.4. Management Implications
4.5. Study Limitations and Future Needs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Groot, A.; Schneider, R. Predicting maximum branch diameter from crown dimensions, stand characteristics and tree species. For. Chron. 2011, 87, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Auty, D.; Weiskittel, A.R.; Achim, A.; Moore, J.R.; Gardiner, B.A. Influence of early re-spacing on Sitka spruce branch structure. Ann. For. Sci. 2012, 69, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Filipescu, C.N.; Comeau, P.G. Aspen competition affects light and white spruce growth across several boreal sites in western Canada. Can. J. For. Res. 2007, 37, 1701–1713. [Google Scholar] [CrossRef]
- Deleuze, C.; Hervé, J.C.; Colin, F.; Ribeyrolles, L. Modelling crown shape of Picea abies: Spacing effects. Can. J. For. Res. 1996, 26, 1957–1966. [Google Scholar] [CrossRef]
- Achim, A.; Gardiner, B.; Leban, J.M.; Daquitaine, R. Predicting the Branching Properties of Sitka Spruce Grown in Great Britain. N. Z. J. For. Sci. 2006, 36, 246–264. Available online: www.scionresearch.com/__data/assets/pdf_file/0011/59087/06ACHIM.pdf (accessed on 5 December 2020).
- Hein, S.; Mäkinen, H.; Yue, C.; Kohnle, U. Modelling branch characteristics of Norway spruce from wide spacings in Germany. For. Ecol. Manag. 2007, 242, 155–164. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Maguire, D.; Monserud, R. Modeling crown structural responses to competing vegetation control, thinning, fertilization, and Swiss needle cast in coastal Douglas-fir of the Pacific Northwest, USA. For. Ecol. Manag. 2007, 245, 96–108. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Kershaw, J.A.; Weiskittel, A.R.; Chui, Y.H.; Zhang, S.Y. External knot size and frequency in black spruce trees from an initial spacing trial in Thunder Bay, Ontario. For. Chron. 2009, 85, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Sattler, D.F.; Comeau, P.G.; Achim, A. Branch models for white spruce (Picea glauca (Moench) Voss) in naturally regenerated stands. For. Ecol. Manag. 2014, 325, 74–89. [Google Scholar] [CrossRef]
- Pretzsch, H.; Rais, A. Wood quality in complex forests versus even-aged monocultures: Review and perspectives. Wood Sci. Technol. 2016, 50, 845–880. [Google Scholar] [CrossRef]
- Hasenauer, H.; Monserud, R.A. A crown ratio model for Austrian forests. For. Ecol. Manag. 1996, 84, 49–60. [Google Scholar] [CrossRef]
- Makela, A.; Vanninen, P. Impacts of size and competition on tree form and distribution of aboveground biomass in Scots pine. Can. J. For. Res. 1998, 28, 216–227. [Google Scholar] [CrossRef]
- Ilomaki, S.; Nikinmaa, E.; Makela, A. Crown rise due to competition drives biomass allocation in silver birch. Can. J. For. Res. 2003, 33, 2395–2404. [Google Scholar] [CrossRef]
- Temesgen, H.; LeMay, V.; Mitchell, S.J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia. For. Chron. 2005, 81, 133–141. [Google Scholar] [CrossRef]
- Pretzsch, H. The effect of tree crown allometry on community dynamics in mixed-species stands vs monocultures. A review and perspectives for modeling and silvicultural regulation. Forests 2019, 10, 810. [Google Scholar] [CrossRef] [Green Version]
- Bokalo, M.; Comeau, P.G.; Titus, S.J. Early development of tended mixtures of aspen and spruce in western Canadian boreal forests. For. Ecol. Manag. 2007, 242, 175–184. [Google Scholar] [CrossRef]
- Kabzems, R.; Bokalo, M.; Comeau, P.G.; MacIsaac, D.A. Managed mixtures of aspen and white spruce 21 to 25 years after establishment. Forests 2016, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Garber, S.M.; Maguire, D.A. Vertical trends in maximum branch diameter in two mixed-species spacing trials in the central Oregon Cascades. Can. J. For. Res. 2005, 35, 295–307. [Google Scholar] [CrossRef]
- Groot, A.; Cortini, F.; Wulder, M.A. Crown-fibre attribute relationships for enhanced forest inventory: Progress and prospects. For. Chron. 2015, 9, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Titus, S.J.; LeMay, V.M. Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Can. J. For. Res. 1998, 28, 1171–1183. [Google Scholar] [CrossRef]
- Colin, F.; Houllier, F. Branchiness of Norway spruce in northeastern France: Predicting the main crown characteristics from usual tree measurements. Ann. Sci. For. 1992, 49, 511–538. [Google Scholar] [CrossRef] [Green Version]
- Maguire, D.A.; Moeur, M.; Bennett, W.S. Models for describing basal diameter and vertical distribution of primary branches in young Douglas-fir. For. Ecol. Manag. 1994, 63, 23–55. [Google Scholar] [CrossRef]
- Anonymous. Influence of Growth Rate on Strength and Related Wood Properties of Boreal White Spruce; Technote 00-08W; Forintek Canada: Vancouver, BC, Canada, 2000.
- Soil Classification Working Group. The Canadian System of Soil Classification; Agriculture and Agri-Food Canada Publ.: Ottawa, ON, Canada, 1998; p. 187. Available online: https://sis.agr.gc.ca/cansis/taxa/cssc3/ (accessed on 2 December 2020).
- Thorpe, H.C.; Astrup, R.; Trowbridge, A.; Coates, K.D. Competition and tree crowns: A neighbourhood analysis of three boreal tree species. For. Ecol. Manag. 2010, 259, 1586–1596. [Google Scholar] [CrossRef]
- Hynynen, J. Predicting tree crown ratio for unthinned and thinned Scots pine stands. Can. J. For. Res. 1995, 25, 57–62. [Google Scholar] [CrossRef]
- Makinen, H.; Colin, F. Predicting the number, death and self-pruning of branches in Scots pine. Can. J. For. Res. 1999, 29, 1225–1236. [Google Scholar] [CrossRef]
- Grace, J.C.; Brownie, R.K.; Kennedy, S.G. The influence of initial and post-thinning stand density on Douglas-fir branch diameter at two sites in New Zealand. N. Z. J. For. Sci. 2015, 45, 14. [Google Scholar] [CrossRef] [Green Version]
- Filipescu, C.N.; Groot, A.; MacIsaac, D.A.; Cruikshank, M.G.; Stewart, J.D. Prediction of diameter using height and crown attributes: A case study. West. J. Appl. For. 2012, 27, 30–35. [Google Scholar] [CrossRef] [Green Version]
Trembling Aspen (Aw) Density (Stems ha−1) | ||||||
---|---|---|---|---|---|---|
White Spruce (Sw) Density (Stems ha−1) | 0 | 200 | 500 | 1500 | 4000 | Natural |
1000 | 1 | 2 | 3 | 4 | 5 | 6 |
500 | 7 | 8 | 9 | 10 | 11 | 12 |
0 | X | X | X | 13 | 14 | 15 |
Aw Treatment Density (Stems ha−1) | Sw Treatment Density (Stems ha−1) | Aw SPH (Stems ha−1) | Aw Basal Area (m2 ha−1) | Sw SPH (Stems ha−1) | Sw Basal Area/ha (m2 ha−1) | |
---|---|---|---|---|---|---|
SwTDen = 500 | SwTDen = 1000 | |||||
0 | 4.7a | 11.4ab | ||||
200 | 159.5c | 5.5c | 3.3ab | 12.6a | ||
500 | 386.0bc | 9.8c | 3.5a | 4.9abc | ||
1500 | 1067.2b | 15.7b | 1.5bc | 5.1abc | ||
4000 | 1978.8a | 21.2a | 1.3c | 2.0bc | ||
Unthinned | 2638.7a | 19.4ab | 0.4c | 1.6c | ||
500 | 306.4b | 2.5b | ||||
1000 | 709.1a | 6.2a | ||||
p AwTDen | <0.0001 | <0.0001 | ns | <0.0001 | <0.0081 | |
p SwTDen | ns | ns | 0.0031 | <0.0001 |
Aw Treatment Density (Stems ha−1) | Height (m) | DBH (cm) | Slenderness | Crown Width (m) | Live Crown Ratio |
---|---|---|---|---|---|
0 | 8.04ab | 17.30a | 0.471b | 3.92a | 0.891a |
500 | 8.10ab | 12.91abc | 0.670ab | 3.56a | 0.885a |
1500 | 8.05ab | 11.53bcd | 0.708ab | 3.28ab | 0.889a |
4000 | 8.98a | 8.10cd | 1.169a | 2.60bc | 0.879a |
Unthinned | 5.40b | 6.90d | 0.793ab | 2.23c | 0.818b |
p | 0.0489 | <0.0001 | 0.0435 | 0.0001 | 0.0313 |
Maximum Branch Diameter below 2 m Height | Number of Live Branches below 2 m Height | Number of Live Branch Whorls below 2 m Height | ||||
---|---|---|---|---|---|---|
p | Means (cm) | p | Means (cm) | p | Means (cm) | |
AwTDen | <0.001 | ns | ns | |||
SwTDen | ns | 0.0052 | 0.0365 | |||
AwTDen*SwTDen | ns | ns | ns | |||
AwTDen = 0 | 3.46a | 21.9 | 7.6 | |||
AwTDen = 500 | 2.55b | 20.1 | 7.5 | |||
AwTDen = 1500 | 2.41b | 16.5 | 5.6 | |||
AwTDen = 4000 | 1.92c | 19.9 | 6.9 | |||
AwTDen = unthinned | 1.68c | 18.9 | 6.5 | |||
SwTDen = 500 | 21.9a | 7.5a | ||||
SwTDen = 1000 | 17.3b | 6.2b |
Average Branch Diameter in the Whorl Closest to 1 m Height | Number of Live Branches in the Whorl Closest to 1 m Height | |||
---|---|---|---|---|
p | Means (cm) | p | Means (cm) | |
AwTDen | <0.0001 | ns | ||
SwTDen | ns | 0.0025 | ||
AwTDen*SwTDen | ns | ns | ||
AwTDen = 0 | 2.2a | 2.1 | ||
AwTDen = 500 | 1.5b | 2.4 | ||
AwTDen = 1500 | 1.6b | 2.9 | ||
AwTDen = 4000 | 1.3bc | 3.1 | ||
AwTDen = unthinned | 1.0c | 2.7 | ||
SwTDen = 500 | 1.5 | 3.2a | ||
SwTDen = 1000 | 1.4 | 2.1b |
Spruce Treatment Density (SwTDen) (Stems ha−1) | ||||
---|---|---|---|---|
500 | 1000 | |||
p | Means (cm) | p | Means (cm) | |
AwTDen | <0.0001 | 0.0002 | ||
AwTDen = 0 | 2.9a | 2.0a | ||
AwTDen = 500 | 1.9b | 1.6abc | ||
AwTDen = 1500 | 1.9b | 1.7ab | ||
AwTDen = 4000 | 1.4bc | 1.4bc | ||
AwTDen = unthinned | 1.1c | 1.2c |
Dependent Variable | Independent Variable | a (Estimate) | a (SE) | b (Estimate) | b (SE) | n | R2adj | RMSE |
---|---|---|---|---|---|---|---|---|
LCR | HT | 0.7464 | 0.0205 | 0.0171 | 0.0028 | 73 | 0.3376 | 0.0396 |
HTLC | 0.9646 | 0.0165 | −0.1072 | 0.0177 | 73 | 0.3307 | 0.0398 | |
Aw_sph | 0.8936 | 0.0078 | −0.0000205 | 0.00005 | 73 | 0.1846 | 0.0439 | |
DBH | 0.8158 | 0.0143 | 0.0047 | 0.0012 | 73 | 0.1724 | 0.0443 | |
CW | 0.8007 | 0.0191 | 0.0215 | 0.0058 | 73 | 0.151 | 0.0448 | |
Slenderness | 0.9183 | 0.0213 | −0.0702 | 0.0293 | 73 | 0.0617 | 0.0471 | |
Aw_Baha | 0.8872 | 0.0010 | −0.0014 | 0.0006 | 73 | 0.0497 | 0.0474 | |
HTLC | LCR | 3.6463 | 0.4564 | −3.1710 | 0.5243 | 73 | 0.3307 | 0.2165 |
HT | 0.6020 | 0.1335 | 0.0403 | 0.0182 | 73 | 0.0516 | 0.2577 | |
CW | DBH | 1.2432 | 0.1650 | 0.1720 | 0.0137 | 73 | 0.6863 | 0.5113 |
Slenderness | 5.5897 | 2.9011 | −3.4438 | 0.4003 | 73 | 0.5035 | 0.6433 | |
HT | 0.6948 | 0.3676 | 0.3469 | 0.0500 | 73 | 0.3957 | 0.7096 | |
Aw_sph | 3.38352 | 0.1267 | −0.0005502 | 0.00008 | 0.3913 | 0.7122 | ||
Aw_Baha | 3.9006 | 0.16398 | −0.0558 | 0.0105 | 73 | 0.2726 | 0.7786 | |
LCR | −3.4009 | 1.7728 | 7.5716 | 2.0366 | 73 | 0.1512 | 0.8410 |
Dependent Variable | Independent Variable | a (Estimate) | a (SE) | b (Estimate) | b (SE) | n | R2adj | RMSE |
---|---|---|---|---|---|---|---|---|
DMax2 | DBH | 0.8139 | 0.1322 | 0.1423 | 0.0109 | 73 | 0.6998 | 0.4097 |
Slenderness | 4.5889 | 0.2097 | −3.1061 | 0.2893 | 73 | 0.6134 | 0.4688 | |
Aw_Baha | 3.2805 | 0.0994 | −0.0669 | 0.00639 | 73 | 0.6013 | 0.4721 | |
Aw_sph | 3.0568 | 0.0878 | −0.0005384 | 0.000055 | 73 | 0.5645 | 0.4931 | |
CW | 0.6010 | 0.2306 | 0.5706 | 0.0698 | 73 | 0.4780 | 0.5402 | |
HT | 1.1078 | 0.3560 | 0.1825 | 0.0484 | 73 | 0.1550 | 0.6873 | |
LCR | −2.4622 | 1.4774 | 5.6119 | 1.6973 | 73 | 0.1212 | 0.7009 | |
HTLC | ns | |||||||
DMax1 | DBH | 0.5945 | 0.1402 | 0.1016 | 0.0119 | 67 | 0.5212 | 0.4221 |
Slenderness | 3.3519 | 0.2112 | −2.3169 | 0.2879 | 67 | 0.4914 | 0.4351 | |
Aw_sph | 2.1936 | 0.0903 | −0.0004 | 0.00005 | 67 | 0.4020 | 0.4669 | |
Aw_Baha | 2.3055 | 0.1127 | −0.0425 | 0.0071 | 67 | 0.3533 | 0.4855 | |
CW | 0.4801 | 0.2254 | 0.3938 | 0.0696 | 67 | 0.3198 | 0.5032 | |
LCR | −3.7680 | 1.1539 | 6.2891 | 1.3234 | 67 | 0.2464 | 0.5296 | |
HTLC | 2.4374 | 0.2708 | −0.8464 | 0.3029 | 67 | 0.0935 | 0.5808 | |
HT | ns | |||||||
DMean1 | DBH | 0.4968 | 0.1074 | 0.0892 | 0.0091 | 67 | 0.5888 | 0.3235 |
Slenderness | 2.8428 | 0.1734 | −1.9292 | 0.2364 | 67 | 0.4984 | 0.3573 | |
Aw_sph | 1.8974 | 0.0717 | −0.0003184 | 0.00004363 | 67 | 0.4495 | 0.3705 | |
Aw_Baha | 2.0130 | 0.0879 | −0.0384 | 0.0055 | 67 | 0.4255 | 0.3785 | |
CW | 0.3947 | 0.1803 | 0.3461 | 0.0557 | 67 | 0.3632 | 0.4026 | |
LCR | −2.8227 | 0.9707 | 4.9346 | 1.1132 | 67 | 0.2203 | 0.4455 | |
HT | 0.6722 | 0.2415 | 0.1130 | 0.0331 | 67 | 0.1390 | 0.4681 | |
HTLC | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comeau, P.G. Effects of Aspen and Spruce Density on Size and Number of Lower Branches 20 Years after Thinning of Two Boreal Mixedwood Stands. Forests 2021, 12, 211. https://doi.org/10.3390/f12020211
Comeau PG. Effects of Aspen and Spruce Density on Size and Number of Lower Branches 20 Years after Thinning of Two Boreal Mixedwood Stands. Forests. 2021; 12(2):211. https://doi.org/10.3390/f12020211
Chicago/Turabian StyleComeau, Philip G. 2021. "Effects of Aspen and Spruce Density on Size and Number of Lower Branches 20 Years after Thinning of Two Boreal Mixedwood Stands" Forests 12, no. 2: 211. https://doi.org/10.3390/f12020211
APA StyleComeau, P. G. (2021). Effects of Aspen and Spruce Density on Size and Number of Lower Branches 20 Years after Thinning of Two Boreal Mixedwood Stands. Forests, 12(2), 211. https://doi.org/10.3390/f12020211