Spatiotemporal Dynamics of Urban Green Space Influenced by Rapid Urbanization and Land Use Policies in Shanghai
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Green Space Ratio
3.2. Land Use Transition Matrix
3.3. Dynamic Change Degree (DCD)
3.4. Landscape Metrics
4. Results
4.1. Composition Changes in Green Space
4.1.1. Green Space Ratio Changes during 1990–2015
4.1.2. Green Space Changes in Different Directions
4.1.3. Green Space Changes along the Concentric Buffers
4.2. Transitions between Green Space and Built-Up Area
4.3. Dynamic Change Degree (DCD) of Green Space
4.4. Green Space Changes in Landscape Patterns
5. Discussion
5.1. Integrated Approaches to Describe Spatiotemporal Dynamics of UGS
5.2. The Impacts of Policies on UGS
5.3. Optimizing Green Space Patterns through Urban Planning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haaland, C.; Bosch, C.K.V.D. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2011, 8, 45–58. [Google Scholar] [CrossRef]
- Pauleit, S.; Ennos, R.; Golding, Y. Modeling the environmental impacts of urban land use and land cover change—A study in Merseyside, UK. Landsc. Urban Plan. 2005, 71, 295–310. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-H.; Pauleit, S. Landscape character, biodiversity and land use planning: The case of Kwangju City Region, South Korea. Land Use Policy 2007, 24, 264–274. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Neuenschwander, N.; Hayek, U.W.; Grêt-Regamey, A. Integrating an urban green space typology into procedural 3D visualization for collaborative planning. Comput. Environ. Urban Syst. 2014, 48, 99–110. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Jim, C.Y. Assessment and valuation of the ecosystem services provided by urban forests. In Ecology, Planning, and Management of Urban Forests; Metzler, J.B., Ed.; Springer: Heidelberg, NY, USA, 2007; pp. 53–83. [Google Scholar]
- Hernández-Moreno, Á.; Reyes-Paecke, S. The effects of urban expansion on green infrastructure along an extended latitudinal gradient (23° S–45° S) in Chile over the last thirty years. Land Use Policy 2018, 79, 725–733. [Google Scholar] [CrossRef]
- Erickson, D. MetroGreen: Connecting Open Space in North American Cities; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Momm-Schult, S.I.; Piper, J.; Denaldi, R.; Freitas, S.R.; Fonseca, M.d.L.P.; Oliveira, V.E.d. Integration of urban and environmental policies in the metropolitan area of São Paulo and in Greater London: The value of establishing and protecting green open spaces. Int. J. Urban Sustain. Dev. 2013, 5, 89–104. [Google Scholar] [CrossRef]
- Sperandelli, D.I.; Dupas, F.A.; Dias Pons, N.A. Dynamics of urban sprawl, vacant land, and green spaces on the metropolitan fringe of São Paulo, Brazil. J. Urban Plan. Dev. 2013, 139, 274–279. [Google Scholar] [CrossRef]
- Weber, T.; Sloan, A.; Wolf, J. Maryland’s Green Infrastructure Assessment: Development of a comprehensive approach to land conservation. Landsc. Urban Plan. 2006, 77, 94–110. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J.; Gries, C. Multiscale analysis of the urbanization pattern of the Phoenix metropolitan landscape of USA: Time, space and thematic resolution. Landsc. Urban Plan. 2010, 94, 206–217. [Google Scholar] [CrossRef]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Hermann, A.; Kuttner, M.; Hainz-Renetzeder, C.; Konkoly-Gyuró, É.; Tirászi, Á.; Brandenburg, C.; Allex, B.; Ziener, K.; Wrbka, T. Assessment framework for landscape services in European cultural landscapes: An Austrian Hungarian case study. Ecol. Indic. 2014, 37, 229–240. [Google Scholar] [CrossRef]
- Uy, P.D.; Nakagoshi, N. Analyzing urban green space pattern and eco-network in Hanoi, Vietnam. Landsc. Ecol. Eng. 2007, 3, 143–157. [Google Scholar] [CrossRef]
- Acheampong, M.; Yu, Q.; Enomah, L.D.; Anchang, J.; Eduful, M. Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one—A remote sensing and GIS approach. Land Use Policy 2018, 73, 373–384. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Tang, H.; Liu, W.; Yun, W. Spatiotemporal Dynamics of Green Spaces in the Beijing–Tianjin–Hebei Region in the Past 20 Years. Sustainability 2018, 10, 2949. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.J.; Ng, C.N. Spatial and temporal dynamics of urban sprawl along two urban–rural transects: A case study of Guangzhou, China. Landsc. Urban Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Hepcan, Ş. Analyzing the pattern and connectivity of urban green spaces: A case study of Izmir, Turkey. Urban Ecosyst. 2012, 16, 279–293. [Google Scholar] [CrossRef]
- Li, F.; Zheng, W.; Wang, Y.; Liang, J.; Xie, S.; Guo, S.; Li, X.; Yu, C. Urban Green Space Fragmentation and Urbanization: A Spatiotemporal Perspective. Forests 2019, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W.; Dou, Y. Investigating the Patterns and Dynamics of Urban Green Space in China’s 70 Major Cities Using Satellite Remote Sensing. Remote Sens. 2020, 12, 1929. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Liu, D. Shoreline mapping with cellular automata and the shoreline progradation analysis in Shanghai, China from 1979 to 2008. Arab. J. Geosci. 2014, 8, 4337–4351. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, M.; Chen, L.; Liu, Y. Simulation of Dynamic Urban Growth with Partial Least Squares Regression-Based Cellular Automata in a GIS Environment. ISPRS Int. J. Geo-Inf. 2016, 5, 243. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, C.; Zhu, F.; Song, C.; Wu, J. Spatiotemporal pattern of urbanization in Shanghai, China between 1989 and 2005. Landsc. Ecol. 2013, 28, 1545–1565. [Google Scholar] [CrossRef]
- Li, Y.; Xue, C.; Shao, H.; Shi, G.; Jiang, N. Study of the Spatiotemporal Variation Characteristics of Forest Landscape Patterns in Shanghai from 2004 to 2014 Based on Multisource Remote Sensing Data. Sustainability 2018, 10, 4397. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Yin, Z.; Zhong, H.; Xu, S.; Hu, X.; Wang, J.; Wu, J. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Environ. Monit. Assess. 2010, 177, 609–621. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Da, L. Spatial characteristics of urban green space: A case study of Shanghai, China. Appl. Ecol. Environ. Res. 2019, 17, 1799–1815. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, R.; Meadows, M.E.; Sengupta, D.; Xu, D. Changing urban green spaces in Shanghai: Trends, drivers and policy implications. Land Use Policy 2019, 87, 104080. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Tong, X. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Peng, G.; Xu, P.; Zhu, B.; Bai, M.; Li, D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ. Pollut. 2018, 234, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Municipal Statistical Bureau. Shanghai Statistical Yearbook Retrieved from Beijing, China. 2016. Available online: https://data.cnki.net/area/Yearbook/Single/N2017020268?z=D09 (accessed on 24 February 2021).
- Zhang, L. Research on Important Measures for Constructing Ecological Space System in Surrounding Areas of Shanghai City Center. Shanghai Constr. Sci. Technol. 2013, 6, 56–59. [Google Scholar]
- De Oliveira, F.L. Green Wedge Urbanism-History, Theory and Contemporary Practice; Bloomsbury Publishing Plc: London, UK, 2017. [Google Scholar]
- Feng, Y.; Yang, Q.; Hong, Z.; Cui, L. Modelling coastal land use change by incorporating spatial autocorrelation into cellular automata models. Geocarto Int. 2016, 33, 470–488. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Lei, Z.; Chen, S.; Zhai, S. Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Comput. Environ. Urban Syst. 2020, 81, 101459. [Google Scholar] [CrossRef]
- Feng, Y.; Tong, X. Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules. GIScience Remote Sens. 2018, 55, 678–698. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Xu, J.; Liao, B.; Shen, Q.; Zhang, F.; Mei, A. Urban spatial restructuring in transitional economy—Changing land use pattern in Shanghai. Chin. Geogr. Sci. 2007, 17, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Wang, Y.; Deng, J.; Shen, Z.; Wang, K.; Zhu, J.; Gan, M. Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy. Sensors 2017, 17, 1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, L.; Zhang, Y.; Zhang, X.; Qi, S.; Na, X. Comparison of land use/land cover change and landscape patterns in Honghe National Nature Reserve and the surrounding Jiansanjiang Region, China. Ecol. Indic. 2015, 51, 205–214. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, J.; Xie, G.; Li, X. Analysis on the pattern changes of urban green space in Beijing from 2000 to 2010. Ecol. Sci. 2016, 35, 24–33. [Google Scholar]
- Turner, M.G. Landscape ecology in North America: Past, present, and future. Ecology 2005, 86, 1967–1974. [Google Scholar] [CrossRef] [Green Version]
- Mcgarigal, K.; Marks, B.J. Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Dep. Agric. For. Serv. Pac. Northwest Res. Stn. 1995, 1–122. [Google Scholar]
- Liang, H.; Chen, D.; Zhang, Q. Assessing urban green space distribution in a compact megacity by landscape metrics. J. Environ. Eng. Landsc. Manag. 2017, 25, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Cabral, A.I.; Costa, F.L. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland. Appl. Geogr. 2017, 82, 115–128. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.-C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, S.; Jiang, B.; Ren, Y.; Wang, H.; Vause, J.; Yu, H. Temporal trend of green space coverage in China and its relationship with urbanization over the last two decades. Sci. Total Environ. 2013, 442, 455–465. [Google Scholar] [CrossRef]
- Tan, P.Y.; Wang, J.; Sia, A. Perspectives on five decades of the urban greening of Singapore. Cities 2013, 32, 24–32. [Google Scholar] [CrossRef]
- Davies, C.; Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 2017, 69, 93–101. [Google Scholar] [CrossRef]
- Harris, V.; Kendal, D.; Hahs, A.K.; Threlfall, C.G. Green space context and vegetation complexity shape people’s preferences for urban public parks and residential gardens. Landsc. Res. 2017, 43, 150–162. [Google Scholar] [CrossRef]
New Category | Initial Category | Description | |
---|---|---|---|
Green space (GS) | GS1: Farmland | Cropland | Cultivated lands for crops, which including mature cultivated land, newly cultivated land, fallow, shifting cultivated land. |
GS2: Forest | Woodland | Lands growing trees including arbor, shrub, bamboo and forest. | |
GS3: Grassland | Grassland | Lands covered by the herbaceous plants with coverage greater than 5%, including shrub rangeland and mixed rangeland with the coverage of shrub canopies less than 10%. | |
GS4: Waterbody | Waterbody | Lands covered by natural water bodies or lands with facilities for irrigation and water reservation. | |
Non-green space | Built-up area | Built-up area | Lands used for urban and rural settlements, factories and transportation facilities. |
Unused land | Unused land | Lands that are not put into practical use or difficult to use. |
Metrics | Equations | Unit | Justification | |
---|---|---|---|---|
Class-level | Percentage of landscape (PLAND) | Pi = proportion of the landscape occupied by patch type (class)i. aij = area (m2) of patchij. A = total landscape area (m2). | Percent | General index |
Patch density (PD) | ni = number of patches in the landscape of patch type (class)i. A = total landscape area (m2). | Number per 100 hectares | Fragmentation index | |
Largest patch index (LPI) | aij = area (m2) of patchij. A = total landscape area (m2). | Percent | Fragmentation and dominance index | |
Landscape shape index (LSI) | total length (m) of edge in the landscape between patch types (classes) i and k; includes the entire landscape boundary and some or all background edge segments involving classi A = total landscape area (m2). | None | Shape index | |
Patch cohesion index (COHESION) | = perimeter of patchij in terms of the number of cell surfaces. = area of patchij in terms of the number of cells. Z = total number of cells in the landscape. | Percent | Connectivity index | |
Landscape-level | Contagion index (CONTAG) | Pi = proportion of the landscape occupied by patch type (class)i. gik = number of adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count method. m = number of patch types (classes) present in the landscape, including the landscape border if present. | Percent | Connectivity and fragmentation index |
Shannon’s diversity index (SHDI) | Pi = proportion of the landscape occupied by patch type (class)i. | None | Diversity index | |
Shannon’s evenness index (SHEI) | Pi = proportion of the landscape occupied by patch type (class)i. m = the number of patch types (classes) present in the landscape, excluding the landscape border if present. | None | Diversity index |
Land-Use Type | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | |
---|---|---|---|---|---|---|---|
GS1: Farmland | Area (km²) | 4964.9 | 4627.4 | 4548.9 | 4218.8 | 3753.1 | 3686.7 |
Percent (%) | 71.3 | 66.5 | 65.3 | 60.6 | 53.9 | 52.9 | |
GS2: Forest | Area (km²) | 105.4 | 105.3 | 103.0 | 110.8 | 101.1 | 96.8 |
Percent (%) | 1.5 | 1.5 | 1.5 | 1.6 | 1.5 | 1.4 | |
GS3: Grassland | Area (km²) | 44.9 | 41.4 | 41.9 | 48.7 | 79.8 | 92.5 |
Percent (%) | 0.6 | 0.6 | 0.6 | 0.7 | 1.1 | 1.3 | |
GS4: Water | Area (km²) | 788.1 | 802.8 | 804.2 | 727.7 | 689.6 | 437.4 |
Percent (%) | 11.3 | 11.5 | 11.5 | 10.4 | 9.9 | 6.3 | |
GS: Total green space | Area (km²) | 5903.3 | 5576.9 | 5498.1 | 5105.9 | 4623.5 | 4313.4 |
Percent (%) | 84.8 | 80.1 | 79.0 | 73.3 | 66.4 | 61.9 | |
Non-green space | Area (km²) | 1060.2 | 1386.7 | 1465.5 | 1857.6 | 2340.1 | 2650.2 |
Percent (%) | 15.2 | 19.9 | 21.0 | 26.7 | 33.6 | 38.1 |
Year | Category | 1995 | ||||
---|---|---|---|---|---|---|
Farmland (km²) | Forest (km²) | Grassland (km²) | Waterbody (km²) | Built-Up Area (km²) | ||
1990 | Farmland (km²) | 4621.0 | 0.6 | 0.0 | 16.6 | 326.7 |
Forest (km²) | 0.4 | 104.5 | 0.0 | 0.2 | 0.3 | |
Grassland (km²) | 0.1 | 0.0 | 41.4 | 0.0 | 3.5 | |
Waterbody (km²) | 1.1 | 0.1 | 0.0 | 785.9 | 1.0 | |
Built-up area (km²) | 4.9 | 0.1 | 0.0 | 0.1 | 1037.5 | |
2000 | ||||||
1995 | Farmland (km²) | 4536.4 | 0.4 | 0.0 | 5.7 | 85.0 |
Forest (km²) | 0.4 | 102.4 | 0.0 | 0.2 | 2.3 | |
Grassland (km²) | 0.0 | 0.0 | 41.3 | 0.1 | 0.0 | |
Waterbody (km²) | 2.6 | 0.1 | 0.6 | 798.0 | 1.5 | |
Built-up area (km²) | 9.5 | 0.1 | 0.0 | 0.2 | 1359.1 | |
2005 | ||||||
2000 | Farmland (km²) | 4127.0 | 11.5 | 0.1 | 19.8 | 390.6 |
Forest (km²) | 1.5 | 96.0 | 0.0 | 0.6 | 4.9 | |
Grassland (km²) | 0.7 | 2.0 | 39.1 | 0.2 | 0.1 | |
Waterbody (km²) | 65.0 | 0.6 | 9.5 | 706.7 | 22.4 | |
Built-up area (km²) | 24.7 | 0.7 | 0.0 | 0.5 | 1421.9 | |
2010 | ||||||
2005 | Farmland (km²) | 3731.2 | 1.7 | 0.1 | 4.9 | 481.0 |
Forest (km²) | 1.1 | 98.6 | 0.0 | 0.1 | 11.0 | |
Grassland (km²) | 0.1 | 0.0 | 48.4 | 0.1 | 0.1 | |
Waterbody (km²) | 3.4 | 0.4 | 0.1 | 714.8 | 9.0 | |
Built-up area (km²) | 17.4 | 0.4 | 0.0 | 0.8 | 1821.2 | |
2015 | ||||||
2010 | Farmland (km²) | 3468.4 | 2.6 | 5.4 | 13.6 | 263.0 |
Forest (km²) | 2.9 | 92.3 | 0.0 | 0.6 | 5.2 | |
Grassland (km²) | 3.8 | 0.0 | 43.5 | 0.3 | 1.0 | |
Waterbody (km²) | 133.2 | 0.8 | 31.2 | 417.1 | 26.9 | |
Built-up area (km²) | 63.6 | 1.0 | 12.4 | 3.1 | 2242.3 | |
2015 | ||||||
1990 | Farmland (km²) | 3473.2 | 7.8 | 13.1 | 42.5 | 1428.3 |
Forest (km²) | 2.7 | 85.4 | 0.0 | 1.0 | 16.2 | |
Grassland (km²) | 4.3 | 1.9 | 33.8 | 0.3 | 4.6 | |
Waterbody (km²) | 171.5 | 1.2 | 41.3 | 389.5 | 73.0 | |
Built-up area (km²) | 20.1 | 0.5 | 4.4 | 1.3 | 1016.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhang, X.; Feng, Y.; Xie, H.; Jiang, L.; Lei, Z. Spatiotemporal Dynamics of Urban Green Space Influenced by Rapid Urbanization and Land Use Policies in Shanghai. Forests 2021, 12, 476. https://doi.org/10.3390/f12040476
Liu S, Zhang X, Feng Y, Xie H, Jiang L, Lei Z. Spatiotemporal Dynamics of Urban Green Space Influenced by Rapid Urbanization and Land Use Policies in Shanghai. Forests. 2021; 12(4):476. https://doi.org/10.3390/f12040476
Chicago/Turabian StyleLiu, Song, Xinsu Zhang, Yongjiu Feng, Huan Xie, Li Jiang, and Zhenkun Lei. 2021. "Spatiotemporal Dynamics of Urban Green Space Influenced by Rapid Urbanization and Land Use Policies in Shanghai" Forests 12, no. 4: 476. https://doi.org/10.3390/f12040476
APA StyleLiu, S., Zhang, X., Feng, Y., Xie, H., Jiang, L., & Lei, Z. (2021). Spatiotemporal Dynamics of Urban Green Space Influenced by Rapid Urbanization and Land Use Policies in Shanghai. Forests, 12(4), 476. https://doi.org/10.3390/f12040476