Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. The City of Kyoto
2.2. Collecting Tree Data
2.3. Estimation of Ecosystem Services by i-Tree Eco
2.3.1. Carbon Storage and Sequestration
2.3.2. Air Pollution Removal
2.3.3. Human Health Effects Associated with Air Pollution Removal
2.3.4. Heating and Cooling Energy Savings in Houses
2.3.5. Avoided Stormwater Runoff
3. Results
3.1. Species Composition
3.2. Size Distribution
3.3. Ecosystem Services
3.3.1. Carbon Storage and Sequestration
3.3.2. Air Pollutant Removal & Avoided Stormwater Runoff
3.3.3. Human Health Effects
3.3.4. Heating and Cooling Cost Reduction in Houses
US Reference Climate Region for Kyoto
House Vintage Adjustment
Energy Saving
3.3.5. Annual Net Benefits and Costs
Annual Benefits
Expenditures
4. Discussion
4.1. Benefits-Cost Comparison
4.2. Advantages
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Peng, J.; Yanxu, L.; Yi’na, H. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- TEEB Foundations. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Lin, J.; Kroll, C.N.; Nowak, D.J.; Greenfield, E.J. A review of urban forest modeling: Implications for management and future research. Urban For. Urban Green 2019, 43, 126366. [Google Scholar] [CrossRef]
- Raum, S.; Hand, K.; Hall, C.; Edwards, D.; O’Brien, L.; Doick, K. Achieving impact from ecosystem assessment and valuation of urban greenspace: The case of i-Tree Eco in Great Britain. Landsc. Urban Plan. 2019, 190, 103590. [Google Scholar] [CrossRef]
- Daily, G.C. Introduction: What are Ecosystem Services; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Dover, J.W. Green Infrastructure: Incorporating Plants and Enhancing Biodiversity in Buildings and Urban Environments; Routledge: Abingdon, UK; New York, NY, USA, 2015; pp. 220–227. [Google Scholar]
- McPherson, E.G.; Simpson, J.R. Carbon Dioxide Reduction Through Urban Forestry; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1999.
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Recreation–amenity use and contingent valuation of urban greenspaces in Guangzhou, China. Landsc. Urban Plan. 2006, 75, 81–96. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.; Moser-Reischl, A.; Zölch, T.; Häberle, K.H.; Rötzer, T.; Pauleit, S. Traits of trees for cooling urban heat islands: A meta-analysis. Build Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hartmann, C.; Moser-Reischl, A.; von Strachwitz, M.F.; Paeth, H.; Pretzsch, H.; Rötzer, T. Tree cooling effects and human thermal comfort under contrasting species and sites. Agric. For. Meteorol. 2020, 287, 107947. [Google Scholar] [CrossRef]
- Livesley, S.J.; Baudinette, B.; Glover, D. Rainfall interception and stem flow by eucalypt street trees–The impacts of canopy density and bark type. Urban For. Urban Green 2014, 13, 192–197. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Anderson, M.; Zhang, C.; Rötzer, T.; Pauleit, S. Comparing the infiltration potentials of soils beneath the canopies of two contrasting urban tree species. Urban For. Urban Green 2019, 38, 22–32. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Rogers, K.; Sacre, K.; Goodenough, J.; Doick, K. Valuing London’s Urban Forest: Results of the London i-Tree eco Project; Treeconomics: London, UK, 2015. [Google Scholar]
- Rötzer, T.; Moser-Reischl, A.; Rahman, M.A.; Grote, R.; Pauleit, S.; Pretzsch, H. Modelling Urban Tree Growth and Ecosystem Services: Review and Perspectives. In Progress in Botany; Springer: Cham, Switzerland, 2020; pp. 1–60. [Google Scholar]
- Peper, P.J.; McPherson, E.G.; Simpson, J.R.; Gardner, S.L.; Vargas, K.E.; Xiao, Q.; Watt, F. New York City, New York Municipal Forest Resource Analysis; Center for Urban Forest Research, USDA Forest Service, Pacific Southwest Research Station: Davis, CA, USA, 2007.
- Peper, P.J.; McPherson, E.G.; Simpson, J.R.; Vargas, K.E.; Xiao, Q.; Purcell, L.; Forester, I.C. City of Indianapolis, Indiana, Municipal Forest Resource Analysis; Center for Urban Forest Research. US Department of Agriculture, Pacific Southwest Research Station, Tech. Rep. for Indy Parks and Recreation Department: Indianapolis, IN, USA, 2008.
- Jim, C.Y.; Chen, W.Y. Ecosystem services and valuation of urban forests in China. Cities 2009, 26, 187–194. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Tokue, Y.; Ito, A.; Ellis, A.; Hoehn, R.; Imamura, F.; Morioka, C. Estimating ecosystem services and their monetary values provided by street trees in Kawasaki ward of Kawasaki city using i-Tree Eco. J. Jpn. Soc. Reveg. Technol. 2016, 42, 4–49. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, S.; Tan, X.; Shibata, S. Customization of i-Tree Eco’s energy saving and health effect models for Japan. J. Jpn. Soc. Reveg. Technol. 2019, 45, 200–203. (In Japanese) [Google Scholar]
- Japan Meteorological Agency. Normal Value (Value for Each Year/Month) of Meteorological Data. Available online: https://www.data.jma.go.jp/obd/stats/etrn/view/annually_s.php?prec_no=61&block_no=47759&year=&month=&day=&view= (accessed on 30 September 2020). (In Japanese).
- Kyoto City Official Website. The Basic Plan for Green of Kyoto City. Available online: https://www.city.kyoto.lg.jp/kensetu/page/0000077122.html (accessed on 30 September 2020). (In Japanese).
- Ministry of Internal Affairs and Communications. Statistics of Japan. Available online: https://www.e-stat.go.jp/en/regional-statistics/ssdsview/ municipality (accessed on 30 September 2020).
- US Forest Service. i-Tree Eco User’s Manual v6.0. 2020. Available online: https://www.itreetools.org/documents/275/EcoV6_UsersManual..2020.07.15.pdf (accessed on 23 February 2021).
- Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866. 2016. Available online: https://www.epa.gov/sites/production/files/2016-12/documents/sc_co2_tsd_august_ 2016.pdf (accessed on 30 September 2020).
- Japan Meteorological Agency (JMA). 2018. Available online: https://www.data.jma.go.jp/obd/stats/etrn/index.php (accessed on 30 September 2020).
- National Centers for Environmental Information (NCEI). Climate Data Online. 2019. Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on 30 September 2020).
- Earth System Research Laboratory. NOAA/ESRL Radiosonde Database. 2019. Available online: https://ruc.noaa.gov/raobs/ (accessed on 30 September 2020).
- National Institute for Environmental Studies (NIES). Environmental Value Database. 2019. Available online: http://www.nies.go.jp/igreen/ (accessed on 30 September 2020).
- Kyoto City. Population for Kyoto City. 2018. Available online: https://www2.city.kyoto.lg.jp/sogo/toukei/Population/index.html (accessed on 30 September 2020).
- OECD Data. “Health Spending”. 2019. Available online: https://data.oecd.org/healthres/health-spending.htm (accessed on 30 September 2020).
- OECD Data. Better Life Index. 2019. Available online: http://www.oecdbetterlifeindex.org/topics/income/ (accessed on 30 September 2020).
- Miyazato, S. An estimation of value of a statistical life based on labor market data. Jpn. Econ. Res. 2010, 63, 1–28. [Google Scholar]
- Geospatial Information Authority of Japan (GSI). 2018. Available online: http://www.gsi.go.jp/kiban (accessed on 30 September 2020).
- Kyoto Prefecture Web Site. Available online: http://www.pref.kyoto.jp/tokei/yearly/tokeisyo/ts2015/tokeisyo2015a0618.xls (accessed on 30 September 2020).
- Ministry of Environment (MoE). Available online: https://www.env.go.jp/press/files/jp/107786.pdf (accessed on 30 September 2020).
- Daigas Group. 2019. Available online: http://www.osakagas.co.jp/company/efforts/eco/co2/evaluation.html (accessed on 30 September 2020).
- Ministry of Environment (MoE). Available online: https:// www.env.go.jp/council/16pol-ear/y164-04/mat04.pdf (accessed on 30 September 2020).
- Japan LP Gas Association. Available online: http://www. j-lpgas.gr.jp/nenten/co2.html (accessed on 30 September 2020).
- Kansai Electric Power Company (KEPCO). Available online: https://kepco.jp/ryokin/menu /dento_a (accessed on 30 September 2020).
- Daigas Group. 2019. Available online: http://home.osakagas.co.jp/price/ menu/general_rate/index.html (accessed on 30 September 2020).
- Agency for Natural Resources and Energy. Available online: https://www.enecho.meti.go.jp/statistics/petroleum_and_lpgas/pl007/results.html (accessed on 30 September 2020).
- Oil Information Center. Available online: http://oil-info.ieej.or.jp/price/price_ippan_lp_maitsuki.html (accessed on 30 September 2020).
- Japan Aerospace Exploration Agency (JAXA). Available online: https://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex_v1803.htm (accessed on 30 September 2020).
- Vargas, K.E.; McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Gardner, S.L.; Xiao, Q. Temperate interior west community tree guide: Benefits, costs, and strategic planting. In General Technical Report; PSW-GTR-206; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2007; Volume 108. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environ. Modell. Softw. 2011, 26, 804–816. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. i-Tree Eco Dry Deposition Model Descriptions. 2015. Available online: http://www.itreetools.org/eco/resources/iTree_Eco_Dry_Deposition_Model_Descriptions.pdf (accessed on 23 February 2021).
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2. 5 removal by trees in ten US cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Nowak, D.J. Comprehensive national database of tree effects on air quality and human health in the United States. Environ. Pollut. 2016, 215, 48–57. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE). 2020. Available online: https://www.epa.gov/benmap (accessed on 23 February 2021).
- Nowak, D.J.; Appleton, N.; Ellis, A.; Greenfield, E. Residential building energy conservation and avoided power plant emissions by urban and community trees in the United States. Urban For. Urban Gree. 2017, 21, 158–165. [Google Scholar] [CrossRef] [Green Version]
- McPherson, E.G. Selecting reference cities for i-Tree Streets. Arboric. Urban For. 2010, 36, 230–240. [Google Scholar]
- Tooyama, J. Changes in energy conservation standards and future legislation. Nichias Technol. Time Signal 2013, 360, 6–9. Available online: https://www.nichias.co.jp/research/technique/pdf/360/01.pdf (accessed on 25 February 2021).
- Kyoto Residential Area Ranking. Available online: https://sumaity.com/town/ranking/kyoto/living/?page=2 (accessed on 30 September 2020).
- Hirabayashi, S. i-Tree Eco Precipitation Interception Model Descriptions. 2013. Available online: https://dev.itreetools.org/documents/61/iTree_Eco_Precipitation_Interception_Model_Descriptions.pdf (accessed on 25 February 2021).
- Wang, J.; Endreny, T.A.; Nowak, D.J. Mechanistic simulation of tree effects in an urban water balance model. J. Am. Water Resour. Assoc. 2008, 44, 75–85. [Google Scholar] [CrossRef]
- McPherson, E.G.; Rowntree, R.A. Using structural measures to compare twenty-two US street tree populations. Landsc. J. 1989, 8, 13–23. [Google Scholar] [CrossRef]
- Richards, N.A. Diversity and stability in a street tree population. Urban Ecol. 1983, 7, 159–171. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Peper, P.J.; McPherson, E.G.; Mori, S.M. Equations for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees. J. Arboric. 2001, 27, 306–317. [Google Scholar]
- Fujii, E. Street Trees Contribute to the City: Walking on the Marathon Course of the Tokyo Olympics; Iwanami Shoten: Tokyo, Japan, 2019; pp. 135–140. [Google Scholar]
- McPherson, E.G.; Simpson, J.R. A comparison of municipal forest benefits and costs in Modesto and Santa Monica, California, USA. Urban For. Urban Green 2002, 1, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.L.; Rego, F.C.; McPherson, E.; Simpson, J.; Peper, P.; Xiao, Q. Benefits and costs of street trees in Lisbon, Portugal. Urban For. Urban Green 2011, 10, 69–78. [Google Scholar] [CrossRef]
- Shoda, T.; Imanishi, J.; Shibata, S. Growth characteristics and growth equations of the diameter at breast height using tree ring measurements of street trees in Kyoto City, Japan. Urban For. Urban Green 2020, 49, 126627. [Google Scholar] [CrossRef]
- Hooper, L.G.; Kaufman, J.D. Ambient Air Pollution and Clinical Implications for Susceptible Populations. Ann. Am. Thorac. Soc. 2018, 15, S64–S68. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Kroll, C.N.; Nowak, D.J. Ecosystem Service-Based Sensitivity Analyses of i-Tree Eco. Arboric. Urban For. 2020, 46, 287–306. [Google Scholar] [CrossRef]
Model | Input Data/Parameter | Value/ID/Monitor | Data Year | Reference |
---|---|---|---|---|
Carbon Storage/Sequestration | Social cost of carbon a | 51.2US$/t | 2018 | IWG, 2016 [30] |
Air Pollutant Removal | Latitude b | 35.0117 | - | - |
Longitude b | 135.768 | - | - | |
Time zone b | UTC + 9 | - | - | |
Leaf-on date b | Apr. 4th | 1981–2010 | JMA, 2018 [31] | |
Leaf-off date b | Nov. 18th | 1981–2010 | JMA, 2018 [31] | |
Surface weather a | 477590: Kyoto | 2015 | NCEI, 2019 [32] | |
Upper air a | 47778: Shionomisaki | 2015 | ESRL, 2019 [33] | |
Solar radiation c | 26104060: Mibu | 2015 | NIES, 2019 [34] | |
Net radiation c | 28204150: Hamakoushien | 2015 | NIES, 2019 [34] | |
Precipitation b | 28214010: Yoriaihiroba | 2015 | NIES, 2019 [34] | |
CO concentration b | 26104510: Jihaioomiya | 2010–2015 | NIES, 2019 [34] | |
26107510: Jihaiminami | 2010–2015 | NIES, 2019 [34] | ||
NO2 concentration b | 26101010: Kita | 2010–2015 | NIES, 2019 [34] | |
26102510: Jihaikamigyou | 2010–2015 | NIES, 2019 [34] | ||
26103010: Sakyou | 2010–2015 | NIES, 2019 [34] | ||
26104010: Kyoutoshiyakusho | 2010–2015 | NIES, 2019 [34] | ||
26104060: Mibu | 2010–2015 | NIES, 2019 [34] | ||
26104510: Jihaioomiya | 2010–2015 | NIES, 2019 [34] | ||
26107510: Jihaiminami | 2010–2015 | NIES, 2019 [34] | ||
O3 concentration b | 26101010: Kita | 2010–2015 | NIES, 2019 [34] | |
26103010: Sakyou | 2010–2015 | NIES, 2019 [34] | ||
26104010: Kyoutoshiyakusho | 2010–2015 | NIES, 2019 [34] | ||
26104060: Mibu | 2010–2015 | NIES, 2019 [34] | ||
PM2.5 concentration b | 26102510: Jihaikamigyou | 2010–2015 | NIES, 2019 [34] | |
26104010: Kyoutoshiyakusho | 2010–2015 | NIES, 2019 [34] | ||
26104060: Mibu | 2010–2015 | NIES, 2019 [34] | ||
26104510: Jihaioomiya | 2010–2015 | NIES, 2019 [34] | ||
26107510: Jihaiminami | 2010–2015 | NIES, 2019 [34] | ||
SO2 concentration b | 26104060: Mibu | 2010–2015 | NIES, 2019 [34] | |
Human health effects | Population b | 451,462 (total) | 2015 | Kyoto City, 2018 [35] |
Medical expense c | 46% of the US | 2018 | OECD, 2019a [36] | |
Household income c | 65% of the US | - | OECD, 2019b [37] | |
Value of a statistical life c | 3,909,090.91 US$ | 1991–2007 | Miyazato, 2010 [38] | |
Energy savings | Building c | GSI, 2018 [39] | ||
Tree/building cover c | 52% | GSI, 2018 [39] | ||
Years constructed c | - | - | Kyoto pref., 2018 [40] | |
Number of houses c | 692,800 (total in Kyoto) | 2015 | Kyoto pref., 2018 [40] | |
CO2 emission Coefficient | ||||
Electricity c | 0.509 kg-CO2/kWh | 2015 | MoE, 2019 [41] | |
Natural gas c | 53.70 kg-CO2/MBTU | 2015 | Daigas Group, 2019 [42] | |
Heating oil c | 71.53 kg-CO2/MBTU | 2015 | MoE, 2019 [43] | |
LPG c | 62.25 kg-CO2/MBTU | 2015 | Japan LPGA, 2019 [44] | |
Price | ||||
Electricity b | 0.23 US$/kWh | 2015 | KEPCO, 2018 [45] | |
Natural gas b | 33.68 US$/MBTU | 2015 | Daigas Group, 2019 [46] | |
Heating oil b | 24.20 US$/MBTU | 2015 | Agency NRE, 2019 [47] | |
LPG b | 67.11 US$/MBTU | 2015 | Oil Info. Center, 2019 [48] | |
Avoided runoff | Surface weather a | 477590: Kyoto | 2015 | NCEI, 2019 [32] |
Precipitation b | 28214010: Yoriaihiroba | 2015 | NIES, 2019 [34] | |
Impervious cover c | 80.57% | 2014–2016 | JAXA, 2019 [49] | |
Stormwater control cost d | 2.36 US$/m3 | 2007 | Vargas, et al., 2007 [50] |
Species | Total Tree Numbers | Avg. Tree Height (m) | Avg. DBH (cm) | Leaf Area(m2) | Carbon Storage (kg) | Carbon Sequestered (kg/Year) | Total Value ($) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg. | Total | % of Total | Avg. | Total | Value ($) | Avg. | Total | Value ($) | |||||
G. biloba | 588 | 8.55 | 26.10 | 74.34 | 43,712.71 | 33.50 | 156.64 | 92,107.67 | 17,316.24 | 13.08 | 7693.40 | 1446.35 | 18,762.59 |
A. buergerianum | 174 | 8.76 | 29.21 | 111.12 | 19,335.92 | 14.82 | 207.80 | 36,158.83 | 6797.86 | 14.68 | 2554.77 | 480.27 | 7278.13 |
Z. serrata | 100 | 11.94 | 35.47 | 255.66 | 25,566.32 | 19.59 | 435.42 | 43,542.36 | 8185.96 | 17.95 | 1795.50 | 337.55 | 8523.51 |
L. tulipifera | 76 | 8.41 | 19.08 | 116.03 | 8818.77 | 6.76 | 77.82 | 5914.48 | 1111.92 | 7.37 | 560.32 | 105.34 | 1217.26 |
C. florida | 59 | 4.90 | 10.34 | 54.28 | 3203.04 | 2.45 | 18.81 | 1110.04 | 208.68 | 3.64 | 214.92 | 40.40 | 249.08 |
P. ×acerifolia | 51 | 9.74 | 30.14 | 159.36 | 8127.75 | 6.23 | 200.55 | 10,228.19 | 1922.90 | 14.88 | 759.13 | 142.71 | 2065.61 |
P. × yedoensis | 42 | 7.94 | 49.26 | 174.17 | 7315.23 | 5.64 | 1039.25 | 43,648.77 | 8205.94 | 27.10 | 1138.38 | 214.01 | 8419.95 |
P. jamasakura | 27 | 6.30 | 20.59 | 110.66 | 2988.00 | 2.29 | 138.02 | 3726.60 | 700.69 | 8.49 | 229.41 | 43.12 | 743.81 |
S. babylonica | 15 | 8.91 | 34.08 | 109.38 | 1640.84 | 1.25 | 316.87 | 4753.12 | 893.58 | 15.27 | 229.15 | 43.07 | 936.65 |
Other species | 98 | 9750.37 | 7.47 | 3592.93 | 2508.84 | 190.91 | 147.61 | 2656.45 | |||||
Total | 1230 | 130,458.95 | 100.00 | 244,782.99 | 47,852.61 | 15,365.89 | 3000.43 | 50,853.04 |
Species | Total Tree Number | Annual Air Quality Effects | Stormwater Runoff Reduction | ||||
---|---|---|---|---|---|---|---|
NO2 Removal (g) | O3 Removal (g) | PM2.5 Removal (g) | SO2 removal (g) | Avoided Runoff (m3/Year) | Total Value ($) | ||
G. biloba | 588 | 8963.73 | 38,190.11 | 3604.32 | 4557.33 | 514.30 | 1214.10 |
A. buergerianum | 174 | 3965.02 | 16,893.05 | 1594.34 | 2015.89 | 227.50 | 537.04 |
Z. serrata | 100 | 5242.63 | 22,336.31 | 2108.06 | 2665.45 | 300.80 | 710.09 |
L. tulipifera | 76 | 1808.37 | 7704.62 | 727.15 | 919.41 | 103.75 | 244.93 |
C. florida | 59 | 656.81 | 2798.37 | 264.10 | 333.93 | 37.68 | 88.96 |
P. ×acerifolia | 51 | 1666.67 | 7100.90 | 670.17 | 847.37 | 95.62 | 225.74 |
P. ×yedoensis | 42 | 1500.01 | 6391.03 | 603.17 | 762.66 | 86.06 | 203.17 |
P. jamasakura | 27 | 612.72 | 2610.50 | 246.37 | 311.51 | 35.15 | 82.99 |
S. babylonica | 15 | 336.47 | 1433.54 | 135.29 | 171.06 | 19.30 | 45.57 |
Other species | 98 | 6068.47 | 16,338.24 | 955.01 | 2167.68 | 279.23 | 659.17 |
Total | 1230 | 30,820.90 | 121,796.67 | 10,907.98 | 14,752.29 | 1699.39 | 4011.76 |
Pollutant | Metric | Kyoto City | Reference Counties | |||
---|---|---|---|---|---|---|
Baseline Value | Control Value | Baseline Value | Control Value | |||
NO2 | 1Max | 32.56 | 26.69 | Ohio, Richland | 32.47 | 26.64 |
4Mean | 20.93 | 17.19 | Ohio, Wood | 20.80 | 17.25 | |
8Max | 24.23 | 19.75 | California, San Francisco | 24.15 | 19.77 | |
24Mean | 17.74 | 14.29 | California, Alameda | 17.81 | 14.46 | |
O3 | 1Max | 53.95 | 45.37 | Illinois, Cook | 53.60 | 45.24 |
8Mean | 43.04 | 35.66 | North Dakota, Dunn | 43.17 | 36.05 | |
8Max | 46.16 | 38.85 | Vermont, Franklin | 46.43 | 39.12 | |
24Mean | 32.11 | 27.42 | West Virginia, Boone | 32.06 | 27.43 | |
PM2.5 | 24Mean | 18.14 | 12.88 | Ohio, Athens | 18.19 | 13.10 |
24MeanQ | 18.15 | 12.88 | Ohio, Athens | 18.19 | 13.08 | |
SO2 | 1Max | 6.22 | 4.46 | Iowa, Grundy | 6.22 | 4.60 |
3Mean | 4.60 | 3.27 | Oklahoma, Okfuskee | 4.59 | 3.27 | |
8Max | 5.20 | 3.86 | Wisconsin, Kewaunee | 5.21 | 3.88 | |
24Mean | 4.25 | 3.31 | Idaho, Cassia | 4.15 | 3.22 |
Pollutant | Adverse Health Effect | Incidence (Case) | Value ($) | ||||
---|---|---|---|---|---|---|---|
Subtotal | Total | Subtotal | Total | ||||
NO2 | Hospital Admissions, Respiratory | 0.004 | 0.696 | 3.8 | 52.99 | 79.04 | 14,515.05 |
Emergency Room Visits, Respiratory | 0.001 | 0.22 | |||||
Asthma Exacerbation | 0.650 | 25.23 | |||||
Acute Respiratory Symptoms | 0.041 | 0.60 | |||||
O3 | Acute Respiratory Symptoms | 1.335 | 1.624 | 52.72 | 3191.59 | ||
Hospital Admissions, Respiratory | 0.003 | 37.37 | |||||
Mortality | 0.001 | 3083.29 | |||||
School Loss Days | 0.284 | 18.11 | |||||
Emergency Room Visits, Respiratory | 0.001 | 0.10 | |||||
PM2.5 | Acute Bronchitis | 0.001 | 1.394 | 0.03 | 11,234.00 | ||
Acute Myocardial Infarction | 0.001 | 29.99 | |||||
Acute Respiratory Symptoms | 0.834 | 37.79 | |||||
Asthma Exacerbation | 0.390 | 14.65 | |||||
Chronic Bronchitis | 0.001 | 110.99 | |||||
Emergency Room Visits, Respiratory | 0.000 | 0.06 | |||||
Hospital Admissions, Cardiovascular | 0.001 | 11.02 | |||||
Hospital Admissions, Respiratory | 0.001 | 11.01 | |||||
Lower Respiratory Symptoms | 0.010 | 0.24 | |||||
Mortality | 0.003 | 11005.19 | |||||
Upper Respiratory Symptoms | 0.008 | 0.18 | |||||
Work Loss Days | 0.144 | 12.85 | |||||
SO2 | Acute Respiratory Symptoms | 0.007 | 0.069 | 0.10 | 10.42 | ||
Asthma Exacerbation | 0.061 | 2.23 | |||||
Emergency Room Visits, Respiratory | 0.000 | 0.08 | |||||
Hospital Admissions, Respiratory | 0.001 | 8.01 |
R-Value (m2 K/W) | U-Value (W/m2K) | Area (m2) | Heat Loss (W/K) | Q-Value (W/m2K) | |
---|---|---|---|---|---|
Wall | 1.94 | 0.52 | 653.7 | 337.4 | 2.45 |
Ceiling | 4.75 | 0.21 | 205.5 | 43.2 | |
Window | 0.40 | 2.50 | 24.5 | 61.3 | |
Floor | 3.35 | 0.30 | 205.5 | 61.4 | |
Found | 0.00 | 0.00 | 0.0 | 0.0 |
US | Japan | Count a | Ratio b | ||
---|---|---|---|---|---|
House Vintage | Q-value (W/m2 K) | House Vintage | Q-value (W/m2 K) | ||
Pre-1950 | 3.79 | Pre–1980 | 5.2 | 178,280 | 40.0% |
Pre-1950 | 3.79 | 1981–1995 | 4.2 | 116,290 | 26.1% |
Post-1980 | 2.45 | Post–1996 | 2.7 | 151,390 | 33.9% |
Leaf Type | Direction | Mean Distance (m) | Tree Count | Mean DBH (cm) | Mean Leaf Area (m2) | Mean Height (m) | Electricity ($) | Fuel ($) | Total ($) | |
---|---|---|---|---|---|---|---|---|---|---|
Deciduous | N | 8.6 | 81 | 26.68 | 92.29 | 8.53 | 211.61 | 100.10 | 311.71 | |
Deciduous | NE | 7.5 | 56 | 28.22 | 93.54 | 8.63 | 132.57 | 58.01 | 190.58 | |
Deciduous | E | 7.8 | 99 | 29.02 | 109.82 | 9.11 | 749.00 | −168.32 | 580.67 | |
Deciduous | SE | 6.4 | 67 | 30.77 | 120.35 | 9.17 | 91.56 | −202.98 | −111.42 | |
Deciduous | S | 7.2 | 80 | 26.49 | 102.44 | 8.52 | 25.54 | −525.78 | −500.23 | |
Deciduous | SW | 9.2 | 55 | 29.10 | 112.25 | 9.01 | 47.58 | −268.79 | −221.20 | |
Deciduous | W | 7.6 | 102 | 27.58 | 111.99 | 8.82 | 1911.60 | −524.61 | 1386.98 | |
Deciduous | NW | 7.8 | 64 | 28.84 | 110.72 | 8.85 | 278.53 | 64.52 | 343.05 | |
Evergreen | NE | 15.6 | 1 | 33.00 | 101.92 | 6.50 | 3.72 | 3.24 | 6.97 | |
Evergreen | E | 2.0 | 1 | 22.00 | 47.69 | 6.40 | 3.78 | −1.02 | 2.76 | |
Evergreen | S | 8.6 | 2 | 36.25 | 212.94 | 7.70 | 0.01 | −4.70 | −4.69 | |
Evergreen | SW | 9.8 | 1 | 23.50 | 121.23 | 8.80 | 1.44 | −0.54 | 0.89 | |
Evergreen | W | 12.5 | 5 | 29.96 | 72.08 | 8.00 | 63.65 | 4.63 | 68.29 | |
Total | 614 | 3520.59 | −1466.24 | 2054.36 |
Monetary Value ($) | % of Total Benefits | Value ($)/Tree | |
---|---|---|---|
Benefits | |||
Carbon storage & sequestration (C) | 50,853.04 | 71.19 | 41.34 |
Stormwater runoff reduction (S) | 4011.76 | 5.62 | 3.26 |
Adverse health mitigation (A) | 14,515.05 | 20.32 | 11.80 |
Energy saving (E) | 2054.36 | 2.88 | 1.67 |
Total (C+S+A+E) | 71,434.21 | 100.00 | 58.07 |
Tree management cost | 90.00 |
Species | Total Tree Numbers | Avg. Tree Height (m) | Avg. DBH (cm) | Avg. Leaf Area(m2) | $/Tree |
---|---|---|---|---|---|
G. biloba | 588 | 8.55 | 26.10 | 74.34 | 43.74 |
A. buergerianum | 174 | 8.76 | 29.21 | 111.12 | 58.73 |
Z. serrata | 100 | 11.94 | 35.47 | 255.66 | 123.21 |
L. tulipifera | 76 | 8.41 | 19.08 | 116.03 | 33.64 |
C. florida | 59 | 4.90 | 10.34 | 54.28 | 11.78 |
P. ×acerifolia | 51 | 9.74 | 30.14 | 159.36 | 65.88 |
P. × yedoensis | 42 | 7.94 | 49.26 | 174.17 | 225.32 |
P. jamasakura | 27 | 6.30 | 20.59 | 110.66 | 43.31 |
S. babylonica | 15 | 8.91 | 34.08 | 109.38 | 80.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Hirabayashi, S.; Shibata, S. Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan. Forests 2021, 12, 311. https://doi.org/10.3390/f12030311
Tan X, Hirabayashi S, Shibata S. Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan. Forests. 2021; 12(3):311. https://doi.org/10.3390/f12030311
Chicago/Turabian StyleTan, Xiaoyang, Satoshi Hirabayashi, and Shozo Shibata. 2021. "Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan" Forests 12, no. 3: 311. https://doi.org/10.3390/f12030311
APA StyleTan, X., Hirabayashi, S., & Shibata, S. (2021). Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan. Forests, 12(3), 311. https://doi.org/10.3390/f12030311