Field Testing of Selected Salt-Tolerant Screened Balsam Poplar (Populus balsamifera L.) Clones for Use in Reclamation around End-Pit Lakes Associated with Bitumen Extraction in Northern Alberta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Set-Up (2012&2013)
2.1.1. Plant Material and Growing Conditions
2.1.2. Data Collection
2.2. Field Testing (2014–2019)
2.2.1. Treatment Groups
2.2.2. Plant Material
2.2.3. Testing Environment
2.2.4. Experiment Design
2.2.5. Growth and Survival Data Collection
2.2.6. Tissue Nutrient Analysis
2.3. Data Analysis
3. Results
3.1. Greenhouse Study
3.1.1. Survival and Growth
3.1.2. Clonal Variation
3.2. Field Testing
3.2.1. Survival and Growth
3.2.2. Tissue Nutrient Analysis
4. Discussion
4.1. Greenhouse Study
4.2. Field Testing
4.2.1. Survival and Growth
4.2.2. Nutrient Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Control | 25% Process Water | 50% Process Water | ||||
---|---|---|---|---|---|---|
Clone | Mean (g) | ±SE | Mean (g) | ±SE | Mean (g) | ±SE |
4357 | 5.03 | 0.63 | 4.36 | 0.26 | 3.00 | 0.63 |
4326 | 3.76 | 1.65 | 3.84 | 0.25 | 2.99 | 0.85 |
2304 | 5.10 | 0.32 | 2.95 | 1.07 | 2.27 | 1.36 |
2453 | 1.49 | 0.05 | 1.57 | 1.11 | 1.77 | 0.45 |
4349 | 1.27 | 0.07 | 2.29 | 1.48 | 0.68 | |
3029 | 2.10 | 0.54 | 2.54 | 0.36 | 1.47 | |
2267 | 2.76 | 0.45 | 2.32 | 1.43 | ||
4304 | 1.20 | 1.96 | 1.96 | 0.28 | 1.43 | |
4301 | 2.66 | 0.46 | 2.57 | 0.81 | 1.42 | 0.55 |
3188 | 3.69 | 0.21 | 1.56 | 0.76 | 1.41 | 0.12 |
2995 | 3.26 | 0.47 | 2.60 | 0.40 | 1.39 | |
4363 | 2.47 | 0.15 | 2.02 | 0.11 | 1.38 | |
4255 | 1.92 | 0.49 | 1.02 | 0.10 | 1.36 | 0.10 |
4296 | 3.93 | 0.18 | 1.07 | 0.01 | 1.36 | 0.08 |
4334 | 5.62 | 0.15 | 2.58 | 0.47 | 1.35 | 0.07 |
4277 | 1.16 | 0.34 | 2.57 | 0.48 | 1.34 | 0.25 |
4295 | 1.63 | 0.29 | 1.26 | 0.73 | 1.32 | 0.61 |
2288 | 4.01 | 0.27 | 1.86 | 0.28 | 1.26 | 0.08 |
3110 | 1.70 | 1.24 | 0.99 | 0.09 | 1.22 | 0.08 |
4285 | 1.53 | 0.22 | 4.17 | 1.19 | ||
4315 | 0.23 | 0.71 | 2.15 | 0.24 | 1.19 | 0.43 |
3187 | 0.70 | 0.19 | 0.62 | 0.71 | 1.14 | . |
2447 | 1.63 | 0.03 | 0.24 | 0.25 | 1.13 | 0.17 |
4249 | 0.91 | 0.21 | 1.61 | 0.32 | 1.11 | 0.30 |
2976 | 1.26 | 1.18 | 0.54 | 1.81 | 1.09 | |
2312 | 0.41 | 0.97 | 2.47 | 0.91 | 1.08 | 0.31 |
4317 | 1.56 | 0.17 | 1.23 | 0.70 | 1.06 | |
4297 | 0.61 | 0.36 | 1.02 | 0.06 | ||
4356 | 0.66 | 1.09 | 0.89 | 0.02 | 1.02 | 0.12 |
3106 | 1.02 | 0.91 | 2.30 | 0.74 | 1.01 | 0.13 |
Treatment mean | 1.42 | 0.08 | 1.17 | 0.06 | 0.77 | 0.04 |
Control | 25% Process Water | 50% Process Water | ||||
---|---|---|---|---|---|---|
Clone | Mean (g) | ±SE | Mean (g) | ±SE | Mean (g) | ±SE |
2282 | 4.89 | 2.16 | 5.16 | 0.40 | 6.39 | 3.02 |
2314 | 7.85 | 0.56 | 9.82 | 6.16 | 5.62 | 0.27 |
2287 | 8.91 | 5.21 | 9.85 | 3.71 | 5.55 | 0.68 |
2272 | 5.80 | 0.39 | 6.26 | 0.98 | 5.24 | 0.87 |
2304 | 6.37 | 1.65 | 5.57 | 1.39 | 5.16 | 2.02 |
2313 | 3.92 | 1.21 | 4.81 | 2.03 | 5.01 | 0.24 |
2269 | 5.39 | 1.09 | 5.56 | 1.07 | 4.63 | 0.88 |
2291 | 5.88 | 4.99 | 6.35 | 2.91 | 3.86 | 0.98 |
4326 | 6.35 | 3.52 | 6.86 | 1.03 | 3.56 | 0.37 |
2301 | 3.40 | 1.95 | 2.26 | 1.63 | 3.43 | 0.72 |
2302 | 8.18 | 1.26 | 5.29 | 2.27 | 3.24 | 1.40 |
2289 | 3.67 | 1.89 | 2.97 | 1.13 | 3.14 | 1.34 |
2305 | 7.13 | 1.42 | 7.44 | 0.55 | 2.89 | 0.32 |
2300 | 6.42 | 1.91 | 5.61 | 1.34 | 2.88 | 0.47 |
2268 | 7.70 | 2.07 | 4.86 | 2.71 | 2.76 | 0.77 |
2278 | 4.85 | 1.46 | 2.81 | 1.15 | 2.63 | 0.77 |
3027 | 5.33 | 1.17 | 1.46 | 0.013 | 2.59 | 0.30 |
2307 | 4.71 | 2.63 | 3.86 | 1.47 | 2.58 | 0.64 |
2997 | 2.68 | 1.90 | 1.26 | 0.72 | 2.47 | 0.44 |
2284 | 1.985 | 2.3 | ||||
2297 | 8.50 | 1.93 | 8.71 | 0.64 | 2.22 | 0.14 |
2295 | 4.20 | 1.55 | 3.27 | 0.35 | 2.21 | 0.32 |
4274 | 1.05 | 0.43 | 1.55 | 0.12 | 2.16 | |
4349 | 1.82 | 1.23 | 0.99 | 0.64 | 2.13 | 0.28 |
4283 | 3.05 | 0.64 | 0.88 | 0.51 | 2.08 | 0.41 |
2266 | 2.62 | 0.27 | 5.53 | 2.93 | 2.02 | 0.68 |
2303 | 4.93 | 0.75 | 4.16 | 0.90 | 1.99 | |
2293 | 3.61 | 0.47 | 3.52 | 0.87 | 1.99 | 0.26 |
915 | 4.27 | 0.86 | 2.70 | 1.63 | 1.97 | 0.30 |
3028 | 1.98 | 0.24 | 1.14 | 0.048 | 1.97 | 0.68 |
Treatment mean | 3.32 | 0.19 | 2.88 | 0.21 | 1.90 | 0.10 |
Growth Season | |||||||
---|---|---|---|---|---|---|---|
2012 | 2013 | ||||||
Growth variable | Source of variation | F | df | p-value | F | df | p-value |
Stem height (cm) | Clone | 5.26 | 144 | <0.001 | 9.24 | 85 | <0.001 |
Trt | 85.78 | 2 | <0.001 | 31.64 | 2 | <0.001 | |
Clone * Trt | 1.17 | 237 | 0.091 | 0.83 | 169 | 0.929 | |
Basal diameter (mm) | Clone | 3.83 | 144 | <0.001 | 6.24 | 85 | <0.001 |
Trt | 7.86 | 2 | 0.004 | 23.28 | 2 | <0.001 | |
Clone * Trt | 1.01 | 237 | 0.471 | 0.92 | 169 | 0.730 | |
Stem biomass (g) | Clone | 4.65 | 144 | <0.001 | 6.36 | 85 | <0.001 |
Trt | 51.64 | 2 | <0.001 | 35.82 | 2 | <0.001 | |
Clone * Trt | 1.45 | 237 | 0.007 | 0.84 | 169 | 0.897 | |
Root biomass (g) | Clone | 4.6 | 144 | <0.001 | 4.29 | 85 | <0.001 |
Trt | 39.32 | 2 | <0.001 | 25.4 | 2 | <0.001 | |
Clone * Trt | 1.23 | 237 | 0.039 | 0.75 | 169 | 0.985 | |
Leaf biomass (g) | Clone | 4.51 | 144 | <0.001 | 5.62 | 85 | <0.001 |
Trt | 39.56 | 2 | <0.001 | 30.31 | 2 | <0.001 | |
Clone * Trt | 1.17 | 237 | 0.082 | 0.99 | 169 | 0.538 | |
Total biomass (g) | Clone | 4.97 | 144 | <0.001 | 5.77 | 85 | <0.001 |
Trt | 47.06 | 2 | <0.001 | 34.60 | 2 | <0.001 | |
Clone * Trt | 1.28 | 237 | 0.016 | 0.87 | 169 | 0.841 |
Source | DF | F Value | p-Value |
---|---|---|---|
Block | 2 | 19.95 | <0.0001 |
Treatment | 2 | 5.03 | 0.0076 |
Clone | 33 | 4.04 | <0.0001 |
Error | 458 | ||
Total | 495 |
References
- Government of Alberta. Oil Sands Facts and Statistics. Available online: https://www.alberta.ca/oil-sands-facts-and-statistics.aspx/ (accessed on 21 December 2020).
- Natural Resources Canada. Oil Sands: Land Use and Reclamation. Available online: https://www.nrcan.gc.ca/energy/publications/18740/ (accessed on 21 December 2020).
- Fung, M.Y.P.; Macyk, T.M. Reclamation of Oil Sands Mining Areas. In Reclamation of Drastically Disturbed Lands, 2nd ed.; Barnhisel, R.I., Darmody, R.G., Lee Daniels, W., Eds.; American Society of Agronomy Monograph: Madison, WI, USA, 2000; Volume 41, p. 1082. [Google Scholar]
- MacKinnon, M.D. Development of the tailings pond at Syncrude’s oil sands plant, 1978–1987. AOSTRA J. Res. 1989, 5, 109–133. [Google Scholar]
- Province of Alberta. Chapter E-12. In Environmental Protection and Enhancement Act; Revised Statues of Alberta; Alberta Queen’s Printer: Edmonton, AB, Canada, 2017; p. 168. [Google Scholar]
- Del Rio, L.F.; Hadwin, A.K.M.; Pinto, L.J.; MacKinnon, M.D.; Moore, M.M. Degradation of naphthenic acids by sediment micro-organisms. J. Appl. Microbiol. 2006, 101, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Province of Alberta. Chapter R-17.3. In Responsible Energy Development Act; Statutes of Alberta; Alberta Queens Printer: Edmonton, AB, Canada, 2014; p. 44. [Google Scholar]
- Renault, S.; Lait, C.; Zwiazek, J.J.; MacKinnon, M.D. Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environ. Pollut. 1998, 102, 177–184. [Google Scholar] [CrossRef]
- Howat, D.R. Acceptable Salinity, Sodicity and pH Values for Boreal Forest Reclamation; Alberta Environment; Environmental Sciences Division: Edmonton, AB, Canada, 2000; p. 191. [Google Scholar]
- Barbour, S.L.; Chanasyk, D.; Hendry, J.; Leskiw, L.; Macyk, T.; Mendoza, C.; Naeth, A.; Nichol, C.; O’Kane, M.; Purdy, B.; et al. Soil Capping Research in the Athabasca Oil Sands Region Volume 1: Technology Synthesis; Syncrude Canada Ltd.: Fort McMurray, AB, Canada, 2007; p. 175. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Isebrands, J.G.; Karnosky, D.F. Environmental benefits of poplar culture. In Poplar Culture in North America; Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J., Eds.; NRC-CNRC Press: Ottawa, ON, Canada, 2001; pp. 207–218. [Google Scholar]
- Licht, L.A.; Isebrands, J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Biol. 2005, 28, 203–218. [Google Scholar] [CrossRef]
- Richardson, J.; Cook, J.E.K.; Isebrands, J.G.; Thomas, B.R.; Van Rees, K.C.J. Poplar research in Canada—A historical perspective with a view to the future. Can. J. Bot. 2007, 85, 1136–1146. [Google Scholar] [CrossRef]
- Ma, H.C.; Fung, L.; Wang, S.S.; Altman, A. Photosynthetic response of Populus euphratica to salt stress. For. Ecol. Manag. 1997, 93, 55–61. [Google Scholar] [CrossRef]
- Gorden, J.C. Poplars: Trees of the people, trees of the future. For. Chron. 2001, 77, 217–219. [Google Scholar] [CrossRef] [Green Version]
- Sixto, H.; Aranda, I.; Grau, J.M. Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence. Photosynthetica 2006, 44, 169–173. [Google Scholar] [CrossRef]
- Imada, S.; Yamanaka, N.; Tamai, S. Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L. J. Arid Environ. 2009, 73, 245–251. [Google Scholar] [CrossRef]
- Liu, H.; Tamai, S.; Furukawa, I. The influence on the growth and biomass of Populus alba L. under saline irrigation in sandy soil. Appl. For. Sci. 2001, 10, 37–44. [Google Scholar]
- DesRochers, A.; Thomas, B.R.; Butson, R. Reclamation roads and landings with balsam poplar cuttings. For. Ecol. Manag. 2004, 199, 39–50. [Google Scholar] [CrossRef]
- Johnson, C.M.; Scout, P.R.; Broyer, T.C.; Carlton, A.B. Comparative chlorine requirements of different plant species. Plant Soil 1957, 7, 337–353. [Google Scholar] [CrossRef]
- Thomas, B.; Kamelchuk, D.; Macdonald, E.; Hu, Y.; Krygier, R. Screening Populus Balsamifera Clones for Use in Reclamation on Challenging Sites; Internal Document; Alberta-Pacific Forest Industries Inc.: Boyle, AB, Canada, 2013; p. 26. [Google Scholar]
- Alberta Agriculture and Forestry (Forestry Division) (AAF). Alberta Forest Genetic Resource Management and Conservation Standards (FGRMS); Alberta Agriculture and Forestry; Government of Alberta: Edmonton, AB, Canada, 2016; p. 165.
- Climate FortMcMurray. Available online: https://en.climate-data.org/north-america/canada/alberta/fort-mcmurray-4623/ (accessed on 25 April 2021).
- Thomas, B.R.; Kamelchuk, D.; Dietrich, S. Native balsam poplar clones for use in reclamation of salt-impacted sites. In COSIA Land EPA 2017 Mine Site Reclamation Research Report; Canada’s Oil Sands Innovation Alliance (COSIA): Calgary, AB, Canada, 2018; pp. 162–163. [Google Scholar]
- Tailings. Available online: https://www.syncrude.ca/sustainability/tailings/ (accessed on 26 March 2021).
- Alberta Agriculture and Forestry (Alberta Tree Improvement and Seed Center) (AAF). Trial Measurement Manual: Best Practices Field Procedures for Tree Measurements in Genetic Field Trials; Alberta Agriculture and Forestry; Government of Alberta: Edmonton, AB, Canada, 2016; p. 22.
- SAS Institute Inc. Base SAS® 9.4 Procedures Guide: Statistical Procedures, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2013; p. 558. [Google Scholar]
- Brown, K.; van den Driessche, R. Growth and nutrition of hybrid poplars over 3 years after fertilization at planting. Can. J. For. Res. 2002, 32, 226–232. [Google Scholar] [CrossRef]
- Mirck, J.; Volk, T.A. Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts. Bioresour. Technol. 2010, 101, 3484–3492. [Google Scholar] [CrossRef] [PubMed]
- Algreen, M.; Trapp, S.; Rein, A. Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees. Environ. Sci. Pollut. Res. 2014, 21, 8992–9001. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.R. Sodium exclusion and potassium-sodium selectivity in salt treated trifoliate orange (Poncirus triliata) and cleopatra mandarin (Citrus reticulata) plants. Aust. J. Plant Physiol. 1986, 13, 293–303. [Google Scholar]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Riemenschneider, D.E.; Hall, R.B. Early rooting of dormant hardwood cuttings of Populus: Analysis of quantitative genetics and genotype × environment interactions. Can. J. For. Res. 2005, 35, 918–929. [Google Scholar] [CrossRef] [Green Version]
- Landhäusser, S.M.; Silins, U.; Lieffers, V.J.; Liu, W. Responses of Populus tremuloides, Populus balsamifera, Betula papyrifera and Picea glauca seedlings to low soil temperature and water-logged soil conditions. Scand. J. For. Res. 2003, 18, 391–400. [Google Scholar] [CrossRef]
- Tisdale, S.L.; Nelson, W.L.; Beaton, J.D.; Havlin, J.L. Soil Fertility and Fertilizers; MacMillan Publishing Co. Inc.: New York, NY, USA, 1993; p. 648. [Google Scholar]
- White, K.B.; Liber, K. Early chemical and toxicological risk characterization of inorganic constituents in surface water from the Canadian oil sands first large-scale end pit lake. Chemosphere 2018, 211, 745–757. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Nan, Z.; Su, J.; Wang, N. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: Implications for phytoextraction and phytostabilization. Environ. Sci. Pollut. Res. 2013, 20, 7194–7203. [Google Scholar] [CrossRef] [PubMed]
- Kacálková, L.; Tlustoš, P.; Száková, J. Phytoextraction of risk elements by willow and poplar trees. Int. J. Phytoremediat. 2015, 17, 414–421. [Google Scholar] [CrossRef]
- Gordon, M.P.; Choe, N.; Duffy, J.; Ekuan, G.; Heilman, P.E.; Muizniecks, I.; Newman, L.A.; Ruszaj, M.; Shurtleff, B.B.; Strand, S.E.; et al. Phytoremediation of trichloroethylene with hybrid poplars. Environ. Health Perspect. 1998, 106, 1001–1004. [Google Scholar] [PubMed] [Green Version]
2012 | Treatment | ||
---|---|---|---|
Control | 25% process water | 50% process water | |
Final stem height (cm) | 26.49 ± 0.73a | 26.74 ± 0.80a | 18.08 ± 0.62b |
Stem basal diameter (mm) | 3.46 ± 0.06a | 3.40 ± 0.07a | 3.20 ± 0.06b |
Stem biomass (g) | 0.37 ± 0.02a | 0.31 ± 0.02b | 0.16 ± 0.01c |
Root biomass (g) | 0.19 ± 0.01a | 0.13 ± 0.01b | 0.09 ± 0.01c |
Leaf biomass (g) | 0.86 ± 0.04a | 0.73 ± 0.04b | 0.52 ± 0.03c |
Total biomass (g) | 1.42 ± 0.08a | 1.17 ± 0.06b | 0.77 ± 0.04c |
2013 | Treatment | ||
Control | 25% process water | 50% process water | |
Final stem height (cm) | 39.79 ± 1.28a | 33.70 ± 1.43b | 31.15 ± 0.98c |
Stem basal diameter (mm) | 4.69 ± 0.09a | 4.62 ± 0.11a | 4.06 ± 0.07b |
Stem biomass (g) | 1.06 ± 0.07a | 0.86 ± 0.07b | 0.54 ± 0.03c |
Root biomass (g) | 0.60 ± 0.04a | 0.47 ± 0.04b | 0.30 ± 0.02c |
Leaf biomass (g) | 1.63 ± 0.08a | 1.30 ± 0.09b | 1.04 ± 0.05c |
Total biomass (g) | 3.32 ± 0.19a | 2.88 ± 0.21b | 1.90 ± 0.10c |
NH4+ (Nµg/L) | NO2+ NO3 (Nµg/L) | TDN (Nµg/L) | TDP (Pµg/L) | Cl (mg/L) | SO4 (mg/L) | Na (mg/L) | K (mg/L) | Ca (mg/L) | Mg (mg/L) | Fe (mg/L) | Al (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum level of detection | 2 | 1 | 10 | 3 | 0.03 | 0.04 | 0.016 | 0.009 | 0.005 | 0.01 | 0.016 | 0.004 |
RO pre H * Day 15 | 27 | 289 | <LOD *** | <LOD | 5.51 | 31.03 | 13.05 | 0.90 | 31.75 | 7.61 | <LOD | <LOD |
RO post H ** Day 15 | 428 | 3800 | <LOD | <LOD | 5.72 | 34.28 | 13.19 | 7.47 | 32.03 | 8.61 | 0.06 | <LOD |
RO Day 35 | 17 | 42,867 | <LOD | 45,181 | 9.92 | 179.60 | 21.85 | 183.99 | 63.32 | 43.33 | 0.43 | <LOD |
RO Day 44 | 43 | 37,933 | <LOD | 52,183 | 8.38 | 135.47 | 20.04 | 122.40 | 41.98 | 31.54 | 0.21 | <LOD |
Process H2O 100% | 5787 | 16 | <LOD | <LOD | 717 | 397 | 1195 | 15 | 21 | 11 | <LOD | <LOD |
Process H2O 25% pre H Day 15 | 2140 | 701 | <LOD | <LOD | 195.16 | 131.12 | 269.37 | 5.37 | 27.58 | 8.21 | <LOD | <LOD |
Process H2O 25% post H Day 15 | 2390 | 2910 | <LOD | <LOD | 194.52 | 132.66 | 270.05 | 10.02 | 29.45 | 9.53 | 0.04 | <LOD |
Process H2O 25% Day 35 | 10 | 50,567 | <LOD | 102,986 | 206 | 303 | 306 | 180 | 42 | 43 | 0.10 | 10 |
Process H2O 25% Day 44 | 33 | 38,933 | <LOD | 109,417 | 198 | 257 | 275 | 120 | 30 | 32 | 0.06 | <LOD |
Process H2O 50% pre H Day 15 | 4020 | 870 | <LOD | <LOD | 367.83 | 231.82 | 540.19 | 10.09 | 25.80 | 9.68 | <LOD | <LOD |
Process H2O 25% post H Day 15 | 4060 | 2880 | <LOD | <LOD | 365.58 | 233.04 | 529.52 | 14.53 | 26.55 | 10.53 | 0.04 | <LOD |
Process H2O 50% Day 35 | 26 | 33,933 | <LOD | 151,163 | 365.17 | 380.95 | 524.48 | 187.20 | 22.96 | 39.34 | 0.02 | <LOD |
Process H2O 50% Day 44 | 27 | 53,467 | <LOD | 174,730 | 397.45 | 388.63 | 575.50 | 160.50 | 19.87 | 36.45 | 0.02 | <LOD |
Treatment | Year (Age) | ||||
---|---|---|---|---|---|
2015 (Age 1) | 2016 (Age 2) | 2017 (Age 3) | 2018 (Age 4) | 2019 (Age 5) | |
1 | 87% ± 2% | 87% ± 2% | 86% ± 2% | 83% ± 3% | 82% ± 3% |
2 | 92% ± 2% | 90% ± 3% | 90% ± 3% | 87% ± 4% | 84% ± 4% |
3 | 89% ± 4% | 89% ± 4% | 89% ± 4% | 87% ± 5% | 85% ± 5% |
Treatment/Lot Type | Height (m) | DBH (mm) |
---|---|---|
1 (top 18 clones)/Stream 2 | 4.01 ± 0.08 a | 29.99 ± 0.86 a |
2 (10 control clones)/Stream 2 | 3.58 ± 0.09 b | 27.02 ± 1.00 b |
3 Local control/Stream 1 | 3.61 ± 0.06 b | 26.38 ± 0.69 b |
a. Tissue nutrient | |||||||
---|---|---|---|---|---|---|---|
Site | B(ug/g) | Ca (%) | Cu (ug/g) | Fe (ug/g) | Mg (%) | Mn (ug/g) | Mo (ug/g) |
End-pit lake | 33.44 ± 0.82 | 1.05 ± 0.02 | 4.69 ± 0.12 | 136.06 ± 4.84 | 0.282 ± 0.004 | 9.65 ± 0.26 | 0.51 ± 0.01 |
P (%) | K (%) | S (%) | Zn (ug/g) | N (%) | Na (%) * | ||
0.164 ± 0.003 | 1.45 ± 0.03 | 0.36 ± 0.01 | 127.48 ± 5.51 | 1.38 ± 0.06 | - | ||
b. Heavy metal ** | |||||||
Site *** | Al (ug/g) | Ba (ug/g) | Cd (ug/g) | Cr (ug/g) | Co (ug/g) | Li (ug/g) | Ni (ug/g) |
End-pit lake | 55.90 ± 14.70 | 1.87 ± 0.27 | 0.20 ± 0.00 | 0.79 ± 0.26 | 0.38 ± 0.13 | 0.45 ± 0.05 | 0.74 ± 0.11 |
Si (ug/g) | Sr (ug/g) | Sn (ug/g) | Ti (ug/g) | V (ug/g) | |||
270.67 ± 47.10 | 11.73 ± 1.53 | 1.40 ± 0.06 | 2.30 ± 0.30 | 3.83 ± 0.12 |
Treatment | B(ug/g) | Ca (%) | Cu (ug/g) | Fe (ug/g) | Mg (%) | Mn (ug/g) | Mo (ug/g) |
---|---|---|---|---|---|---|---|
1 | 33.62 ± 1.02 | 1.04 ± 0.02 | 4.42 ± 0.13 | 139.83 ± 6.47 | 0.283 ± 0.004 ab | 9.56 ± 0.33 | 0.48 ± 0.04 |
2 | 32.88 ± 1.52 | 1.07 ± 0.04 | 5.39 ± 0.21 | 127.00 ± 6.16 | 0.275 ± 0.007 b | 9.67 ± 0.44 | 0.55 ± 0.04 |
3 | 33.70 ± 0.55 | 0.97 ± 0.05 | 4.61 ± 0.57 | 132.33 ± 14.44 | 0.32 ± 0.026 a | 8.70 ± 1.79 | 0.47 ± 0.03 |
Treatment | P (%) | K (%) | S (%) | Zn (ug/g) | N (%) | Na (%) | |
1 | 0.161 ± 0.003 | 1.46 ± 0.03 | 0.35 ± 0.01 | 119.06 ± 6.61 | 1.35 ± 0.07 | - | |
2 | 0.172 ± 0.006 | 1.44 ± 0.04 | 0.37 ± 0.01 | 149.42 ± 9.48 | 1.43 ± 0.13 | - | |
3 | 0.160 ± 0.011 | 1.46 ± 0.12 | 0.33 ± 0.04 | 118.47 ± 10.90 | 1.38 ± 0.31 | - |
a. Treatment 1 (25 selected tolerant clones) | |||||||
---|---|---|---|---|---|---|---|
Block | B (ug/g) | Ca (%) | Cu (ug/g) | Fe (ug/g) | Mg (%) | Mn (ug/g) | Mo (ug/g) |
1 | 34.14 ± 1.74 | 1.06 ± 0.04 | 5.19 ± 0.20 a | 178.44 ± 6.29 a | 0.270 ± 0.008 | 10.96 ± 0.69 a | 0.58 ± 0.03 |
2 | 33.65 ± 1.50 | 1.03 ± 0.05 | 4.46 ± 0.19 b | 123.68 ± 6.58 b | 0.280 ± 0.008 | 8.94 ± 0.43 b | 0.53 ± 0.04 |
3 | 33.16 ± 2.07 | 1.02 ± 0.04 | 3.65 ± 0.18 c | 115.36 ± 7.47 c | 0.300 ± 0.008 | 8.77 ± 0.47 b | 0.42 ± 0.04 |
Block | P (%) | K (%) | S (%) | Zn (ug/g) | N (%) | Na (%) | |
1 | 0.170 ± 0.007 a | 1.55 ± 0.04 | 0.36 ± 0.01 | 137.54 ± 9.69 a | 1.81 ± 0.07 a | - | |
2 | 0.170 ± 0.007 a | 1.44 ± 0.07 | 0.36 ± 0.02 | 115.71 ± 8.26 b | 1.34 ± 0.09 b | - | |
3 | 0.140 ± 0.005 b | 1.41 ± 0.07 | 0.33 ± 0.02 | 100.94 ± 7.71 c | 0.89 ± 0.14 c | - | |
b. Treatment 2 (10 selected control clones) | |||||||
Block | B (ug/g) | Ca (%) | Cu (ug/g) | Fe (ug/g) | Mg (%) | Mn (ug/g) | Mo (ug/g) |
1 | 35.65 ± 2.70 a | 1.09 ± 0.06 | 6.22 ± 0.38 a | 166.80 ± 4.50 a | 0.290 ± 0.010 | 10.98 ± 0.92 a | 0.62 ± 0.02 |
2 | 32.39 ± 2.29 b | 1.08 ± 0.09 | 5.10 ± 0.28 b | 112.40 ± 5.62 b | 0.270 ± 0.020 | 9.36 ± 0.74 a | 0.53 ± 0.03 |
3 | 30.60 ± 2.91 b | 1.03 ± 0.05 | 4.84 ± 0.33 b | 101.80 ± 6.70 b | 0.270 ± 0.009 | 8.67 ± 0.44 b | 0.57 ± 0.03 |
Block | P (%) | K (%) | S (%) | Zn (ug/g) | N (%) | Na (%) | |
1 | 0.180 ± 0.012 a | 1.48 ± 0.07 | 0.39 ± 0.02 | 183.00 ± 8.17 a | 1.77 ± 0.25 a | - | |
2 | 0.172 ± 0.012 a | 1.47 ± 0.06 | 0.39 ± 0.02 | 152.00 ± 9.23 b | 1.56 ± 0.15 b | - | |
3 | 0.160 ± 0.007 b | 1.36 ± 0.09 | 0.34 ± 0.03 | 113.30 ± 11.01 c | 0.95 ± 0.17 c | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Kamelchuk, D.; Krygier, R.; Thomas, B.R. Field Testing of Selected Salt-Tolerant Screened Balsam Poplar (Populus balsamifera L.) Clones for Use in Reclamation around End-Pit Lakes Associated with Bitumen Extraction in Northern Alberta. Forests 2021, 12, 572. https://doi.org/10.3390/f12050572
Hu Y, Kamelchuk D, Krygier R, Thomas BR. Field Testing of Selected Salt-Tolerant Screened Balsam Poplar (Populus balsamifera L.) Clones for Use in Reclamation around End-Pit Lakes Associated with Bitumen Extraction in Northern Alberta. Forests. 2021; 12(5):572. https://doi.org/10.3390/f12050572
Chicago/Turabian StyleHu, Yue, David Kamelchuk, Richard Krygier, and Barb R. Thomas. 2021. "Field Testing of Selected Salt-Tolerant Screened Balsam Poplar (Populus balsamifera L.) Clones for Use in Reclamation around End-Pit Lakes Associated with Bitumen Extraction in Northern Alberta" Forests 12, no. 5: 572. https://doi.org/10.3390/f12050572
APA StyleHu, Y., Kamelchuk, D., Krygier, R., & Thomas, B. R. (2021). Field Testing of Selected Salt-Tolerant Screened Balsam Poplar (Populus balsamifera L.) Clones for Use in Reclamation around End-Pit Lakes Associated with Bitumen Extraction in Northern Alberta. Forests, 12(5), 572. https://doi.org/10.3390/f12050572