Fate of Postharvest Woody Debris, Mammal Habitat, and Alternative Management of Forest Residues on Clearcuts: A Synthesis
Abstract
:1. Introduction
1.1. The Problem
1.2. Database
2. Debris Piles and Wildfire Hazard
3. Wildfire Smoke and Human Health
4. Woody Debris as Biomass and Potential Wood Products
5. Woody Debris Structures as Mammal Habitat
6. Alternative Management of Woody Debris
6.1. Options for Construction of Woody Debris Structures
6.2. Distribution of CWD via Cut-to-Length Harvesting
6.3. Use of Machinery to Crush Woody Debris
6.4. Protection of Riparian Zones from Cattle
6.5. Construction of Range Fencing
6.6. Reclamation of Landings and Skid-Trails
6.7. Soil Fertility and Understory Plant Communities
6.8. Slope Stabilization and Revegetation
7. Management Implications and Policy Revisions
- (1)
- Make every effort to conserve woody debris as structures on clearcut, salvage, and burned sites;
- (2)
- Allocate nonmerchantable sawlog wood fiber to the biofuels sector when it can be done in a cost-effective manner;
- (3)
- Implement woody debris structures where necessary to maintain mammalian biodiversity on clearcuts, as per Table 2;
- (4)
- Limit burning of non-sawlog wood fiber to specific locations near human activity where there is a clear potential for increased fire hazard and that do not have an opportunity for bioenergy or habitat purposes;
- (5)
- Consider the possibilities for fate of excess postharvest woody debris and fuel hazard abatement as per Figure 14.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Dominique Bachelet, N.M.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; Gonzalez, P.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, S.; Ruel, J.-C.; Bergeron, Y.; Harvey, B.D. Windthrow after group and dispersed tree retention in eastern Canada. For. Ecol. Manag. 2012, 269, 158–167. [Google Scholar] [CrossRef]
- Cooke, B.J.; Carroll, A.L. Predicting the risk of mountain pine beetle spread to eastern pine forests: Considering uncertainty in uncertain times. For. Ecol. Manag. 2017, 396, 11–25. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, P.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Nat. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Franklin, J.F. Conserving Forest Biodiversity. A Comprehensive Multiscaled Approach; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Rosenvald, R.; Lõhmus, A. For what, when, and where is green-tree retention better than clearcutting? A review of biodiversity aspects. For. Ecol. Manag. 2008, 255, 1–15. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Burton, P.J.; Franklin, J.F. Salvage Logging and Its Ecological Consequences; Island Press: Washington, DC, USA, 2008; p. 227. [Google Scholar]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar]
- McComb, W.C.; Lindenmayer, D. Dying, dead, and down trees. In Maintaining Biodiversity in Forest Ecosystems; Hunter, M.L., Jr., Ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Arsenault, A. Managing Coarse Woody Debris in British Columbia’s Forests: A Cultural Shift for Professional Foresters? In Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, Reno, NV, USA, 2–4 November 1999; USDA: Albany, CA, USA, 2002; pp. 869–878. [Google Scholar]
- Hesselink, T.P. Increasing pressures to use forest biomass: A conservation viewpoint. For. Chron. 2010, 86, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from nonoccupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Thiffault, E.; Bechard, A.; Pare, D.; Allen, D. Recovery rate of harvest residues for bioenergy in boreal and temperate forests: A review. Wiley Interdiscip. Rev. Energy Environ. 2015, 4, 429–451. [Google Scholar] [CrossRef]
- Nurek, T.; Gendek, A.; Roman, K.; Dabrowska, M. The impact of fractional composition on the mechanical properties of agglomerated logging residues. Sustainability 2020, 12, 6120. [Google Scholar] [CrossRef]
- Petrokofsky, G.; Hooper, O.; Petrokofsky, L.; Gant, A.E.; Harvey, W.J.; Willis, K.J. What are the impacts of the wood pellet industry on biodiversity in Southeastern USA? A systematic evidence synthesis. For. Ecol. Manag. 2021, 483, 118773. [Google Scholar] [CrossRef]
- McComb, W.C. Ecology of Coarse Woody Debris and Its Role as Habitat for Mammals. In Mammal Community Dynamics. Management and Conservation in the Coniferous Forests of Western North America; Zabel, C.J., Anthony, R.G., Eds.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bunnell, F.L.; Houde, I. Down wood and biodiversity—implications to forest practices. Environ. Rev. 2010, 18, 397–421. [Google Scholar] [CrossRef]
- Riffell, S.; Verschuyl, J.; Miller, D.; Wigley, T.B. Biofuel harvests, coarse woody debris, and biodiversity—A meta-analysis. For. Ecol. Manag. 2011, 261, 878–887. [Google Scholar] [CrossRef]
- Fisher, J.T.; Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mamm. Rev. 2005, 35, 51–81. [Google Scholar]
- Hargis, C.D.; Bissonette, J.A.; Turner, D.L. The influence of forest fragmentation and landscape pattern on American martens. J. Appl. Ecol. 1999, 36, 157–172. [Google Scholar] [CrossRef]
- Buskirk, S.W.; Zielinski, W.J. Small and mid-sized carnivores. In Mammal Community Dynamics. Management and Conservation in the Coniferous Forests of Western North America; Zabel, C.J., Anthony, R.G., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 207–249. [Google Scholar]
- Lavoie, M.; Renard, A.; Lariviere, S. Timber harvest jeopardize marten persistence in the heart of its range. For. Ecol. Manag. 2019, 442, 46–52. [Google Scholar] [CrossRef]
- Martin, S.K. Feeding ecology of American martens and fishers. In Martens, Sables, and Fishers. Biology and Conservation; Buskirk, S.W., Harestad, A.S., Raphael, M.G., Powell, R.A., Eds.; Cornell University Press: Ithaca, NY, USA; London, UK, 1994; pp. 297–315. [Google Scholar]
- Zwolak, R. A meta-analysis of the effects of wildfire, clearcutting, and partial harvest on the abundance of North American small mammals. For. Ecol. Manag. 2009, 258, 539–545. [Google Scholar] [CrossRef]
- Homyack, J.A.; Verschuyl, J. Effects of harvesting forest-based biomass on terrestrial wildlife. In Renewable Energy and Wildlife Conservation; Moorman, C.E., Grodsky, S.M., Rupp, S.P., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2019; pp. 22–40. [Google Scholar]
- Seibold, S.; Bassler, C.; Brandl, R.; Gossner, M.M.; Thorn, S.; Ulyshen, M.D.; Muller, J. Experimental studies of dead-wood biodiversity—A review identifying global gaps in knowledge. Biol. Conserv. 2015, 191, 139–149. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B.; Bull, J.G.; Ristea, C. Bioenergy or biodiversity: Woody debris structures and maintenance of red-backed voles on clearcuts. Biomass Bioenergy 2011, 35, 4390–4398. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. If we build habitat, will they come? Woody debris structures and conservation of forest mammals. J. Mammal. 2012, 93, 1456–1468. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Sullivan, J.H. Mammalian responses to windrows of woody debris on clearcuts: Abundance and diversity of forest-floor small mammals and presence of small mustelids. For. Ecol. Manag. 2017, 399, 143–154. [Google Scholar] [CrossRef]
- British Columbia Forest Safety Council. Forest Safety News. 1, 4. Forest Safety, Nanaimo, BC, Canada, 2014. Available online: https://selkirk.ca/sites/default/files/Workplace%20Training/Delia%20Roberts/BCForestSafetyNewsletter_2014April.pdf (accessed on 25 April 2021).
- Natural Resources Canada, 2016. Available online: www.nrcan.gc.ca/forests (accessed on 15 March 2018).
- Baxter, G. The Fire History of Slash Fuels in Alberta for the Period 1961–2000; FERIC: Hinton, AB, Canada, 2002; p. 22. [Google Scholar]
- Martinson, E.J.; Omi, P.N. Fuel Treatment and Fire Severity: A Meta—Analysis; Rocky Mountain Research Station: Ft. Collins, CO, USA, 2013.
- Cook, P.S.; O’Laughlin, J. Fuel Treatments in Idaho’s Forests: Effectiveness, Constraints, and Opportunities; Policy Analysis Group, College of Natural Resources, University of Idaho: Moscow, ID, USA, 2014. [Google Scholar]
- Miller, C.; Urban, D.L. Connectivity of forest fuels and surface fire regimes. Landsc. Ecol. 2000, 15, 145–154. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The interaction of fire, fuels, and climate across rocky mountain forests. BioScience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Barkley, Y.C.; Schnepf, C.; Cohen, J.D. Protecting and Landscaping Homes in the Wildland/Urban Interface; Idaho Forest, Wildlife and Range Experiment Station: Moscow, ID, USA, 2010. [Google Scholar]
- Brown, J.K.; Reinhardt, E.D.; Kramer, K.A. Coarse Woody Debris: Managing Benefits and Fire Hazard in the Recovering Forest; USDA Rocky Mountain Research Station: Ogden, UT, USA, 2003.
- Schroeder, D.; Russo, G.; Beck, J.; Hawkes, B.; Dalrymple, G. Modeling ignition probability of thinned lodgepole pine stands. Forest Engineering Research Institute Canada, Vancouver, B.C. Advantage 2006, 7, 8. [Google Scholar]
- Schroeder, D. Fire behaviour in thinned jack pine: Two case studies of FireSmart treatments in Canada’s Northwest Territories. FPInnovations FERIC. Advantage 2010, 12, 12. [Google Scholar]
- Sullivan, A.L.; Surawski, N.C.; Crawford, D.; Hurley, R.J.; Volkova, L.; Weston, C.J. Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. For. Ecol. Manag. 2018, 424, 235–245. [Google Scholar] [CrossRef]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Ritz, B.; Fei, Y.; Fruin, S.; Chapa, G.; Shaw, G.M.; Harris, J.A. Ambient air pollution and risk of birth defects in southern California. Am. J. Epidemiol. 2002, 155, 17–25. [Google Scholar] [CrossRef]
- Tan, W.C.; Qiu, D.; Liam, B.L.; Ng, T.P.; Lee, S.H.; van Eeden, S.F.; D’Yachkova, Y.; Hogg, J.C. The human bone marrow response to acute air pollution caused by forest fires. Am. J. Respir. Crit. Care Med. 2000, 161, 1213–1217. [Google Scholar] [CrossRef]
- Sutherland, E.R.; Make, B.J.; Vedal, S.; Zhang, L.; Dutton, S.J.; Murphy, J.R.; Silkoff, P.E. Wildfire smoke and respiratory symptoms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2005, 115, 420–422. [Google Scholar] [CrossRef]
- Crabbe, H. Risk of respiratory and cardiovascular hospitalization with exposure to bushfire particulates: New evidence from Darwin, Australia. Environ. Geochem. Health 2012, 34, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Aditama, T.Y. Impact of haze from forest fire to respiratory health: Indonesian experience. Respirology 2000, 5, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. A conceptual comparison of bioenergy options for using mountain pine beetle infested wood in western Canada. Bioresour. Technol. 2009, 100, 387–399. [Google Scholar] [CrossRef]
- Mabee, W.E.; Saddler, J.N. Bioethanol from lignocellulosics: Status and perspectives in Canada. Bioresource Technology 2009, 101, 4806–4813. [Google Scholar] [CrossRef]
- Magelli, F.; Boucher, K.; Hsiaotao, T.B.; Melin, S.; Bonoli, A. An environmental impact assessment of exported wood pellets from Canada to Europe. Biomass Bioenergy 2009, 33, 434–441. [Google Scholar] [CrossRef]
- WPAC Wood Pellet Association of Canada. Canadian Pellet Industry Update. PFI Annual Conference, Williamsburg, VA. WPAC Website; 2015. Available online: https://www.pellet.org/images/pellet/PFI-AGM.pdf (accessed on 25 April 2021).
- Laganiere, J.; Pare, D.; Thiffault, E.; Bernier, P.Y. Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests. Glob. Change Biol. Bioenergy 2017, 9, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Moses, R.A.; Boutin, S. The influence of clear-cut logging and residual leave material on small mammal populations in aspen-dominated boreal mixedwoods. Can. J. For. Res. 2001, 31, 483–495. [Google Scholar] [CrossRef]
- Lisgo, K.A.; Bunnell, F.L.; Harestad, A.S. Summer and Fall Use of Logging Residue Piles by Female Short-Tailed Weasels. In Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, Reno, NV, USA, 2–4 November 1999; USDA: Albany, CA, USA, 2002; pp. 319–329. [Google Scholar]
- Craig, V.J.; Klenner, W.; Feller, M.C.; Sullivan, T.P. Relationships between deer mice (Peromyscus maniculatus) and downed wood in managed forests of southern British Columbia. Can. J. For. Res. 2006, 36, 2189–2203. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.A.; Edge, W.D. Small mammal responses to fine woody debris and forest fuel reduction in southwest Oregon. J. Wildl. Manag. 2008, 72, 625–632. [Google Scholar] [CrossRef]
- Moseley, K.R.; Owens, A.K.; Castleberry, S.B.; Ford, W.M.; Kilgo, J.C.; McCay, T.S. Soricid response to coarse woody debris manipulations in Coastal Plain loblolly pine forests. For. Ecol. Manag. 2008, 255, 2306–2311. [Google Scholar] [CrossRef]
- Davis, J.C.; Castleberry, S.B.; Kilgo, J.C. Influence of coarse woody debris on the soricid community in southeastern Coastal Plain pine stands. J. Mamm. 2010, 91, 993–999. [Google Scholar] [CrossRef] [Green Version]
- Fauteux, D.; Imbeau, L.; Drapeau, P.; Mazerolle, M.J. Small mammal responses to coarse woody debris distribution at different spatial scales in managed and unmanaged boreal forests. For. Ecol. Manag. 2012, 266, 194–205. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Woody debris, voles, and trees: Influence of habitat structure (piles and windrows) on long-tailed vole populations and feeding damage. For. Ecol. Manag. 2012, 263, 189–198. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Diversifying clearcuts with green-tree retention and woody debris structures: Conservation of mammals across forest ecological zones. Silva Fenn. 2014, 48, 1219. [Google Scholar] [CrossRef] [Green Version]
- Craig, V.J.; Klenner, W.; Feller, M.C.; Sullivan, T.P. Population dynamics of red-backed voles (Myodes gapperi) and their relationship to downed wood in managed forests of southern British Columbia. Can. Wildl. Biol. Manag. 2014, 3, 93–108. [Google Scholar]
- Craig, V.J.; Klenner, W.; Feller, M.C.; Sullivan, T.P. Population dynamics of meadow voles (Microtus pennsylvanicus) and long-tailed voles (M. longicaudus) and their relationship to downed wood in managed forests. Mam. Res. 2015, 60, 29–38. [Google Scholar] [CrossRef]
- Fritts, S.R.; Moorman, C.E.; Grodsky, S.M.; Hazel, D.W.; Homyack, J.A.; Farrell, C.B.; Castleberry, S.B. Shrew response to variable woody debris retention: Implications for sustainable forest bioenergy. For. Ecol. Manag. 2015, 336, 35–43. [Google Scholar] [CrossRef]
- Goguen, C.B.; Fritsky, R.S.; San Julian, G.J. Effects of brush piles on small mammal abundance and survival in central Pennsylvania. J. Fish Wildl. Manag. 2015, 6, 392–404. [Google Scholar] [CrossRef] [Green Version]
- Fritts, S.R.; Moorman, C.E.; Grodsky, S.M.; Hazel, D.W.; Homyack, J.A.; Farrell, C.B.; Castleberry, S.B.; Evans, E.H.; Greene, D.U. Rodent response to harvesting woody biomass for bioenergy production. J. Wildl. Manag. 2017, 81, 1170–1178. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Maintenance of small mammals using post-harvest woody debris structures on clearcuts: Linear configuration of piles is comparable to windrows. Mammal Res. 2018, 63, 11–19. [Google Scholar] [CrossRef]
- Seip, C.; Hodder, D.; Crowley, S.; Johnson, C. Use of constructed coarse woody debris corridors in a clearcut by American martens (Martes americana) and their prey. Forestry 2018, 91, 506–513. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Long-term functionality of woody debris structures for forest-floor small mammals on clearcuts. For. Ecol. Manag. 2019, 451, 117535. [Google Scholar] [CrossRef]
- Loeb, S.C. Responses of small mammals to coarse woody debris in a Southeastern pine forest. J. Mamm. 1999, 80, 460–471. [Google Scholar] [CrossRef] [Green Version]
- Steel, E.A.; Naiman, R.J.; West, S.D. Use of woody debris piles by birds and small mammals in a riparian corridor. Northwest Sci. 1999, 73, 19–26. [Google Scholar]
- McCay, T.S.; Komoroski, M.J. Demographic responses of shrews to removal of coarse woody debris in a managed pine forest. For. Ecol. Manag. 2004, 189, 387–395. [Google Scholar] [CrossRef]
- Waldien, D.L.; Hayes, J.P.; Huso, M.P.P. Use of downed wood by Townsend’s chipmunks (Tamias townsendii) in western Oregon. J. Mammal. 2006, 87, 454–460. [Google Scholar] [CrossRef]
- Gustafsson, L.; Baker, S.C.; Bauhus, J.; Beese, W.J.; Brodie, A.; Kouki, J.; Lindenmayer, D.B.; Lohmus, A.; Pastur, G.M.; Messier, C.; et al. Retention forestry to maintain multifunctional forests: A world perspective. BioScience 2012, 62, 633–645. [Google Scholar] [CrossRef] [Green Version]
- Ecke, F.; Löfgren, O.; Hörnfeldt, B.; Ekelund, U.; Ericsson, P.; Sörlin, D. Abundance and diversity of small mammals in relation to structural habitat factors. Ecol. Bull. 2001, 49, 165–171. [Google Scholar]
- Ecke, F.; Löfgren, O.; Sörlin, D. Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J. Appl. Ecol. 2002, 39, 781–792. [Google Scholar] [CrossRef]
- Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 2001, 49, 11–41. [Google Scholar]
- Bogdziewicz, M.; Zwolak, R. Responses of small mammals to clear-cutting in temperate and boreal forests of Europe: A meta-analysis and review. Eur. J. For. Res. 2014, 133, 1–11. [Google Scholar] [CrossRef] [Green Version]
- McInnis, B.G.; Roberts, M.R. Seedling microenvironment in full-tree and tree length logging slash. Can. J. For. Res. 1995, 25, 128–136. [Google Scholar] [CrossRef]
- Landhäusser, S.M. Impact of slash removal, drag scarification, and mounding on lodgepole pine cone distribution and seedling regeneration after cut-to-length harvesting on high elevation sites. For. Ecol. Manag. 2009, 258, 43–49. [Google Scholar] [CrossRef]
- Knapp, E.E.; Varner, J.M.; Busse, M.D.; Skinner, C.N.; Shestak, C.J. Behaviour and effects of prescribed fire in masticated fuelbeds. Int. J. Wildland Fire 2011, 20, 932–945. [Google Scholar] [CrossRef]
- Kreye, J.K.; Kobziar, L.N.; Zipperer, W.C. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels. Int. J. Wildland Fire 2012, 22, 440–445. [Google Scholar] [CrossRef]
- Kreye, J.K.; Brewer, N.W.; Morgan, P.; Varner, J.M.; Smith, A.M.S.; Hoffman, C.M.; Ottmar, R.D. Fire behaviour in masticated fuels: A review. For. Ecol. Manag. 2014, 314, 193–207. [Google Scholar] [CrossRef]
- Brennan, T.J.; Keeley, J.E. Effect of mastication and other mechanical treatments on fuel structure in chaparral. Int. J. Wildland Fire 2015. [Google Scholar] [CrossRef]
- Moore, B.; Thompson, D.K.; Schroeder, D.; Hvenegaard, S. Using infared imagery to assess fire behaviour in a mulched fuel bed in black spruce forests. Fire 2020, 3, 37. [Google Scholar] [CrossRef]
- Amacher, A.J.; Barrett, R.H.; Moghaddas, J.J.; Stephens, S.L. Preliminary effects of fire and mechanical fuel treatments on the abundance of small mammals in the mixed-conifer forest of the Sierra Nevada. For. Eco. Manag. 2008, 255, 3193–3202. [Google Scholar] [CrossRef]
- Jonsell, M.; Weslien, J.; Ehnstrom, B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodiv. Conserv. 1998, 7, 749–764. [Google Scholar] [CrossRef]
- Rubene, D.; Wikars, L.-O.; Ranius, T. Importance of high-quality early-successional habitats in managed forest landscapes to rare beetle species. Biodiv. Conserv. 2014, 23, 449–466. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Krueger, W.C. Livestock impacts on riparian ecosystems and streamside management implications. A review. J. Range Manag. 1984, 37, 430–438. [Google Scholar] [CrossRef]
- Bock, C.E.; Bock, J.H.; Smith, H.M. Proposal for a system of federal livestock exclosures on public rangelands in the western United States. Conserv. Biol. 1993, 7, 731–733. [Google Scholar] [CrossRef]
- Fleischner, T.L. Ecological costs of livestock grazing in western North America. Conserv. Biol. 1994, 8, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Bradley, C. Reducing the Cumulative Effect of Timber Harvest and Livestock Grazing Using Debris Barriers. Master’s Thesis, Thompson Rivers University, Kamloops, BC, Canada, 2020. [Google Scholar]
- Rawluk, A.A.; Crow, G.; Legesse, G.; Veira, D.M.; Bullock, P.R.; Gonzalez, L.A.; Dubois, M.; Ominski, K.H. Off-stream watering systems and partial barriers as a strategy to maximize cattle production and minimize time spent in the riparian area. Animals 2014, 4, 670–692. [Google Scholar] [CrossRef] [Green Version]
- Thevathasan, N.V. Agroforestry in Canada and its role in farming systems. In Temperate Agroforestry Systems, 2nd ed.; Gordon, A.M., Newman, S.M., Coleman, B., Eds.; CABI: Wallingford, UK, 2017. [Google Scholar]
- Vinge, T.; Pyper, M. Managing Woody Materials on Industrial Sites: Meeting Economic, Ecological, and Forest Health Goals through a Collaborative Approach; University of Alberta: Edmonton, AB, USA, 2012; p. 32. [Google Scholar]
- Landhäusser, S.M.; Lieffers, V.J.; Chow, P. Impact of chipping residues and their leachate on the initiation and growth of aspen root suckers. Can. J. Soil Sci. 2007, 87, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Law, D.J.; Kolb, P.F. The effects of forest residual debris disposal on perennial grass emergence, growth, and survival in a ponderosa pine ecotone. Range. Ecol. Manag. 2007, 60, 632–643. [Google Scholar] [CrossRef]
- Wolk, B.; Rocca, M.E. Thinning and chipping small-diameter ponderosa pine changes understory plant communities on the Colorado Front Range. For. Ecol. Manag. 2009, 257, 85–95. [Google Scholar] [CrossRef]
- Corns, G.W.; Maynard, D.G. Effects of soil compaction and chipped aspen residue on aspen regeneration and soil nutrients. Can. J. Soil Sci. 1998, 78, 85–92. [Google Scholar] [CrossRef]
- Miller, E.M.; Seastedt, T.R. Impacts of woodchip amendments and soil nutrient availability on understory vegetation establishment following thinning of a ponderosa pine forest. For. Ecol. Manag. 2009, 258, 263–272. [Google Scholar] [CrossRef]
- Bulmer, C.; Venner, K.; Prescott, C. Forest soil rehabilitation with tillage and wood waste enhances seedling establishment but not height after 8 years. Can. J. For. Res. 2007, 37, 1894–1906. [Google Scholar] [CrossRef]
- Kabzems, R.; Dube, S.; Curran, M.; Chapman, B.; Berch, S.; Hope, G.; Kranabetter, M.; Bulmer, C. Maintaining Soil Productivity in Forest Biomass Chipping Operations Best Management Practices for Soil Conservation; Extension Note #98; BC Ministry of Forests and Range Forest Science Program: Victoria, BC, Canada, 2011. [Google Scholar]
- Hart, G.E.; DeByle, N.V.; Hennes, R.W. Slash treatment after clearcutting lodgepole pine affects nutrients in soil water. J. For. 1981, 79, 446–450. [Google Scholar]
- Conlin, T.S.S. In-woods chipping: Possible evidence for allelochemical interaction of leachate generated from trembling aspen (Populus tremuloides Michx.) bark and wood waste. For. Chron. 2001, 77, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Zabowski, D.; Java, B.; Scherer, G.; Everett, R.L.; Ottmar, R. Timber harvesting residue treatment: Part 1. Responses of conifer seedlings, soils and microclimate. For. Ecol. Manag. 2000, 126, 25–34. [Google Scholar] [CrossRef]
- Vance, E.D. Conclusions and caveats from studies of managed forest carbon budgets. For. Ecol. Manag. 2018, 427, 350–354. [Google Scholar] [CrossRef]
- McCavour, M.J.; Pare, D.; Messier, C.; Thiffault, N.; Thiffault, E. The role of aggregated forest harvest residue in soil fertility, plant growth, and pollination services. Soil Sci. Soc. Amer. J. 2014. [Google Scholar] [CrossRef]
- Fornwalt, P.J.; Rocca, M.E.; Battaglia, M.A.; Rhoades, C.C.; Ryan, M.G. Mulching fuels treatments promote understory plant communities in three Colorado, USA, coniferous forest types. For. Ecol. Manag. 2017, 385, 214–224. [Google Scholar] [CrossRef]
- Harrington, T.B.; Peter, D.H.; Slesak, R.A. Logging debris and herbicide treatments improve growing conditions for planted Douglas-fir on a droughty forest site invaded by Scotch broom. For. Ecol. Manag. 2018, 417, 31–39. [Google Scholar] [CrossRef]
- Peter, D.H.; Harrington, T.B. Effects of forest harvesting, logging debris, and herbicides on the composition, diversity and assembly of a western Washington, USA plant community. For. Ecol. Manag. 2018, 417, 18–30. [Google Scholar] [CrossRef]
- Rost, J.; Clavero, M.; Bas, J.M.; Pons, P. Building wood debris piles benefits avian seed dispersers in burned and logged Mediterranean pine forests. For Ecol manag. 2010, 260, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Rost, J.; Bas, J.M.; Pons, P. The importance of piled wood debris on the distribution of bird-dispersed plants in burned and logged Mediterranean pine forests. Int. J. Wildland Fire 2011, 21, 79–85. [Google Scholar] [CrossRef]
- Thomas, C.D.; Anderson, B.J.; Moilanen, A.; Eigenbrod, F.; Heinemeyer, A.; Quaife, T.; Roy, D.B.; Gillings, S.; Armsworth, P.R.; Gaston, K.J. Reconciling biodiversity and carbon conservation. Ecol. Lett. 2013, 16, 39–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Environment Programme. Making Peace with Nature. 2021. Available online: https://news.un.org/en/story/2021/02/1085092 (accessed on 15 January 2001).
Location | Forest Type | Woody Debris | Season | Years + Reps | Small Mammal Abundance | SR | SD | Small Mustelids | Study |
---|---|---|---|---|---|---|---|---|---|
Alberta | Boreal mixedwood | Swaths | Summer | 4 + 2 | RBV (0) DM (0) | [54] | |||
Alberta | Boreal mixedwood | Piles | Summer | 1 + 1 | RBV (+) DM (0) | Weasel (+) | [55] | ||
B.C. | IDF Spruce-fir | Swaths | Summer | 4 + 3 | DM (0) | [56] | |||
Oregon | Douglas-fir | Small piles | Summer | 1 + 3 | WRBV (0) DM (0) | [57] | |||
South Carolina | Loblolly pine | Swaths | Spring, Summer Winter | 3 + 3 | BLA (0) SOR (0) CRY (0) | [58] | |||
South Carolina | Loblolly pine | Swaths | All seasons | 2 + 3 | BLA (+) SOR (+) CRY (0) | [59] | |||
Quebec | Boreal black spruce | Small piles | Summer | 2 + 4 | RBV (+) DM (+) | [60] | |||
B.C. | Montane Spruce | Piles and windrows | Summer | 3 + 3 | RBV (+) Total (+) | (+) | (+) | Weasel (+) Marten (+) | [28] |
B.C. | Montane Spruce IDF | Piles and windrows | Summer | 3 + 3 | LTV (+) | Weasel (+) | [61] | ||
B.C. | Montane Spruce ICH IDF | Windrows and GTR | Summer | 3 + 3 | RBV (+) Total (+) | (0) | (0) | [62] | |
B.C. | Spruce-fir ESSF | Swaths | Summer | 4 + 3 | RBV (0) | [63] | |||
B.C. | IDF Spruce-fir | Swaths | Summer | 4 + 3 | LTV (0) MV (0) | [64] | |||
North Carolina + Georgia | Loblolly pine | Piles | Summer | 3/4 + 8 | BLA (0) SOR (0) CRY (0) | [65] | |||
Pennsylvania | Hardwoods | Small piles | Summer | 2 + 6,7 | Pero (0) BREV (0) NEO (0) | [66] | |||
North Carolina + Georgia | Loblolly pine | Piles | Summer | 3 + 8 | DM (0) MUS (0) SIG (0) | [67] | |||
B.C. | Montane Spruce ICH | Windrows | Summer | 5 + 6 | Voles (+) Total (+) | (+) | (+) | Weasel (+) Marten (+) | [29] |
B.C. | Montane spruce | Piles and windrows | Spring–Fall | 3 + 3 | Voles (+) Total (+) | (0) | (0) | [68] | |
B.C. | Sub-boreal spruce | Windrows (corridors) | Summer and Winter | 2 | Voles (+) Mice (+) Shrews (+) | Marten (+) | [69] | ||
B.C. | Montane Spruce IDF | Piles and windrows | Summer | 5,12 + 3 | RBV (+,0) LTV (+,0) Total (+,0) | (+,0) | (0,0) | [70] |
When | Where to Place | Characteristics |
---|---|---|
During harvesting/log processing | Connect residual patches to each other or riparian areas | 2 m in height +5–7 m in width or diameter |
Situations where biofuel production is not viable | In areas remote from human activity to reduce fire risk | ≥1 windrow or series of piles per 10 ha of cutblock |
On sites where seedling microsites are limited | Preferably on roads perpendicular to the main haul roads | Leave openings every 100 m for ungulates and silvicultural activity |
Cutblocks <10 ha CWD should be evenly distributed vs. piled | Particularly important on ≥10-ha openings | On large, wide cutblocks (>50 m) connectivity should include patches/riparian to cross wide areas |
Cutblocks with average distances between forest edges <50 m need not have piles | In areas requiring protection from soil erosion at road ways | On irregularly shaped cutblocks use narrower portions of cutblock |
Avoid vole “hot-spots” due to seedling predation | Piles should be 5 m from forest or riparian edges |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sullivan, T.P.; Sullivan, D.S.; Klenner, W. Fate of Postharvest Woody Debris, Mammal Habitat, and Alternative Management of Forest Residues on Clearcuts: A Synthesis. Forests 2021, 12, 551. https://doi.org/10.3390/f12050551
Sullivan TP, Sullivan DS, Klenner W. Fate of Postharvest Woody Debris, Mammal Habitat, and Alternative Management of Forest Residues on Clearcuts: A Synthesis. Forests. 2021; 12(5):551. https://doi.org/10.3390/f12050551
Chicago/Turabian StyleSullivan, Thomas P., Druscilla S. Sullivan, and Walt Klenner. 2021. "Fate of Postharvest Woody Debris, Mammal Habitat, and Alternative Management of Forest Residues on Clearcuts: A Synthesis" Forests 12, no. 5: 551. https://doi.org/10.3390/f12050551
APA StyleSullivan, T. P., Sullivan, D. S., & Klenner, W. (2021). Fate of Postharvest Woody Debris, Mammal Habitat, and Alternative Management of Forest Residues on Clearcuts: A Synthesis. Forests, 12(5), 551. https://doi.org/10.3390/f12050551