Effect of Deadwood Decomposition on the Restoration of Soil Cover in Landslide Areas of the Karpaty Mountains, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Experimental Design
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crawford, M.M.; Bryson, S.; Woolery, E.W.; Wang, Z. Long-term landslide monitoring using soil-water relationships and electrical data to estimate suction stress. Eng. Geol. 2019, 251, 146–157. [Google Scholar] [CrossRef]
- Preuth, T.; Glade, T.; Demoulin, A. Stability analysis of a human-influenced landslide in eastern Belgium. Geomorphology 2010, 120, 38–47. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; Da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Griffiths, J.S.; Whitworth, M. Engineering geomorphology of landslides. In Landslides: Types, Mechanisms and Modeling; Clague, J.J., Stead, D., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 172–186. [Google Scholar]
- Walker, L.R.; Shiels, A.B. Physical Causes and Consequences for Landslide Ecology; USDA National Wildlife Research Center—Staff Publications: Fort Collins, CO, USA, 2013.
- Guariguata, M.R. Landslide Disturbance and Forest Regeneration in the Upper Luquillo Mountains of Puerto Rico. J. Ecol. 1990, 78, 814. [Google Scholar] [CrossRef]
- Walker, L.R. Effects of fern thickets on woodland development on landslides in Puerto Rico. J. Veg. Sci. 1994, 5, 525–532. [Google Scholar] [CrossRef]
- Walker, L.R.; Zarin, D.J.; Fetcher, N.; Myster, R.W.; Johnson, A.H. Ecosystem Development and Plant Succession on Landslides in the Caribbean. Biotropica 1996, 28, 566. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Piaszczyk, W.; Wiecheć, M.; Klamerus-Iwan, A. The effect of landslide on soil organic carbon stock and biochemical properties of soil. J. Soils Sediments 2017, 18, 2727–2737. [Google Scholar] [CrossRef]
- Błońska, E.; Lasota, J.; Tullus, A.; Lutter, R.; Ostonen, I. Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Ann. For. Sci. 2019, 76, 102. [Google Scholar] [CrossRef] [Green Version]
- Piaszczyk, W.; Błońska, E.; Lasota, J.; Lukac, M. A comparison of C:N:P stoichiometry in soil and deadwood at an advanced decomposition stage. Catena 2019, 179, 1–5. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Piaszczyk, W.; Wiecheć, M. How the deadwood of different tree species in various stages of decomposition affected nutrient dynamics? J. Soils Sediments 2017, 18, 2759–2769. [Google Scholar] [CrossRef] [Green Version]
- Piaszczyk, W.; Lasota, J.; Błońska, E. Effect of Organic Matter Released from Deadwood at Different Decomposition Stages on Physical Properties of Forest Soil. Forests 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Angst, Š.; Baldrian, P.; Harantova, L.; Cajthaml, T.; Frouz, J. Different twig litter (Salix caprea) diameter does affect microbial community activity and composition but not decay rate. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef]
- Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 2018, 126, 75–84. [Google Scholar] [CrossRef]
- Friedlová, M. The influence of heavy metals on soil biological and chemical properties. Soil Water Res. 2010, 5, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Błońska, E.; Lasota, J.; Szuszkiewicz, M.; Łukasik, A.; Klamerus-Iwan, A. Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environ. Earth Sci. 2016, 75, 1205. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Chaudhuri, S.; Maiti, S.K. Soil dehydrogenase enzymes activity in natural and mine soil—A review. Middle East J. Sci. Res. 2013, 13, 898–906. [Google Scholar]
- Błońska, E.; Piaszczyk, W.; Staszel, K.; Lasota, J. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter. Appl. Soil Ecol. 2021, 157, 103723. [Google Scholar] [CrossRef]
- Shiels, A.B.; Walker, L.R.; Thompson, D.B. Organic matter inputs create variable resource patches on Puerto Rican landslides. Plant Vecology 2005, 184, 223–236. [Google Scholar] [CrossRef]
- Shiels, A.B.; West, C.A.; Weiss, L.; Klawinski, P.D.; Walker, L.R. Soil factors predict initial plant colonization on Puerto Rican landslides. Plant Vecology 2007, 195, 165–178. [Google Scholar] [CrossRef]
- Sousa, W.P. The Role of Disturbance in Natural Communities. JSTOR Annu. Rev. Ecol. Syst. 1984, 15, 353–391. [Google Scholar] [CrossRef]
- Reddy, V.S.; Singh, J.S. Changes in vegetation and soil during succession following landslide disturbance in the central Himalaya. J. Environ. Manag. 1993, 39, 235–250. [Google Scholar] [CrossRef]
- WRB IWG. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Reference Base for Soil Resources: Wageningen, The Netherlands, 2014. [Google Scholar]
- Wojciech, P.; Ewa, B.; Jarosław, L. Soil biochemical properties and stabilisation of soil organic matter in relation to deadwood of different species. FEMS Microbiol. Ecol. 2019, 95. [Google Scholar] [CrossRef] [Green Version]
- Maser, C.; Anderson, R.G.; Cromack, J.; Kermit Williams, J.T.; Martin, R.E. Dead and Down Woody Material. In Wildlife Habitats in Managed Forests: The Blue Mountains of Oregon and Washington; Jack, W.T., Ed.; US Department of Agriculture Forest Service: Washington, DC, USA, 1979; pp. 78–95. [Google Scholar]
- Bruchwald, A. Dendrometria; SGGW: Warszawa, Poland, 1999. [Google Scholar]
- Jenkinson, D.; Powlson, D. The effects of biocidal treatments on metabolism in soil—I. Fumigation with chloroform. Soil Biol. Biochem. 1976, 8, 167–177. [Google Scholar] [CrossRef]
- Vance, E.; Brookes, P.; Jenkinson, D. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Brookes, P.; Powlson, D.; Jenkinson, D. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Pritsch, K.; Raidl, S.; Marksteiner, E.; Blaschke, H.; Agerer, R.; Schloter, M.; Hartmann, A. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 2004, 58, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L. Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils. Appl. Environ. Microbiol. 2010, 76, 6485–6493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanaullah, M.; Razavi, B.S.; Blagodatskaya, E.; Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 2016, 52, 505–514. [Google Scholar] [CrossRef]
- Shiels, A.B. Leaf Litter Decomposition and Substrate Chemistry of Early Successional Species on Landslides in Puerto Rico. Biotropica J. Biol Conserv. 2006, 38, 348–353. [Google Scholar] [CrossRef]
- Nicia, P.; Bejger, R.; Sterzyńska, M.; Zadrożny, P.; Parzych, P.; Bieda, A.; Kwartnik-Pruc, A. Recovery in soil cover and vegetation structure after ancient landslide in mountain fens under Caltho-Alnetum community and response of soil microarthropods (Hexapoda: Collembola) to natural restoration process. J. Soils Sediments 2019, 20, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Ganjegunte, G.K.; Condron, L.M.; Clinton, P.W.; Davis, M.R.; Mahieu, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. For. Ecol. Manag. 2004, 187, 197–211. [Google Scholar] [CrossRef]
- Angst, Š.; Mueller, C.W.; Cajthaml, T.; Angst, G.; Lhotáková, Z.; Bartuška, M.; Špaldoňová, A.; Frouz, J. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma 2017, 289, 29–35. [Google Scholar] [CrossRef]
- Kölbl, A.; Marschner, P.; Mosley, L.; Fitzpatrick, R.; Kögel-Knabner, I. Alteration of organic matter Turing remediation of acid sulfate soils. Geoderma 2018, 332, 121–134. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Helliwell, J.; Miller, A.; Whalley, W.; Mooney, S.; Sturrock, C. Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biol. Biochem. 2014, 74, 138–147. [Google Scholar] [CrossRef]
- Dhiedt, E.; De Keersmaeker, L.; Vandekerkhove, K.; Verheyen, K. Effects of decomposing beech (Fagus sylvatica) logs on the chemistry of acidified sand and loam soils in two forest reserves in Flanders (Northern Belgium). For. Ecol. Manag. 2019, 445, 70–81. [Google Scholar] [CrossRef]
- Pichler, V.; Gömöryová, E.; Homolák, M.; Pichlerová, M.; Skierucha, W. Coarse woody debris of Fagus sylvatica produced a quantitative organic carbon imprint in an andic soil. J. For. Res. 2013, 18, 440–444. [Google Scholar] [CrossRef]
- Kuehne, C.; Donath, C.; Müller-Using, S.I.; Bartsch, N. Nutrient fluxes via leaching from coarse woody debris in a Fagus sylvatica forest in the Solling Mountains, Germany. Can. J. For. Res. 2008, 38, 2405–2413. [Google Scholar] [CrossRef]
- Kahl, T.; Mund, M.; Bauhus, J.; Schulze, E.-D. Dissolved organic carbon from European beech logs: Patterns of input to and retention by surface soil. Écoscience 2012, 19, 364–373. [Google Scholar] [CrossRef]
- Bantle, A.; Borken, W.; Ellerbrock, R.; Schulze, E.; Weisser, W.; Matzner, E. Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition. For. Ecol. Manag. 2014, 329, 287–294. [Google Scholar] [CrossRef]
- Laiho, R.; Prescott, C.E. The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Can. J. For. Res. 1999, 29, 1592–1603. [Google Scholar] [CrossRef]
- Yuan, J.; Hou, L.; Wei, X.; Shang, Z.; Cheng, F.; Zhang, S. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China. PLoS ONE 2017, 12, e0175203. [Google Scholar] [CrossRef]
- WISL. Wyniki za Okres 2014–2018; Biuro Urządzania Lasu i Geodezji Leśnej: Raszyn, Poland, 2019. [Google Scholar]
- Błońska, E. Effect of Stand Species Composition on the Enzyme Activity and Organic Matter Stabilization in Forest Soil; Dissertation Paper No. 404, Scientific Paper No. 527. University of Agriculture in Krakow: Krakow, Poland, 2015. Available online: https://wydawnictwo.ur.krakow.pl/images/rozprawy/z_404_Blonska.pdf (accessed on 18 February 2021).
- Baldrian, P.; Valášková, V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008, 32, 501–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertile, G.; Panek, J.; Oszust, K.; Siczek, A.; Oleszek, K.; Gryta, A.; Frąc, M. Effect of different organic waste on cellulose degrading enzymes secreted by Petriella setifera in the presence of cellobiose and glucose. Cellulose 2019, 26, 7905–7922. [Google Scholar] [CrossRef] [Green Version]
- Kappes, H.; Catalano, C.; Topp, W. Coarse woody debris ameliorates chemical and biotic soil parameters of acidified broad-leaved forests. Appl. Soil Ecol. 2007, 36, 190–198. [Google Scholar] [CrossRef]
- Peacock, A.; Mullen, M.; Ringelberg, D.; Tyler, D.; Hedrick, D.; Gale, P.; White, D. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol. Biochem. 2001, 33, 1011–1019. [Google Scholar] [CrossRef]
- Nair, A.; Ngouajio, M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol. 2012, 58, 45–55. [Google Scholar] [CrossRef]
- Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.; Hefting, M.M.; Kalbitz, K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils. For. Ecol. Manag. 2016, 377, 1–15. [Google Scholar] [CrossRef]
DC | Zone of Depletion | Zone of Accumulation |
---|---|---|
I | 0 | 0 |
II | 0 | 0 |
III | 92.12 | 131.51 |
IV | 100.00 | 143.81 |
V | 64.04 | 95.44 |
Sum | 256.16 | 370.76 |
Type of Soil Samples | N | C | C/N | pH H2O | pH KCl | Ca | Na | K | Mg | |
---|---|---|---|---|---|---|---|---|---|---|
Zone of depletion | Soil under deadwood | 0.37 ± 0.22 a | 4.77 ± 1.96 a | 17.64 ± 3.67 a | 4.98 ± 0.65 a | 4.31 ± 0.76 a | 3.72 ± 0.88 a | 0.04 ± 0.01 a | 0.18 ± 0.05 a | 0.58 ± 0.31 a |
Background | 0.25 ± 0.14 a | 3.07 ± 1.09 b | 16.01 ± 1.22 a | 4.62 ± 0.55 a | 3.69 ± 0.32 a | 3.48 ± 1.01 a | 0.03 ± 0.01 a | 0.19 ± 0.06 a | 0.51 ± 0.26 a | |
Zone of accumualtion | Soil under deadwood | 0.29 ± 0.10 a | 6.61 ± 4.57 a | 16.17 ± 3.57 a | 5.21 ± 0.55 a | 4.59 ± 0.57 a | 4.24 ± 1.14 a | 0.04 ± 0.01 a | 0.20 ± 0.07 a | 0.72 ± 0.24 a |
Background | 0.19 ± 0.06 b | 4.08 ± 2.37 a | 15.61 ± 1.57 a | 4.86 ± 0.40 b | 3.88 ± 0.30 a | 3.44 ± 0.96 a | 0.04 ± 0.01 a | 0.22 ± 0.14 a | 0.65 ± 0.31 a |
Type of Soil Samples | MBC | MBN | MBP | MBC/MBN | MBC/MBP | MBN/MBP | CB | BG | NAG | XYL | SP | PH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zone of depletion | Soil under deadwood | 937.36 ± 422.59 a | 211.13 ± 179.15 a | 4.64 ± 6.13 a | 5.96 ± 4.20 a | 330.39 ± 139.29 a | 68.75 ± 42.03 a | 40.76 ± 37.79 a | 163.17 ± 103.85 a | 235.23 ± 116.48 a | 89.92 ± 59.32 a | 40.93 ± 37.88 a | 1368.29 ± 917.15 a |
Background | 572.23 ± 102.87 a | 110.42 ± 81.01 a | 1.58 ± 1.12 a | 9.40 ± 8.91 a | 442.23 ± 178.97 a | 88.59 ± 36.76 a | 17.43 ± 17.47 a | 108.66 ± 76.01 a | 119.51 ± 86.66 b | 20.21 ± 11.75 b | 13.38 ± 7.62 b | 776.16 ± 510.73 a | |
Zone of accumualtion | Soil under deadwood | 897.32 ± 335.51 a | 118.92 ± 102.08 a | 2.31 ± 0.94 a | 5.77 ± 2.02 a | 418.42 ± 169.18 a | 80.26 ± 36.48 a | 69.22 ± 32.01 a | 226.39 ± 62.07 a | 228.43 ± 149.31 a | 65.96 ± 36.63 a | 51.07 ± 51.05 a | 1496.65 ± 400.56 a |
Background | 612.13 ± 273.61 a | 113.54 ± 82.98 a | 1.54 ± 0.87 b | 8.83 ± 7.00 a | 455.63 ± 289.10 a | 81.11 ± 63.75 a | 33.06 ± 27.46 b | 147.21 ± 61.25 b | 112.61 ± 22.35 b | 23.55 ± 17.35 b | 19.05 ± 12.59 a | 1073.85 ± 224.11 b |
MBN | MBC | MBP | CB | BG | NAG | XYL | SP | PH | |
---|---|---|---|---|---|---|---|---|---|
C | 0.81 * | 0.79 * | 0.81 * | −0.02 | 0.13 | 0.37 * | 0.29 | −0.12 | 0.47 * |
N | 0.73 * | 0.82 * | 0.81 * | 0.04 | 0.06 | 0.38 * | 0.23 | −0.09 | 0.58 * |
pH H2O | −0.25 | −0.29 | −0.40 * | 0.18 | 0.14 | −0.14 | 0.05 | 0.34 * | −0.27 |
pH KCl | −0.11 | −0.20 | −0.28 | 0.23 | 0.22 | −0.03 | 0.11 | 0.38 * | −0.12 |
Factors | C | CB | BG | NAG | XYL | SP | PH | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
occurrence of deadwood | 5.77 | 0.0215 | 10.06 | 0.0031 | 7.39 | 0.0099 | 9.18 | 0.0044 | 23.71 | 0.0001 | 7.29 | 0.0104 | 7.84 | 0.0081 |
landslide zone | 2.65 | 0.1118 | 5.53 | 0.0242 | 4.28 | 0.0456 | 0.03 | 0.8586 | 0.80 | 0.3763 | 0.51 | 0.4781 | 1.38 | 0.2473 |
occurrence of deadwood * landslide zone | 0.24 | 0.6253 | 0.46 | 0.4982 | 0.25 | 0.6187 | 0.22 | 0.7624 | 1.40 | 0.2435 | 0.04 | 0.8402 | 0.21 | 0.6431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piaszczyk, W.; Lasota, J.; Gaura, G.; Błońska, E. Effect of Deadwood Decomposition on the Restoration of Soil Cover in Landslide Areas of the Karpaty Mountains, Poland. Forests 2021, 12, 237. https://doi.org/10.3390/f12020237
Piaszczyk W, Lasota J, Gaura G, Błońska E. Effect of Deadwood Decomposition on the Restoration of Soil Cover in Landslide Areas of the Karpaty Mountains, Poland. Forests. 2021; 12(2):237. https://doi.org/10.3390/f12020237
Chicago/Turabian StylePiaszczyk, Wojciech, Jarosław Lasota, Grzegorz Gaura, and Ewa Błońska. 2021. "Effect of Deadwood Decomposition on the Restoration of Soil Cover in Landslide Areas of the Karpaty Mountains, Poland" Forests 12, no. 2: 237. https://doi.org/10.3390/f12020237
APA StylePiaszczyk, W., Lasota, J., Gaura, G., & Błońska, E. (2021). Effect of Deadwood Decomposition on the Restoration of Soil Cover in Landslide Areas of the Karpaty Mountains, Poland. Forests, 12(2), 237. https://doi.org/10.3390/f12020237