Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Tree Selection and Sample Preparation
2.3. Phenology and Dynamics of Formation of Xylem and Phloem Tissues
2.4. Data Analyses
3. Results
3.1. Transition Dates of Earlywood to Latewood and Early Phloem to Late Phloem
3.2. Sensitivity Analysis for Xylem Increment
3.3. Sensitivity Analysis for Phloem Increment
4. Discussion
4.1. Transition from Earlywood to Latewood
4.2. Transition from Early Phloem to Late Phloem
4.3. Characteristics of Early Phloem and Late Phloem
4.4. Site-Specifics
4.5. Genetic Control of Radial Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossi, S.; Anfodillo, T.; Čufar, K.; Cuny, H.E.; Deslauriers, A.; Fonti, P.; Frank, D.; Gričar, J.; Gruber, A.; King, G.M.; et al. A meta-analysis of cambium phenology and growth: Linear and non-linear patterns in conifers of the northern hemisphere. Ann. Bot. 2013, 112, 1911–1920. [Google Scholar] [CrossRef]
- Prislan, P.; Gričar, J.; Čufar, K.; de Luis, M.; Merela, M.; Rossi, S. Growing season and radial growth predicted for Fagus sylvatica under climate change. Clim. Chang. 2019, 153, 181–197. [Google Scholar] [CrossRef]
- Rathgeber, C.B.K.; Rossi, S.; Bontemps, J.-D. Cambial activity related to tree size in a mature silver-fir plantation. Ann. Bot. 2011, 108, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Cuny, H.E.; Rathgeber, C.B.K.; Lebourgeois, F.; Fortin, M.; Fournier, M. Life strategies in intra-annual dynamics of wood formation: Example of three conifer species in a temperate forest in north-east France. Tree Physiol. 2012, 32, 612–625. [Google Scholar] [CrossRef] [Green Version]
- Larson, P.R. The Vascular Cambium: Development and Structure; Springer–Verlag: New York, NY, USA, 1994. [Google Scholar]
- Rossi, S.; Deslauriers, A.; Anfodillo, T.; Carrer, M. Age-dependent xylogenesis in timberline conifers. New Phytol. 2008, 177, 199–208. [Google Scholar]
- Zhang, S.; Belien, E.; Ren, H.; Rossi, S.; Huang, J. Wood anatomy of boreal species in a warming world: A review. Iforest Biogeosciences For. 2020, 13, 130–138. [Google Scholar] [CrossRef] [Green Version]
- von Arx, G.; Carrer, M. ROXAS—A new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia 2014, 32, 290–293. [Google Scholar] [CrossRef]
- Castagneri, D.; Fonti, P.; von Arx, G.; Carrer, M. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies. Ann. Bot. 2017, 119, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Fonti, P.; von Arx, G.; García-González, I.; Eilmann, B.; Sass-Klaassen, U.; Gärtner, H.; Eckstein, D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010, 185, 42–53. [Google Scholar] [CrossRef]
- Park, Y.-I.; Spiecker, H. Variations in the tree-ring structure of Norway spruce (Picea abies) under contrasting climates. Dendrochronologia 2005, 23, 93–104. [Google Scholar] [CrossRef]
- Prendin, A.L.; Mayr, S.; Beikircher, B.; von Arx, G.; Petit, G. Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. Tree Physiol. 2018, 38, 1088–1097. [Google Scholar] [CrossRef]
- Ziaco, E.; Truettner, C.; Biondi, F.; Bullock, S. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell Env. 2018, 41, 823–836. [Google Scholar] [CrossRef]
- Cuny, H.E.; Rathgeber, C.B.K.; Frank, D.; Fonti, P.; Fournier, M. Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 2014, 203, 1231–1241. [Google Scholar] [CrossRef]
- Denne, M.P. Definition of latewood according to Mork (1928). IAWA J. 1988, 10, 59–61. [Google Scholar]
- Evert, R.F. Esau’s Plant Anatomy Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Gričar, J.; Prislan, P.; Gryc, V.; Vavrčík, H.; de Luis, M.; Čufar, K. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiol. 2014, 34, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Gricar, J.; Prislan, P.; De Luis, M.; Gryc, V.; Hacurova, J.; Vavrcik, H.; Cufar, K. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front. Plant Sci. 2015, 6, 730. [Google Scholar] [CrossRef] [Green Version]
- Balducci, L.; Cuny, H.E.; Rathgeber, C.B.; Deslauriers, A.; Giovannelli, A.; Rossi, S. Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant Cell Env. 2016, 39, 1338–1352. [Google Scholar] [CrossRef]
- Fabiánek, T.; Menšík, L.; Tomášková, I.; Kulhavý, J. Effects of spruce, beech and mixed commercial stand on humus conditions of forest soils. J. For. Sci. 2009, 55, 119–126. [Google Scholar]
- Rossi, S.; Anfodillo, T.; Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 2006, 27, 89–97. [Google Scholar]
- Cuny, H.E.; Rathgeber, C.B.K.; Kiessé, T.S.; Hartmann, F.P.; Barbeito, I.; Fournier, M. Generalized additive models reveal the intrinsic complexity of wood formation dynamics. J. Exp. Bot. 2013, 64, 1983–1994. [Google Scholar] [CrossRef] [Green Version]
- Cuny, H.E.; Rathgeber, C.B.K.; Frank, D.; Fonti, P.; Mäkinen, H.; Prislan, P.; Rossi, S.; del Castillo, E.M.; Campelo, F.; Vavrčík, H.; et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 2015, 1, 15160. Available online: http://www.nature.com/articles/nplants2015160#supplementary-information (accessed on 26 October 2015). [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Gričar, J.; Čufar, K. Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ. J. Plant Physiol. 2008, 55, 538–543. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental design and data analysis for biologists, 1st ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Dinwoodie, J.M. Timber, Its Nature and Behaviour; Van Nostrand Reinhold: New York, NY, USA, 1981. [Google Scholar]
- Fonti, P.; Bryukhanova, M.V.; Myglan, V.S.; Kirdyanov, A.V.; Naumova, O.V.; Vaganov, E.A. Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. Am. J. Bot. 2013, 100, 1332–1343. [Google Scholar] [CrossRef]
- Zhirnova, D.F.; Belokopytova, L.V.; Babushkina, E.A.; Crivellaro, A.; Vaganov, E.A. Earlywood structure of evergreen conifers near forest line is habitat driven but latewood depends on species and seasons. Trees 2020. [Google Scholar] [CrossRef]
- Miller, T.W.; Stangler, D.F.; Larysch, E.; Seifert, T.; Spiecker, H.; Kahle, H.-P. Plasticity of seasonal xylem and phloem production of Norway spruce along an elevational gradient. Trees 2020, 34, 1281–1297. [Google Scholar] [CrossRef]
- Balzano, A.; Battipaglia, G.; Cherubini, P.; De Micco, V. Xylem Plasticity in Pinus pinaster and Quercus ilex growing at sites with different water availability in the Mediterranean region: Relations between intra-annual density fluctuations and environmental conditions. Forests 2020, 11, 379. [Google Scholar]
- Huang, J.-G.; Bergeron, Y.; Zhai, L.; Denneler, B. Variation in intra-annual radial growth (xylem formation) of Picea mariana (Pinaceae) along a latitudinal gradient in western Quebec, Canada. Am. J. Bot. 2011, 98, 792–800. [Google Scholar] [CrossRef] [Green Version]
- Rosell, J.A.; Olson, M.E.; Anfodillo, T. Scaling of xylem vessel diameter with plant size: Causes, predictions, and outstanding questions. Curr. For. Rep. 2017, 3, 46–59. [Google Scholar] [CrossRef]
- De Kroon, H.; Huber, H.; Stuefer, J.F.; Van Groenendael, J.M. A modular concept of phenotypic plasticity in plants. New Phytol. 2005, 166, 73–82. [Google Scholar] [CrossRef]
- Steppe, K.; Sterck, F.; Deslauriers, A. Diel growth dynamics in tree stems: Linking anatomy and ecophysiology. Trends Plant Sci 2015, 20, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Hölttä, T.; Mäkinen, H.; Nöjd, P.; Mäkelä, A.; Nikinmaa, E. A physiological model of softwood cambial growth. Tree Physiol. 2010, 30, 1235–1252. [Google Scholar] [CrossRef]
- Carrer, M.; Motta, R.; Nola, P. Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the Alps. PLoS ONE 2012, 7, e50755. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, H.; Nöjd, P.; Kahle, H.-P.; Neumann, U.; Tveite, B.; Mielikäinen, K.; Röhle, H.; Spiecker, H. Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 2003, 17, 173–184. [Google Scholar] [CrossRef]
- Levanič, T.; Gričar, J.; Gagen, M.; Jalkanen, R.; Loader, N.; McCarroll, D.; Oven, P.; Robertson, I. The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 2009, 23, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Pittermann, J.; Sperry, J.S.; Hacke, U.G.; Wheeler, J.K.; Sikkema, E.H. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: The role of tracheid allometry and cavitation protection. Am. J. Bot. 2006, 93, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Jyske, T.; Hölttä, T. Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytol. 2015, 205, 102–115. [Google Scholar] [CrossRef]
- Swidrak, I.; Gruber, A.; Oberhuber, W. Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees 2014, 28, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Petit, G.; Crivellaro, A. Comparative axial widening of phloem and xylem conduits in small woody plants. Trees 2014, 28, 915–921. [Google Scholar] [CrossRef]
- Sevanto, S. Phloem transport and drought. J. Exp. Bot. 2014. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, V.R.; Krokene, P.; Krekling, T.; Christiansen, E. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am. J. Bot. 2000, 87, 314–326. [Google Scholar]
- Spicer, R. Symplasmic networks in secondary vascular tissues: Parenchyma distribution and activity supporting long-distance transport. J. Exp. Bot. 2014, 65, 1829–1848. [Google Scholar] [CrossRef] [Green Version]
- Rosell, J.A.; Gleason, S.; Méndez-Alonzo, R.; Chang, Y.; Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 2014, 201, 486–497. [Google Scholar] [CrossRef]
- Secchi, F.; Pagliarani, C.; Zwieniecki, M.A. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant Cell Environ. 2017, 40, 858–871. [Google Scholar] [CrossRef]
- Pfautsch, S.; Hölttä, T.; Mencuccini, M. Hydraulic functioning of tree stems—Fusing ray anatomy, radial transfer and capacitance. Tree Physiol. 2015, 35, 706–722. [Google Scholar] [CrossRef] [Green Version]
- Giagli, K.; Gričar, J.; Vavrčík, H.; Menšík, L.; Gryc, V. The effects of drought on wood formation in Fagus sylvatica during two contrasting years. IAWA J. 2016, 37, 332–348. [Google Scholar] [CrossRef]
- Jayawickrama, K.J.; McKeand, S.E.; Jett, J.B.; Wheeler, E.A. Date of earlywood-latewood transition in provenances and families of loblolly pine, and its relationship to growth phenology and juvenile wood specific gravity. Can. J. For. Res. 1997, 27, 1245–1253. [Google Scholar] [CrossRef]
- Fukatsu, E.; Nakada, R. The timing of latewood formation determines the genetic variation of wood density in Larix kaempferi. Trees 2018, 32, 1233–1245. [Google Scholar] [CrossRef]
- Oleksyn, J.; Modrzýnski, J.; Tjoelker, M.G.; Z·ytkowiak, R.; Reich, P.B.; Karolewski, P. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. Ecol. 1998, 12, 573–590. [Google Scholar] [CrossRef]
- Johnsen, Ø.; Dæhlen, O.G.; Østreng, G.; Skrøppa, T. Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytol. 2005, 168, 589–596. [Google Scholar] [CrossRef]
- Skrøppa, T. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Norway Spruce (Picea abies); International Plant Genetic Resources Institute: Rome, Italy, 2003. [Google Scholar]
- Nožička, J. Historical Evolution of Our Forests (Přehled Vývoje Našich Lesů); Státní zemědělské nakladatelství: Praha, Czech Republic, 1957. [Google Scholar]
- Božič, G.; Konnert, M.; Zupančič, M.; Kraigher, H.; Kreft, I. Genetic differentiation of the indigenous Norway spruce (Picea abies (L.) Karst) populations in Slovenia investigated by means of isoenzyme gene markers. Zb. Gozdarstva Lesar. 2003, 71, 19–40. [Google Scholar]
- Krutzsch, P. The IUFRO 1964/68 provenance test with Norway Spruce (Picea abies (L.) Karst.). Silvae Genet. 1974, 23, 58–62. [Google Scholar]
Site ID | Country | Latitude | Longitude | Altitude (m a.s.l.) | Mean Annual T (°C) | Mean annual P (mm) | Tree Age (year) | Tree DBH (cm) | Tree Height (m) | Duration of Cambial Cell Production (days) |
---|---|---|---|---|---|---|---|---|---|---|
PAN | SI | 46°00′ N | 14°40′ E | 400 | 11.4 | 1400 | 68 ± 8 | 36 ± 5 | 30 ± 5 | 126 ± 15 |
MEN | SI | 46°16′ N | 14°48′ E | 1200 | 7.6 | 1670 | 102 ± 31 | 37 ± 12 | 25 ± 1 | 95 ± 15 |
RAJ | CZ | 49°29′ N | 16°43′ E | 650 | 8.1 | 630 | 88 ± 4 | 34 ± 2 | 32 ± 2 | 126 ± 24 |
Study site | Year | Transition from Earlywood to Latewood (DOY) | Transition from Early Phloem to Late Phloem (DOY) | ||
---|---|---|---|---|---|
Mean ± Standard Deviation | Relative Variability (%) | Mean ± Standard Deviation | Relative Variability (%) | ||
MEN | 2009 | 187.7 ± 19.6 | 10.4 | 141.3 ± 4.5 | 3.2 |
2010 | 197.9 ± 9.3 | 4.7 | 153.4 ± 3.6 | 2.3 | |
2011 | 190.8 ± 19.0 | 10.0 | 131.8 ± 5.3 | 4.0 | |
PAN | 2009 | 194.0 ± 23.5 | 12.1 | 129.8 ± 2.9 | 2.2 |
2010 | 175.7 ± 16.9 | 9.6 | 111.7 ± 5.4 | 4.8 | |
2011 | 190.0 ± 25.0 | 13.2 | 126.0 ± 3.3 | 2.6 | |
RAJ | 2009 | 217.5 ± 13.4 | 6.2 | 155.0 ± 16.9 | 10.9 |
2010 | 209.3 ± 13.1 | 6.3 | 182.0 ± 8.6 | 4.7 | |
2011 | 193.7 ± 26.1 | 8.3 | 154.2 ± 10.3 | 6.7 |
Transition from Earlywood to Latewood | Transition from Early Phloem to Late Phloem | |||
---|---|---|---|---|
F | p | F | p | |
Site (S) | 4.499 | 0.0294 | 75.159 | 0.000 |
Year (Y) | 1.693 | 0.2127 | 6.578 | 0.021 |
S × Y | 1.559 | 0.2424 | 1.904 | 0.183 |
Mean ± SD | Contribution to nXC | ||
---|---|---|---|
Xylem ring | dE (days) | 116.2 ± 23.5 | 32% |
rm (cells/day) | 0.35 ± 0.15 | 68% | |
Earlywood | dE (days) | 74.1 ± 23.3 | 45% |
rm (cells/day) | 0.39 ± 0.15 | 55% | |
Latewood | dE (days) | 38.9 ± 17.7 | 57% |
rm (cells/day) | 0.30 ± 0.18 | 43% |
Mean ± SD | Contribution to nPC | ||
---|---|---|---|
Phloem ring | dE (days) | 140.8 ± 24.6 | 41% |
rm (cells/day) | 0.06 ± 0.01 | 59% | |
Late phloem | dE (days) | 95.9 ± 26.6 | 47% |
rm (cells/day) | 0.06 ± 0.02 | 53% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gričar, J.; Čufar, K.; Eler, K.; Gryc, V.; Vavrčík, H.; de Luis, M.; Prislan, P. Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. Forests 2021, 12, 331. https://doi.org/10.3390/f12030331
Gričar J, Čufar K, Eler K, Gryc V, Vavrčík H, de Luis M, Prislan P. Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. Forests. 2021; 12(3):331. https://doi.org/10.3390/f12030331
Chicago/Turabian StyleGričar, Jožica, Katarina Čufar, Klemen Eler, Vladimír Gryc, Hanuš Vavrčík, Martin de Luis, and Peter Prislan. 2021. "Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce" Forests 12, no. 3: 331. https://doi.org/10.3390/f12030331
APA StyleGričar, J., Čufar, K., Eler, K., Gryc, V., Vavrčík, H., de Luis, M., & Prislan, P. (2021). Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce. Forests, 12(3), 331. https://doi.org/10.3390/f12030331