Acceleration of Forest Structural Development for Large Trees and Mammals: Restoration in Decades or Centuries?
Abstract
:1. Introduction
2. Forest Restoration Structures and Mammals
3. Materials and Methods
3.1. Study Areas and Experimental Design
3.2. Size and Crown Dimensions of Crop Trees
3.3. Understory Coniferous Stand Structure
3.4. Forest-Floor Small Mammals and Tree Squirrels
3.5. Demographic Analysis
3.6. Relative Habitat Use by Mule Deer
3.7. Statistical Analysis
4. Results
4.1. Architecture of Large Trees
4.2. Forest-Floor Small Mammals
4.3. Tree Squirrels
4.4. Relative Habitat Use by Mule Deer
5. Discussion
5.1. Architecture of Large Trees
5.2. Forest Restoration and Mammals
5.3. Decades or Centuries?
5.4. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irwin, L.L.; Riggs, R.A.; Verschuyl, J.P. Tamm Review: Reconciling wildlife conservation to forest restoration in moist mixed-conifer forests of the inland northwest: A synthesis. For. Ecol. Manag. 2018, 424, 288–311. [Google Scholar] [CrossRef]
- Cosovic, M.; Bugalho, M.N.; Thom, D.; Borges, J.G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 2020, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Cobb, N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.J. Wind as a natural disturbance agent in forests—A synthesis. Forestry 2013, 86, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Cooke, B.J.; Carroll, A.L. Predicting the risk of mountain pine beetle spread to eastern pine forests: Considering uncertainty in uncertain times. For. Ecol. Manag. 2017, 396, 11–25. [Google Scholar] [CrossRef]
- Pritchard, S.J.; Stevens-Rumann, C.S.; Hessburg, P.F. Tamm review: Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 2017, 398, 217–233. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Pussinen, A.; van Brusselen, J.; Schelhaas, M.J. Future harvesting pressure on European forests. Eur. J. For. Res. 2007, 126, 391–400. [Google Scholar] [CrossRef]
- Raunikar, R.; Buongiornoa, J.; Turner, J.A.; Zhu, S. Global outlook for wood and forests with the bioenergy demand implied by scenarios of the intergovernmental panel on climate change. For. Pol. Econ. 2010, 12, 48–56. [Google Scholar] [CrossRef]
- Hunter, M.L.; Schmiegelow, F.K.A. Wildlife, Forests, and Forestry, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2011; p. 259. [Google Scholar]
- Gotmark, F. Habitat management alternatives for conservation forests in the temperate zone: Review, synthesis, and implications. For. Ecol. Manag. 2013, 306, 292–307. [Google Scholar] [CrossRef]
- Strittholt, J.R.; Dellasala, D.A.; Jiang, H. Status of mature and old-growth forests in the Pacific Northwest. Cons. Biol. 2006, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Bunnell, F.L.; Dunsworth, G.B. Forestry and Biodiversity: Learning How to Sustain Biodiversity in Managed Forests; UBC Press: Vancouver, BC, Canada, 2009; p. 374. [Google Scholar]
- Park, A.; Wilson, E.R. Beautiful plantations: Can intensive silviculture help Canada to fulfil ecological and timber production objectives? For. Chron. 2007, 83, 825–839. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, R. Room for both. Realizing a Future with Sustainable Economies and Healthy Caribou Populations; David Suzuki Foundation: Vancouver, BC, Canada, 2019. [Google Scholar]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Stand structure and small mammals in intensively managed forests: Scale, time, and testing extremes. For. Ecol. Manag. 2013, 310, 1071–1087. [Google Scholar] [CrossRef]
- Cole, D.M.; Koch, P. Managing Lodgepole Pine to Yield Merchantable Thinning Products and Attain Sawtimber Rotations; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1996. [Google Scholar]
- Stewart, J.D.; Salvail, J.C. Evaluation of Precommercial Thinning of Lodgepole Pine from Long-Term Research Installations in Alberta; Canadian Forest Service: Edmonton, AB, Canada, 2017. [Google Scholar]
- Johnstone, W.D. Thinning lodgepole pine. In Lodgepole Pine: The Species and Its Management; Baumgartner, D.M., Krebill, R.G., Arnott, J.T., Weetman, G.F., Eds.; Washington State University Cooperative Extension: Spokane, WA, USA; Vancouver, BC, Canada, 1985; pp. 253–262. [Google Scholar]
- Brockley, R.P. Effects of post-thinning density and repeated fertilization on the growth and development of young lodgepole pine. Can. J. For. Res. 2005, 35, 1952–1964. [Google Scholar] [CrossRef]
- Prescott, C.; deMontigny, L.; Harper, G. Eighteen-year growth response to thinning and fertilization of a height-repressed lodgepole pine stand in interior British Columbia. For. Chron. 2019, 95, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Griess, V.C.; Man, C.D.; Polinko, A.D.; Spies, J. Mitigating midtermtimber supply shortage using commercial thinning operations. A case study from British Columbia, Canada. For. Ecol. Manag. 2019, 443, 1–18. [Google Scholar] [CrossRef]
- Nohrstedt, H.O. Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scand. J. For. Res. 2001, 16, 555–573. [Google Scholar] [CrossRef]
- Fox, T.R.; Jokela, E.A.; Allen, H.L. The development of pine plantation silviculture in the southern United States. J. For. 2007, 105, 337–347. [Google Scholar]
- Verschuyl, J.; Riffell, S.; Miller, D.; Wigley, T.B. Biodiversity response to intensive biomass production from forest thinning in North American forests–A meta-analysis. For. Ecol. Manag. 2011, 261, 221–232. [Google Scholar] [CrossRef]
- Demarais, S.; Verschuyl, J.P.; Roloff, G.J.; Miller, D.A.; Wigley, T.B. Tamm review: Terrestrial vertebrate biodiversity and intensive forest management in the U.S. For. Ecol. Manag. 2017, 385, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Carey, A.B. Restoration of landscape function: Reserves or active management? Forestry 2003, 76, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Franklin, J.F. Conserving old-growth forests and attributes: Reservation, restoration, and resilience. In Old Growth in a New World. A Pacific Northwest Icon Reexamined; Spies, T.A., Duncan, S.L., Eds.; Island Press: Washington, DC, USA, 2009; pp. 247–260. [Google Scholar]
- Finnegan, L.; MacNearney, D.; Pigeon, K.E. Divergent patterns of understory forage growth after seismic line exploration: Implications for caribou habitat restoration. For. Ecol. Manag. 2018, 409, 634–652. [Google Scholar] [CrossRef]
- Carey, A.B.; Wilson, S.M. Induced spatial heterogeneity in forest canopies: Responses of small mammals. J. Wildl. Manag. 2001, 65, 1014–1027. [Google Scholar] [CrossRef]
- Newton, M.; Cole, L. Overstory development in Douglas-fir-dominant forests thinned to enhance late-seral features. For. Sci. 2015, 61, 809–816. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Decade on Ecosystem Restoration. Available online: https://www.decadeonrestoration.org/ (accessed on 4 January 2021).
- Diaz-Garcia, J.M.; Lopez-Barrera, F.; Pineda, E.; Toledo-Aceves, T.; Andresen, E. Comparing the success of active and passive restoration in a tropical cloud forest landscape: A multi-taxa fauna approach. PLoS ONE 2020, 15, e0242020. [Google Scholar] [CrossRef]
- Lindgren, P.M.F.; Sullivan, T.P. Long-term responses of tree and stand growth of young lodgepole pine to pre-commercial thinning and repeated fertilization. For. Ecol. Manag. 2013, 307, 155–164. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B.; Zabek, L. Twenty-five years after stand thinning and repeated fertilization in lodgepole pine forest: Implications for tree growth, stand structure, and carbon sequestration. Forests 2020, 11, 337. [Google Scholar] [CrossRef] [Green Version]
- Peterken, G.F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions; Cambridge University Press: Cambridge, UK, 1996; p. 522. [Google Scholar]
- Hartmann, H.; Daoust, G.; Bigué, B.; Messier, C. Negative or positive effects of plantation and intensive forestry on biodiversity: A matter of scale and perspective. For. Chron. 2010, 86, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Lautenschlager, R.A. Can intensive silviculture contribute to sustainable forest management in northern ecosystems? For. Chron. 2000, 76, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Barbour, R.J.; Johnston, S.; Hayes, J.P.; Tucker, G.F. Simulated stand characteristics and wood product yields from Douglas-fir plantations managed for ecosystem objectives. For. Ecol. Manag. 1997, 91, 205–219. [Google Scholar] [CrossRef]
- Moore, S.E.; Allen, H.L. Plantation forestry. In Maintaining Biodiversity in Forest Ecosystems; Hunter, M.L., Jr., Ed.; Cambridge University Press: New York, NY, USA, 1999; pp. 400–433. [Google Scholar]
- Franklin, J.F.; Spies, T.A.; Pelt, R.V.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Chen, J. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- McElhinny, C.; Gibbons, P.; Brack, C.; Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 2005, 218, 1–24. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Acceleration of old-growth structural attributes in lodgepole pine forest: Tree growth and stand structure 25 years after thinning. For. Ecol. Manag. 2016, 365, 96–106. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Ransome, D.B.; Sullivan, D.S.; Lindgren, P.M.F.; Klenner, W. Tree squirrel abundance and demography in managed coniferous forests of British Columbia are within the range of natural fluctuations of old-growth stands. Can. J. For. Res. 2017, 47, 565–582. [Google Scholar] [CrossRef] [Green Version]
- Ecke, F.; Lofgren, O.; Sorlin, D. Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J. Appl. Ecol. 2002, 39, 781–792. [Google Scholar] [CrossRef]
- Pearce, J.; Venier, L. Small mammals as bioindicators of sustainable boreal forest management. For. Ecol. Manag. 2005, 208, 153–175. [Google Scholar] [CrossRef]
- Zwolak, R. A meta-analysis of the effects of wildfire, clearcutting, and partial harvest on the abundance of North American small mammals. For. Ecol. Manag. 2009, 258, 539–554. [Google Scholar] [CrossRef]
- Fisher, J.T.; Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal Rev. 2005, 35, 51–81. [Google Scholar] [CrossRef]
- Smith, W.P.; Anthony, R.G.; Waters, J.R.; Dodd, N.L.; Zabel, C.J. Ecology and conservation of arboreal rodents of western coniferous forests. In Mammal Community Dynamics. Management and Conservation in Forests of Western North America; Zabel, C.J., Anthony, R.G., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 157–206. [Google Scholar]
- Martin, S.K. Feeding ecology of American martens and fishers. In Martens, Sables, and Fishers. Biology and Conservation; Buskirk, W.W., Harestad, A.S., Raphael, M.G., Powell, R.A., Eds.; Comstock Publ. Assoc., Cornell University Press: Ithaca, NY, USA, 1994; pp. 297–315. [Google Scholar]
- Butet, A.; Leroux, A.B.A. Effect of agriculture development on vole dynamics and conservation of Montagu’s harrier in Western French wetlands. Biol. Cons. 2001, 100, 289–295. [Google Scholar] [CrossRef]
- Maser, C.; Claridge, A.W.; Trappe, J.M. Trees, Truffles, and Beasts: How Forests Function; Rutgers University Press: Piscataway, NJ, USA, 2008. [Google Scholar]
- Carey, A.B.; Kershner, J.; Biswell, B.; DeToledo, L.D. Ecological scale and forest development: Squirrels, dietary fungi, and vascular plants in managed and unmanaged forests. Wildl. Monogr. 1999, 142, 3–71. [Google Scholar]
- Armleder, H.M.; Waterhouse, M.J.; Keisker, D.G.; Dawson, R.J. Winter habitat use by mule deer in the central interior of British Columbia. Can. J. Zool. 1994, 72, 1721–1725. [Google Scholar] [CrossRef]
- Dawson, R.J.; Armleder, H.M.; Waterhouse, M.J. Preferences of mule deer for Douglas-fir foliage from different sized trees. J. Wildl. Manag. 1990, 54, 378–382. [Google Scholar] [CrossRef]
- Meidinger, D.; Pojar, J. Ecosystems of British Columbia; Research Branch, Ministry of Forests: Victoria, BC, Canada, 1991. [Google Scholar]
- Sullivan, T.P.; Sullivan, D.S. Old-growth characteristics 20 years after thinning and repeated fertilization of lodgepole pine forest: Tree growth, structural attributes, and red-backed voles. For. Ecol. Manag. 2017, 391, 207–220. [Google Scholar] [CrossRef]
- Honer, T.G. Standard Volume and Merchantable Volume Tables. 1999. Available online: Flash.lakeheadu.ca/~fluckai/honer.html (accessed on 4 January 2021).
- Englund, S.R.; O’Brien, J.J.; Clark, D.B. Evaluation of digital and film hemispherical photography and spherical densiometry for measuring forest light environments. Can. J. For. Res. 2000, 30, 1999–2005. [Google Scholar] [CrossRef]
- Nagorsen, D.W. Opossums, Shrews and Moles of British Columbia; UBC Press: Vancouver, BC, Canada, 1996; Volume 2, p. 169. [Google Scholar]
- Ransome, D.B.; Sullivan, T.P. Short-term population dynamics of Glaucomys sabrinus and Tamiasciurus douglasii in commercially thinned and unthinned stands of coastal coniferous forest. Can. J. For. Res. 2002, 32, 2043–2050. [Google Scholar] [CrossRef]
- Sikes, R.S. Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016, 97, 663–688. [Google Scholar]
- Seber, G.A. The estimation of Animal Abundance and Related Parameters, 2nd ed.; Charles Griffin & Co. Ltd.: London, UK, 1982. [Google Scholar]
- Krebs, C.J. Ecological Methodology; Addison Wesley Longman, Inc.: Menlo Park, CA, USA, 1999. [Google Scholar]
- Krebs, C.J.; Boonstra, R.; Gilbert, S.; Reid, D.; Kenney, A.J.; Hofer, E.J. Density estimation for small mammals from livetrapping grids: Rodents in northern Canada. J. Mammal. 2011, 92, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Burton, P.J.; Balisky, A.C.; Coward, L.P.; Cumming, S.G.; Kneeshaw, D.D. The value of managing for biodiversity. For. Chron. 1992, 68, 225–237. [Google Scholar] [CrossRef]
- Côté, M.; Ferron, J. Short-term use of different residual forest structures by three sciurid species in a clear-cut boreal landscape. Can. J. For. Res. 2001, 31, 1805–1815. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Influence of repeated fertilization on forest ecosystems: Relative habitat use by mule deer and moose. Can. J. For. Res. 2006, 36, 2080–2089. [Google Scholar] [CrossRef]
- Harestad, A.S.; Bunnell, F.L. Persistence of black-tailed deer fecal pellets in coastal habitats. J. Wildl. Manag. 1987, 51, 33–37. [Google Scholar] [CrossRef]
- IBM Corp. Inc. IBM SPSS Statistics for Windows; IBM Corp.: Armonk, NY, USA, 2019. [Google Scholar]
- Fowler, J.; Cohen, L.; Jarvis, P. Practical Statistics for Field Biology, 2nd ed.; John Wiley and Sons: Hoboken, NY, USA, 1998; p. 259. [Google Scholar]
- Saville, D.J. Multiple comparison procedures: The practical solution. Am. Stat. 1990, 44, 174–180. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1999; p. 663. [Google Scholar]
- Franklin, J.F.; Spies, T.A. Composition, function, and structure of old-growth Douglas-fir forests. In Wildlife and Vegetation of Unmanaged Douglas-fir Forests; Ruggiero, L.F., Aubry, K.B., Carey, A.B., Huff, M.H., Eds.; USDA Forest Service: Portland, OR, USA, 1991; pp. 71–80. [Google Scholar]
- Bauhus, J.; Puettman, K.; Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 2009, 258, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Luyssaert, S.; Schultze, E.-D.; Borner, A.; Knohl, A.; Hessenmoller, D.; Law, B.E.; Clais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Ishii, H.R.; Sillett, S.C.; Caroll, A.L. Crown dynamics and wood production of Douglas-fir trees in an old-growth forest. For. Ecol. Manag. 2017, 384, 157–168. [Google Scholar] [CrossRef]
- Fuller, A.K.; Harrison, D.J.; Lachowski, H.J. Stand scale effects of partial harvesting and clearcutting on small mammals and forest structure. For. Ecol. Manag. 2004, 191, 373–386. [Google Scholar] [CrossRef]
- Etcheverry, P.; Ouellet, J.-P.; Crete, M. Response of small mammals to clearcutting and precommercial thinning in mixed forests of southeastern Quebec. Can. J. For. Res. 2005, 35, 2813–2822. [Google Scholar] [CrossRef]
- Wilson, S.M.; Carey, A.B. Legacy retention versus thinning: Influences on small mammals. Northwest Sci. 2000, 74, 131–145. [Google Scholar]
- Suzuki, N.; Hayes, J.P. Effects of thinning on small mammals in Oregon coastal forests. J. Wildl. Manag. 2003, 67, 352–371. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F. Stand structure and small mammals in young lodgepole pine forest: 10-year results after thinning. Ecol. Appl. 2001, 11, 1151–1173. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Long-term responses of ecosystem components to stand thinning in young lodgepole pine forest: II. Diversity and population dynamics of forest floor small mammals. For. Ecol. Manag. 2005, 205, 1–14. [Google Scholar] [CrossRef]
- Homyack, J.A.; Harrison, D.J.; Krohn, W.B. Long-term effects of precommercial thinning on small mammals in northern Maine. For. Ecol. Manag. 2005, 205, 43–57. [Google Scholar] [CrossRef]
- Steele, M.A. Tamiasciurus hudsonicus. Mamm. Species 1998, 586, 9. [Google Scholar] [CrossRef]
- Boonstra, R.; Boutin, S.; Byrom, A.; Karels, T.; Hubbs, A.; Stuart-Smith, K.; Blower, M.; Antpoehler, S. The role of red squirrels and arctic ground squirrels. In Ecosystem Dynamics of the Boreal Forest: The Kluane Project; Krebs, C.J., Boutin, S., Boonstra, R., Eds.; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Fletcher, Q.E.; Boutin, S.; Lane, J.E.; LaMontagne, J.M.; McAdam, A.G.; Speakman, J.R.; Krebs, C.J.; Humphries, M.M. The functional response of a hoarding seed predator to mast seeding. Ecology 2010, 91, 2673–2683. [Google Scholar] [CrossRef] [PubMed]
- Holloway, G.L.; Smith, W.P. A meta-analysis of forest age and structure effects on northern flying squirrel densities. J. Wildl. Manag. 2011, 75, 668–674. [Google Scholar] [CrossRef]
- Ransome, D.B.; Lindgren, P.M.F.; Sullivan, D.S.; Sullivan, T.P. Long-term responses of ecosystem components to stand thinning in young lodgepole pine forest: I. Population dynamics of northern flying squirrels and red squirrels. For. Ecol. Manag. 2004, 202, 355–367. [Google Scholar] [CrossRef]
- Ransome, D.B.; Sullivan, T.P. Population dynamics of Glaucomys sabrinus and Tamiasciurus douglasii in old-growth and second-growth stands of coastal coniferous forest. Can. J. For. Res. 2003, 33, 587–596. [Google Scholar] [CrossRef]
- Gomez, D.M.; Anthony, R.G.; Hayes, J.P. Influence of thinning of Douglas-fir forests on population parameters and diet of northern flying squirrels. J. Wildl. Manag. 2005, 69, 1670–1682. [Google Scholar] [CrossRef]
- Manning, T.; Hagar, J.C.; McComb, B.C. Thinning of young Douglas-fir forests decreases density of northern flying squirrels in the Oregon Cascades. For. Ecol. Manag. 2012, 264, 115–124. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Green-tree retention and life after the beetle: Stand structure and small mammals 30 years after salvage harvesting. Silva Fenn. 2010, 44, 749–774. [Google Scholar] [CrossRef]
- Lehmkuhl, J.F.; Kistler, K.D.; Begley, J.S.; Boulanger, J. Demography of northern flying squirrels informs ecosystem management of western interior forests. Ecol. Appl. 2006, 16, 584–600. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Long-term responses of mammalian herbivores to stand thinning and fertilization in young lodgepole pine (Pinus latifolia var. latifolia) forest. Can. J. For. Res. 2010, 40, 2302–2312. [Google Scholar] [CrossRef]
- Lavsund, S. Moose relationships to forestry in Finland, Norway, and Sweden. Swed. Wildl. Res. 1987, 1, 229–244. [Google Scholar]
- Ball, J.P.; Danell, K.; Sunesson, P. Response of a herbivore community to increased food quality and quantity: An experiment with nitrogen fertilizer in boreal forest. J. Appl. Ecol. 2000, 37, 247–255. [Google Scholar] [CrossRef]
- Leblond, M.; Dussault, C.; St.-Laurent, M.-H. Low-density spruce plantations increase foraging by moose in a northeastern temperate forest. For. Ecol. Manag. 2015, 347, 228–236. [Google Scholar] [CrossRef]
- Jokela, E.J.; Martin, T.A.; Vogel, J.G. Twenty-five years of intensive management with southern pines: Important lessons learned. J. For. 2010, 108, 338–347. [Google Scholar]
- Ter-Mikaelian, M.T.; Colombo, S.J.; Chen, J. Fact and fantasy about forest carbon. For. Chron. 2008, 84, 166–171. [Google Scholar] [CrossRef] [Green Version]
Lodgepole Pine Crop Trees 1 (Mean ± SE) | |||||||
---|---|---|---|---|---|---|---|
Replicate Block and Stand | Density (stems/ha) | Tree Crown Volume (m3) | Basal Area (m2/ha) | Total Understory Conifers/ha | DBH (cm) | Height (m) | Total Canopy Closure (%) |
Penticton | |||||||
Low | 550 | 88.4 ± 7.4 | 21.2 ± 1.2 | 2040 ± 283 | 21.8 ± 0.3 | 13.9 ± 0.1 | 87.4 ± 1.3 |
Medium | 1190 | 27.2 ± 4.1 | 33.5 ± 1.7 | 1475 ± 206 | 18.7 ± 0.2 | 15.4 ± 0.1 | 89.8 ± 0.7 |
High | 1670 | 30.9 ± 3.4 | 39.3 ± 2.4 | 960 ± 186 | 16.9 ± 0.2 | 14.7 ± 0.1 | 92.3 ± 0.5 |
Unthinned | 4462 | 7.7 ± 2.0 | 44.4 ± 7.2 | 3050 ± 603 | 10.6 ± 0.3 | 11.7 ± 0.2 | 88.9 ± 1.4 |
Old-growth | 790 + 360 2 | 8.1 ± 0.7 | 46.8 ± 3.9 3 | 2390 ± 372 | 19.3 ± 0.5 | 21.0 ± 0.3 | 87.3 ± 1.7 |
Summerland-1 | |||||||
Low | 210 | 44.3 ± 4.0 | 5.5 ± 0.2 | 4845 ± 681 | 19.4 ± 0.4 | 10.2 ± 0.2 | 70.4 ± 2.9 |
Medium | 460 | 45.7 ± 3.7 | 11.0 ± 0.5 | 4290 ± 593 | 16.8 ± 0.4 | 9.6 ± 0.2 | 76.5 ± 3.5 |
High | 1119 | 23.0 ± 1.2 | 21.6 ± 1.0 | 2041 ± 206 | 15.0 ± 0.2 | 9.3 ± 0.1 | 86.7 ± 1.2 |
Unthinned | 3617 | 7.8 ± 1.4 | 25.5 ± 2.6 | 6413 ± 167 | 9.0 ± 0.4 | 9.9 ± 0.1 | 91.9 ± 0.7 |
Old-growth | 330 + 440 2 | - | 31.3 ± 2.2 3 | 2720 ± 530 | 17.4 ± 3.4 | 15.3 ± 2.6 | 82.4 ± 4.4 |
Summerland-2 | |||||||
Low | 300 | 41.3 ± 3.4 | 6.8 ± 0.2 | 1370 ± 285 | 19.4 ± 0.3 | 9.2 ± 0.1 | 73.3 ± 4.2 |
Medium | 485 | 41.8 ± 2.6 | 13.5 ± 0.5 | 2060 ± 342 | 18.3 ± 0.3 | 9.2 ± 0.1 | 86.1 ± 1.7 |
High | 1074 | 27.6 ± 3.2 | 27.5 ± 0.9 | 779 ± 95 | 16.5 ± 0.3 | 9.7 ± 0.1 | 88.8 ± 2.4 |
Unthinned | 1675 | 19.1 ± 2.4 | 28.5 ± 1.7 | 4095 ± 430 | 14.4 ± 0.4 | 9.5 ± 0.1 | 87.1 ± 0.8 |
Old-growth | 760 + 240 2 | 11.9 ± 1.1 | 39.8 ± 2.5 3 | 2920 ± 445 | 18.6 ± 0.6 | 17.9 ± 0.7 | 88.8 ± 1.4 |
Stand Attribute | Treatment | ANOVA | |||||
---|---|---|---|---|---|---|---|
Low | Medium | High | Unthinned | Old-Growth | F4,8 | p | |
Density pine crop trees/ha | 353.3 ± 101.7b | 711.7 ± 239.3b | 1287.7 ± 191.6b | 3251.3 ± 825.1a | 973.3 ± 110.5b | 11.37 | <0.01 |
DBH (cm) | 20.2 ± 0.8a | 17.9 ± 0.6ab | 16.1 ± 0.6b | 11.3 ± 1.6c | 18.4 ± 0.6ab | 21.71 | <0.01 |
Height (m) | 11.1 ± 1.4b | 11.4 ± 2.0b | 11.2 ± 1.7b | 10.4 ± 0.7b | 18.1 ± 1.6a | 24.25 | <0.01 |
Basal area (m2/ha) | 11.2 ± 5.0c | 19.3 ± 7.1bc | 29.5 ± 5.2abc | 32.8 ± 5.9ab | 39.3 ± 4.5a | 56.03 | <0.01 |
Merchantable volume (m3/ha) | 68.6 ± 34.4 | 112.9 ± 59.1 | 155.8 ± 51.3 | 128.6 ± 29.7 | 246.1 ± 27.8 | 3.09 1 | 0.09 |
Crown volume (m3/tree) | 58.0 ± 15.2a | 38.2 ± 5.6ab | 27.2 ± 2.3b | 11.5 ± 3.8b | 10.0 ± 1.9b | 4.93 1 | 0.03 |
Canopy closure (%) | 77.0 ± 5.3 | 84.1 ± 4.0 | 89.3 ± 1.6 | 89.3 ± 1.4 | 86.2 ± 1.9 | 3.59 | 0.06 |
Total understory conifers (trees/ha) | 2752 ± 1064ab | 2608 ± 858ab | 1260 ± 394b | 4519 ± 994a | 2677 ± 154ab | 5.98 | 0.02 |
Mule deer (pellet-groups/ha) | 694.0 ± 87.7 | 700.0 ± 399.5 | 758.0 ± 113.8 | 180.7 ± 42.3 | 332.0 ± 28.0 | 1.93 | 0.20 |
RM-ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Treatment | Time | Treatment × Time | ||||||||
Species and Parameter | Low 1 | Medium | High | Unthinned | Old-Growth | F4,7 | p | F1,9 | p | F4,9 | p |
M. gapperi | 10.4 ± 2.7a | 0.7 ± 0.5bc | 3.5 ± 0.8bc | 4.8 ±1.1abc | 8.6 ± 2.7ab | 3.97 | 0.05 | 1.61 | 0.24 | 0.13 | 0.97 |
P. maniculatus | 1.9 ± 1.0 | 2.7 ± 1.0 | 2.0 ± 0.7 | 1.5 ± 0.7 | 2.1 ± 0.4 | 0.76 | 0.58 | 15.59 | <0.01 | 0.44 | 0.78 |
N. amoenus | 2.7 ± 0.4ab | 2.1 ± 0.5ab | 0.7 ± 0.3b | 0.5 ± 0.2b | 3.1 ± 0.4a | 4.19 | 0.05 | 0.01 | 0.92 | 0.21 | 0.93 |
P. intermedius | 0.2 ± 0.1 | 0.5 ± 0.3 | 0.3 ± 0.1 | 0.03 ± 0.03 | 0.03 ± 0.03 | 2.51 | 0.14 | 0.27 | 0.62 | 0.16 | 0.95 |
S. monticolus | 0.7 ± 0.3 | 0.3 ± 0.2 | 0.6 ± 0.2 | 0.5 ± 0.4 | 0.6 ± 0.2 | 1.17 | 0.40 | 3.84 | 0.08 | 0.06 | 0.99 |
S. cinereus | 0.6 ± 0.2 | 0.4 ± 0.1 | 0.7 ± 0.2 | 0.4 ± 0.1 | 0.3 ± 0.3 | 2.82 | 0.11 | 1.22 | 0.07 | 0.06 | 0.99 |
M. longicaudus | 0.0 | 0.2 ± 0.1 | 0.0 | 0.0 | 0.1 ± 0.1 | - | - | - | - | - | - |
M.pennsylvanicus | 0.04 ± 0.04 | 0.03 ± 0.03 | 0.05 ± 0.03 | 0.06 ± 0.06 | 0.0 | - | - | - | - | - | - |
Total abundance | 16.5 ± 2.5a | 7.0 ± 0.9b | 7.8 ± 0.8b | 7.7 ± 0.8b | 14.8 ± 2.2a | 7.13 | 0.01 | 0.33 | 0.58 | 0.21 | 0.93 |
Species richness | 3.31 ± 0.35 | 2.44 ± 0.22 | 3.10 ± 0.36 | 2.33 ± 0.25 | 3.07 ± 0.23 | 3.24 | 0.08 | 15.60 | <0.01 | 0.25 | 0.90 |
Species diversity | 1.18 ± 0.13 | 0.94 ± 0.11 | 1.20 ± 0.19 | 0.78 ± 0.18 | 1.24 ± 0.18 | 3.00 | 0.10 | 17.33 | <0.01 | 0.98 | 0.46 |
Low | Medium | High | Unthinned | Old-growth | F4,8 | p | F1,10 | p | F4,10 | p | |
T. hudsonicus | 6.3 ± 1.8 | 6.2 ± 1.2 | 7.2 ± 0.7 | 4.8 ± 1.1 | 12.0 ± 2.4 | 3.25 | 0.07 | 2.38 | 0.15 | 0.26 | 0.90 |
G. sabrinus | 3.3 ± 0.8 | 4.3 ± 0.8 | 3.2 ± 0.3 | 4.0 ± 1.6 | 3.3 ± 1.7 | 0.17 | 0.95 | 0.66 | 0.44 | 0.17 | 0.95 |
Mean body mass | |||||||||||
T. hudsonicus | 221.6 ± 1.1a | 214.8 ± 3.3ab | 208.9 ± 2.6b | 210.3 ± 3.4b | 218.4 ± 4.7a | 6.50 | 0.01 | 0.13 | 0.73 | 0.35 | 0.84 |
G. sabrinus | 136.7 ± 3.8 | 129.3 ± 4.5 | 133.5 ± 2.5 | 128.5 ± 3.7 | 130.9 ± 6.0 | 0.50 2 | 0.74 | 0.03 | 0.87 | 0.12 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B.; Klenner, W. Acceleration of Forest Structural Development for Large Trees and Mammals: Restoration in Decades or Centuries? Forests 2021, 12, 388. https://doi.org/10.3390/f12040388
Sullivan TP, Sullivan DS, Lindgren PMF, Ransome DB, Klenner W. Acceleration of Forest Structural Development for Large Trees and Mammals: Restoration in Decades or Centuries? Forests. 2021; 12(4):388. https://doi.org/10.3390/f12040388
Chicago/Turabian StyleSullivan, Thomas P., Druscilla S. Sullivan, Pontus M. F. Lindgren, Douglas B. Ransome, and Walt Klenner. 2021. "Acceleration of Forest Structural Development for Large Trees and Mammals: Restoration in Decades or Centuries?" Forests 12, no. 4: 388. https://doi.org/10.3390/f12040388
APA StyleSullivan, T. P., Sullivan, D. S., Lindgren, P. M. F., Ransome, D. B., & Klenner, W. (2021). Acceleration of Forest Structural Development for Large Trees and Mammals: Restoration in Decades or Centuries? Forests, 12(4), 388. https://doi.org/10.3390/f12040388