Continuous Urban Tree Cover Mapping from Landsat Imagery in Bengaluru, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery
2.3. Training Data
2.4. Tree Cover Prediction
3. Results
3.1. Spectral Reflectance Values
3.2. Continuous Map of Tree Cover
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lindenmayer, D.B.; Laurance, W.F.; Franklin, J.F. Global Decline in Large Old Trees. Science 2012, 338, 1305–1306. [Google Scholar] [CrossRef]
- Stagoll, K.; Lindenmayer, D.B.; Knight, E.; Fischer, J.; Manning, A.D. Large trees are keystone structures in urban parks. Conserv. Lett. 2012, 5, 115–122. [Google Scholar] [CrossRef]
- Holmgren, P.; Masakha, E.J.; Sjoholm, H. Not all African land is being degraded: A recent survey of trees on farms in Kenya reveals rapidly increasing forest resources. Ambio 1994, 23, 390–395. [Google Scholar]
- Kleinn, C. On large area inventory and assessment of trees outside forests. Unasylva 2000, 51, 3–10. [Google Scholar]
- Plieninger, T.; Hartel, T.; Martín-López, B.; Beaufoy, G.; Bergmeier, E.; Kirby, K.; Montero, M.J.; Moreno, G.; Oteros-Rozas, E.; Van Uytvanck, J. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Conserv. 2015, 190, 70–79. [Google Scholar] [CrossRef]
- Lamb, D.; Stanturf, J.A.; Madsen, P. What Is Forest Landscape Restoration? In World Forests; Springer: Berlin/Heidelberg, Germany, 2012; Volume 15, pp. 3–23. [Google Scholar]
- Pandey, D. Trees outside the forest (TOF) resources in India. Int. For. Rev. 2008, 10, 125–133. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef] [Green Version]
- Hunsinger, T.; Moskal, L.M. Half a Century of Spatial & Temporal Landscape Changes in the Finley River Basin, Missouri. In Proceedings of the Association of American Geographers Annual Conference, Denver, CO, USA, 5–9 April 2005. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- Awuah, K.; Nölke, N.; Freudenberg, M.; Diwakara, B.; Tewari, V.P.; Kleinn, C. Spatial resolution and landscape structure along an urban-rural gradient: Do they relate to remote sensing classification accuracy?—A case study in the megacity of Bengaluru, India. Remote Sens. Appl. Soc. Environ. 2018, 12, 89–98. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, H.; Ren, Z.; Zhai, C.; Shen, G.; Mao, Z.; Wang, P.; He, X. Effects of forest type and urbanization on carbon storage of urban forests in Changchun, Northeast China. Chin. Geogr. Sci. 2015, 25, 147–158. [Google Scholar] [CrossRef]
- Alberti, M.; Weeks, R.; Coe, S. Urban Land-Cover Change Analysis in Central Puget Sound. Photogramm. Eng. Remote Sens. 2004, 70, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Dopido, I.; Zortea, M.; Villa, A.; Plaza, A.; Gamba, P. Unmixing Prior to Supervised Classification of Remotely Sensed Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2011, 8, 760–764. [Google Scholar] [CrossRef]
- Small, C. Estimation of urban vegetation abundance by spectral mixture analysis. Int. J. Remote Sens. 2001, 22, 1305–1334. [Google Scholar] [CrossRef]
- Zhang, J.; Foody, G.M. Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: Statistical and artificial neural network approaches. Int. J. Remote Sens. 2001, 22, 615–628. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Sudhira, H.; Nagendra, H. Local assessment of Bangalore: Graying and greening in Bangalore—Impacts of ur-banization on ecosystems, ecosystem services and biodiversity. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Elmqvist, T., Fragkias, M., Goodness, J., Güneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 75–91. [Google Scholar]
- World Population Review. Bangalore Population 2020 (Demographics, Maps, Graphs). 2020. Available online: http://worldpopulationreview.com/world-cities/bangalore-population (accessed on 2 November 2020).
- Nagendra, H.; Gopal, D. Street trees in Bangalore: Density, diversity, composition and distribution. Urban For. Urban Green. 2010, 9, 129–137. [Google Scholar] [CrossRef]
- Nair, J. The Promise of the Metropolis: Bangalore’s Twentieth Century; Oxford University Press: New Delhi, India, 2005. [Google Scholar]
- Sudhira, H.; Ramachandra, T.; Subrahmanya, M.B. Bangalore. Cities 2007, 24, 379–390. [Google Scholar] [CrossRef]
- Nagendra, H.; Nagendran, S.; Somajita, P.; Pareeth, S. Graying, greening and fragmentation in the rapidly expand-ing Indian city of Bangalore. Landsc. Urban Plan. 2012, 105, 400–406. [Google Scholar] [CrossRef]
- Venkatesh, Y.; Raja, S.K. On the classification of multispectral satellite images using the multilayer perceptron. Pattern Recognit. 2003, 36, 2161–2175. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn. Represent. (ICLR), San Diego, CA, USA, 5–8 May 2015. [Google Scholar]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Marufu, L.; Sohlberg, R. Development of a MODIS tree cover vali-dation data set for Western Province, Zambia. Remote Sens. Environ. 2002, 83, 320–335. [Google Scholar] [CrossRef]
- Landry, S.; St-Laurent, M.-H.; Nelson, P.R.; Pelletier, G.; Villard, M.-A. Canopy Cover Estimation from Landsat Images: Understory Impact onTop-of-canopy Reflectance in a Northern Hardwood Forest. Can. J. Remote Sens. 2018, 44, 435–446. [Google Scholar] [CrossRef]
- Dawn, S.; Saxena, V.; Sharma, B. Remote Sensing Image Registration Techniques: A Survey. In Abderrahim Elmoataz, Olivier Lezoray, Fathallah Nouboud, Driss Mammass und Jean Meunier (Hg.): Image and Signal Processing, 4th International Conference, ICISP 2010, Trois-Rivières, QC, Canada, 30 June–2 July 2010; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2010; Volume 6134, pp. S103–S112. [Google Scholar]
- Pohl, C. Tools and methods for fusion of images of different spatial resolution. Int. Arch. Photogramm. Remote Sens. 1999, 32. Available online: www.researchgate.net/publication/228832484_Tools_and_Methods_for_Fusion_of_Images_of_Different_Spatial_Resolution (accessed on 8 October 2020). [CrossRef]
Tree Cover [%] | Training Pixels | ||
---|---|---|---|
Per 30 m Landsat Pixel | Number | Area (km2) | Proportion |
0–10 | 420 | 0.39 | 0.4342 |
10–20 | 72 | 0.06 | 0.0741 |
20–30 | 51 | 0.05 | 0.0525 |
30–40 | 30 | 0.03 | 0.0309 |
40–50 | 18 | 0.02 | 0.0185 |
50–60 | 22 | 0.02 | 0.0226 |
60–70 | 19 | 0.02 | 0.0195 |
70–80 | 22 | 0.02 | 0.0226 |
80–90 | 52 | 0.05 | 0.0535 |
90–100 | 264 | 0.24 | 0.2716 |
Type | Variable | Description |
---|---|---|
Response | tree cover | 0% to 100 %: Percent coverage of tree crowns within a Landsat pixel (900 m2) |
Predictor | B2 | Band 2 (blue): 0.452–0.512 µm |
Predictor | B3 | Band 3 (green): 0.533–0.590 µm |
Predictor | B4 | Band 4 (red): 0.636–0.673 µm |
Predictor | B5 | Band 5 (near-infrared): 0.851–0.879 µm |
Predictor | B6 | Band 6 (shortwave infrared 1): 1.566–1.651 µm |
Predictor | B7 | Band 7 (shortwave infrared 2): 2.107–2.294 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nölke, N. Continuous Urban Tree Cover Mapping from Landsat Imagery in Bengaluru, India. Forests 2021, 12, 220. https://doi.org/10.3390/f12020220
Nölke N. Continuous Urban Tree Cover Mapping from Landsat Imagery in Bengaluru, India. Forests. 2021; 12(2):220. https://doi.org/10.3390/f12020220
Chicago/Turabian StyleNölke, Nils. 2021. "Continuous Urban Tree Cover Mapping from Landsat Imagery in Bengaluru, India" Forests 12, no. 2: 220. https://doi.org/10.3390/f12020220
APA StyleNölke, N. (2021). Continuous Urban Tree Cover Mapping from Landsat Imagery in Bengaluru, India. Forests, 12(2), 220. https://doi.org/10.3390/f12020220