Short-Term Impacts of Harvesting Intensity on the Upper Soil Layers in High Karst Dinaric Fir-Beech Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Study Approach
2.3. Field Work
2.4. Laboratory Analysis
- Ol/Of/Oh-layer:
- M10-layer:
2.5. Statistical Analysis
3. Results
3.1. Quantities and Quality of Soil Organic Matter
3.2. The Effect of Increased Harvesting Intensity on the Upper Soil Layers
3.3. The Relationships between Forest Canopy and Light Conditions with the Upper Soil Layer
4. Discussion
4.1. Upper Soil Layer Properties in the Dinaric Karst Region
4.2. Harvest Intensity Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diaci, J.; Roženbergar, D.; Anić, I.; Mikac, S.; Saniga, M.; Kucbel, S.; Višnjić, Ć.; Ballian, D. Structural dynamics and synchronous silver fir decline in mixed old-growth mountain forests in Eastern and Southeastern Europe. Forestry 2011, 84, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Čater, M.; Kobler, A. Light response of Fagus sylvatica L. and Abies alba Mill. in different categories of forest edge-Vertical abundance in two silvicultural systems. For. Ecol. Manag. 2017, 391, 417–426. [Google Scholar] [CrossRef]
- Körner, C.; Hiltbrunner, E. The 90 ways to describe plant temperature, Perspect. Plant. Ecol. 2018, 30, 16–21. [Google Scholar] [CrossRef]
- Schütz, J.-P.; Saniga, M.; Diaci, J.; Vrska, T. Comparing close-to-nature silviculture with processes in pristine forests: Lessons from Central Europe. Ann. For. Sci. 2016, 73, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Schütz, J.P. Silvicultural tools to develop irregular and diverse forest structures. Forestry 2002, 75, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Čavlović, J.; Božič, M.; Bončina, A. Stand structure of an uneven-aged fir-beech forest with an irregular diameter structure: Modelling the development of the Belevine forest, Croatia. Eur. J. For. Res. 2006, 125, 325–333. [Google Scholar] [CrossRef]
- Banković, S.; Medarević, M.; Pantić, D.; Petrović, N. The National Forest Inventory of the Republic of Serbia: The growing Stock of the Republic of Serbia; Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia, Forest Directorate: Belgrade, Serbia, 2009; p. 238. Available online: http://www.upravazasume.gov.rs (accessed on 10 October 2019).
- Bončina, A. History, current status and future prospects of uneven-aged forest management in the Dinaric region: An overview. Forestry 2011, 84, 467–478. [Google Scholar] [CrossRef]
- Čater, M.; Levanič, T. Beech and silver fir’s response along the Balkan’s latitudinal gradient. Sci. Rep. 2019, 9, 16269. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, Q.; Zhang, D. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Lexer, M.J. Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can. J. For. Res. 2011, 41, 694–706. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. Available online: www.ipcc.ch (accessed on 3 September 2019).
- Samec, P.; Caha, J.; Zapletal, M.; Tuček, P.; Cudlín, P.; Kučera, M. Discrimination between acute and chronic decline of Central European forests using map algebra of the growth condition and forest biomass fuzzy sets: A case study. Sci. Total Environ. 2017, 599–600, 899–909. [Google Scholar] [CrossRef]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.; Slodicak, M.; Dusek, D. Thinning effects on forest productivity and site characteristics in stands of Pinus sylvestris in the Czech Republic. For. Syst. 2011, 20, 464–474. [Google Scholar]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta-analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- Baritz, R.; Seufert, G.; Montanarella, L.; Ranst, E.V. Carbon concentrations and stocks in forest soils of Europe. For. Ecol. Manag. 2010, 260, 262–277. [Google Scholar] [CrossRef]
- Taylor, A.R.; Wang, J.R.; Kurz, W.A. Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. For. Ecol. Manag. 2008, 263, 31–38. [Google Scholar] [CrossRef]
- Pötzelsberger, E.; Hasenauer, H. Soil change after 50 years of converting Norway spruce dominated age class forests into single tree selection forests. For. Ecol. Manag. 2015, 338, 176–182. [Google Scholar] [CrossRef]
- Klein, D.; Fuentes, J.P.; Schmidt, A.; Schmidt, H.; Schulte, A. Soil organic C as affected by silvicultural and exploitative interventions in Nothofagus pumilio forests of the Chilean Patagonia. For. Ecol. Manag. 2008, 255, 3549–3555. [Google Scholar] [CrossRef]
- Urbančič, M.; Kobal, M.; Vilhar, U.; Simončič, P. Zaloge organske snovi v izbranih sestojih na bukovih rastiščih. In Trajnostna Raba Lesa v Kontekstu Sonaravnega Gospodarjenja z Gozdovi; Humar, M., Kraigher, H., Eds.; Silva Slovenica; Gozdarski Inštitut Slovenije: Ljubljana, Slovenia, 2009; pp. 19–29. [Google Scholar]
- Ritter, E.; Vesterdal, L. Gap formation in Danish beech (Fagus sylvatica) forests of low management intensity: Soil moisture and nitrate in soil solution. Eur. J. For. Res. 2006, 125, 139–150. [Google Scholar] [CrossRef]
- Christophel, D.; Spengler, S.; Schmidt, B.; Ewald, J.; Prietzel, J. Customary selective harvesting has considerably decreased organic carbon and nitrogen stocks in forest soils of the Bavarian Limestone Alps. For. Ecol. Manag. 2014, 305, 167–176. [Google Scholar] [CrossRef]
- Christophel, D.; Höllerl, S.; Prietzel, J.; Steffens, M. Long-term development of soil organic carbon and nitrogen stocks after shelterwood- and clear-cutting in a mountain forest in the Bavarian Limestone Alps. Eur. J. For. Res. 2015, 134, 623–640. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.A.; Augusto, L.; Cécillon, L.; Ferreira, G.W.D.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118–127. [Google Scholar] [CrossRef]
- Ewald, J. Ecological background of crown condition, growth and nutritional status of Picea abies (L.) Karst. in the Bavarian Alps. Eur. J. For. Res. 2005, 124, 9–18. [Google Scholar] [CrossRef]
- Kobal, M.; Grčman, H.; Zupan, M.; Levanič, T.; Simončič, P.; Kadunc, A.; Hladnik, D. Influence of soil properties on silver fir (Abies alba Mill.) growth in the Dinaric Mountains. For. Ecol. Manag. 2015, 337, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Reger, B.; Gottlein, A.; Katzensteiner, K.; Ewald, J. Assessing the Sensitivity of Mountain Forests to Site Degradation in the Northern Limestone Alps, Europe. Mt. Res. Dev. 2015, 35, 139–151. [Google Scholar] [CrossRef]
- Canham, C.D.; Finzi, A.C.; Pacala, S.W.; Burbank, D.H. Causes and consequences of resource heterogeneity in forests: Interspecific variation in light transmission by canopy trees. Can. J. For. Res. 1994, 24, 337–349. [Google Scholar] [CrossRef]
- Čater, M.; Diaci, J.; Roženbergar, D. Gap size and position influence variable response of Fagus sylvatica L. and Abies alba Mill. For. Ecol. Manag. 2014, 25, 128–135. [Google Scholar] [CrossRef]
- Hirabuki, Y. Heterogeneous dispersal of tree litterfall corresponding with patchy canopy structure in a temperate mixed forest. Vegetatio 1991, 94, 69–79. [Google Scholar] [CrossRef]
- Tingey, D.T.; Phillips, D.L.; Johnson, M.G.; Rygiewicz, P.T.; Beedlow, P.A.; Hogsett, W.E. Estimates of Douglas-fir fine root production and mortality from minirhizotrons. For. Ecol. Manag. 2005, 204, 359–370. [Google Scholar] [CrossRef]
- Gallardo, A. Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia 2003, 47, 117–125. [Google Scholar] [CrossRef]
- Sebastia, M.T.; Casals, P.; Vojniković, S.; Bogunić, F.; Beus, V. Plant diversity and soil properties in pristine and managed stands from Bosnian mixed forests. Forestry 2005, 78, 297–303. [Google Scholar] [CrossRef]
- Kutnar, L.; Eler, K.; Marinšek, A. Effects of different silvicultural measures on plant diversity-the case of the Illyrian Fagus sylvatica habitat type (Natura 2000). iForest 2015, 9, 318–324. [Google Scholar] [CrossRef] [Green Version]
- De Cinti, B.; Bombi, P.; Ferretti, F.; Cantiani, P.; Di Salvatore, U.; Simončič, P.; Kutnar, L.; Čater, M.; Garfì, V.; Mason, F.; et al. From the experience of LIFE+ ManFor C.BD to the manual of best practices in sustainable forest management. Ital. J. Agron. 2016, 11, 1–175. [Google Scholar] [CrossRef] [Green Version]
- Topalović, M.; Travar, J. Tumač Pedološke Karte i Tipološke Karte Gospodarskih Jedinica “Igman”, “Zujevina” i “Mehina Luka” (Interpreter of the Pedological Map and Typological Map of Economic Units “Igman”, “Zujevina” and “Mehina Luka”); Institut za Šumarstvo i Drvnu Industriju, Zavod za Šumarstvo i Lovstvo (Institute for Forestry and Wood Industry, Department of Forestry and Hunting): Beograd, Serbia, 1978. (In Serbian) [Google Scholar]
- Čater, M.; Diaci, J. Scientific support for close-to-nature forestry. In Forests and forestry in Slovenia, Studia Forestalia Slovenica, 1st ed.; Čater, M., Železnik, P., Eds.; Slovenian Forestry Institute, The Silva Slovenica Publishing Centre: Ljubljana, Slovenia, 2020. [Google Scholar]
- Kotar, M. Zgradba, Rast in Donos Gozda na Ekoloških in Fizioloških Osnovah; Zveza Gozdarskih Društev Slovenije in Zavod za Gozdove Slovenije: Ljubljana, Slovenia, 2005; p. 500. (In Slovenian) [Google Scholar]
- Cools, N.; De Vos, B. Part X: Sampling and Analysis of Soil. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE ICP Forests Programme Coordinating Centre, Ed.; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016; p. 29. Available online: http://www.icp-forests.org/manual.htm (accessed on 20 October 2020).
- Grüneberg, E.; Schöning, I.; Kalko, E.K.V.; Weisser, W.W. Regional organic carbon stock variability: A comparison between depth increments and soil horizons. Geoderma 2010, 155, 426–433. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.M.; Miller, J.R. Determining digital hemispherical photograph exposure for leaf area index estimation. Agric. For. Meteorol. 2005, 133, 166–181. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol. 2005, 129, 187–207. [Google Scholar] [CrossRef] [Green Version]
- Haber, J. Beziehungen Zwischen dem Humusgehalt, Humusvorrat Bayerischer Bergwaldböden und Steuernden Standorts- und Bestandesfaktoren. Doctoral Dissertation, University of Bayreuth, Bayreuth, Germany, 1985. [in Christophel, D.; Spengler, S.; Schmidt, B.; Ewald, J.; Prietzel, J. Customary selective harvesting has considerably decreased organic carbon and nitrogen stocks in forest soils of the Bavarian Limestone Alps. For. Ecol. Manag. 2014, 305, 167–176, doi:10.1016/j.foreco.2013.05.054]. [Google Scholar]
- Prietzel, J.; Christophel, D. Organic carbon stocks in forest soils of the German Alps. Geoderma 2014, 221–222, 28–39. [Google Scholar] [CrossRef]
- Mayer, M.; Sandén, H.; Rewald, B.; Godbold, D.L.; Katzensteiner, K. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct. Ecol. 2017, 31, 1163–1172. [Google Scholar] [CrossRef]
- Morehouse, K.; Johns, T.; Kaye, J.; Kaye, M. Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests. For. Ecol. Manag. 2008, 255, 2698–2708. [Google Scholar] [CrossRef]
- Misson, L.; Tang, J.; Xu, M.; Mckay, M.; Goldstein, A. Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation. Agric. For. Meteorol. 2005, 130, 207–222. [Google Scholar] [CrossRef]
- Čater, M.; Darenova, E.; Simončič, P. Harvesting intensity and tree species affect soil respiration in uneven-aged Dinaric forest stands. For. Ecol. Manag. 2021, 480, 118638. [Google Scholar] [CrossRef]
- Katzensteiner, K. Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies Karst.) ecosystem on a Lithic Leptosol in the Northern Limestone Alps. Plant Soil 2003, 250, 59–73. [Google Scholar] [CrossRef]
- Prescott, C.E.; Hope, G.D.; Blevins, L.L. Effect of gap size on litter decomposition and soil nitrate concentrations in a high-elevation spruce-fir forest. Can. J. For. Res. 2003, 3, 2210–2220. [Google Scholar] [CrossRef]
- Mund, M.; Schulze, E.D. Impacts of forest management on the carbon budget of European beech (Fagus sylvatica) forests. Allg. For. Jagdztg. 2006, 177, 47–63. [Google Scholar]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- Nilsen, P.; Strand, L.T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce stand (Picea abies (L.) Karst.) stand after 33 years. For. Ecol. Manag. 2008, 256, 201–208. [Google Scholar] [CrossRef]
- Clarke, N.; Gundersen, P.; Jönsson-Belyazid, U.; Kjønaas, O.J.; Persson, T.; Sigurdsson, B.D.; Stupak, I.; Verstedal, L. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems. For. Ecol. Manag. 2015, 351, 9–19. [Google Scholar] [CrossRef]
- Kishchuk, B.E.; Morris, D.M.; Lorente, M.; Keddy, T.; Sidders, D.; Quideau, S.; Maynard, D. Disturbance intensity and dominant cover type influence rate of boreal soil carbon change: A Canadian multi-regional analysis. For. Ecol. Manag. 2016, 381, 48–62. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedron, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Achat, D.L.; Deleuze, C.; Landmann, G.; Pousse, N.; Ranger, J.; Augusto, L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—A meta-analysis. For. Ecol. Manag. 2015, 348, 124–141. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, F.; Yang, W.; Zhao, Y.; He, W.; Tan, B. Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of Eastern Tibet Plateau. PLoS ONE 2014, 9, e97112. [Google Scholar] [CrossRef]
- Hoffmann, T.; Schlummer, M.; Notebaert, B.; Verstraeten, G.; Korup, O. Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe. Glob. Biogeochem. Cycles 2013, 27, 828–835. [Google Scholar] [CrossRef]
- Wilding, L.P.; Drees, L.R.; Nordt, L.C. Spatial variability: Enhancing the mean estimate of organic and inorganic carbon in a sampling unit. In Assessment Methods for Soil Carbon; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 69–86. [Google Scholar]
- Yanai, R.D.; Currie, W.S.; Goodale, C.L. Soil carbon dynamics after forest harvest: An Ecosystem Paradigm Reconsidered. Ecosystems 2003, 6, 197–212. [Google Scholar] [CrossRef]
Experimental Site | BA 1 | SL(K) 2 | SL(S) 2 | SL(T) 2 |
---|---|---|---|---|
Latitude (°N) | 43.738 | 45.668 | 45.672 | 45.989 |
Longitude (°E) | 18.254 | 15.033 | 14.46 | 13.759 |
Altitude (m a.s.l.) | 1420 | 871 | 870 | 814 |
MAT (°C) | 7.6 | 9.0 | 8.4 | 11.3 |
MAP (mm) | 1192 | 1465 | 1573 | 1619 |
Growing stock (m3 ha−1) | 270 | 352 | 442 | 292 |
Increment (m3 ha−1 yr−1) | 6.2 | 9.4 | 8.3 | 6.2 |
Surface rockiness (%) | 19 ± 10 | 38 ± 13 | 31 ± 18 | 17 ± 11 |
Soil pHCaCl2 | 5.2 ± 0.8 | 5.3 ± 0.6 | 5.3 ± 0.7 | 4.6 ± 0.4 |
Layer | Score | pH Value | SOC | TN | C/N Ratio | SOC Stock |
---|---|---|---|---|---|---|
Ol | RDA1 | 0.003 | 0.025 | 0.171 | −0.288 | 0.543 |
RDA2 | −0.003 | 0.005 | 0.087 | −0.119 | −0.091 | |
PC1 | 0.005 | 0.008 | −0.022 | 0.047 | 1.416 | |
PC2 | −0.004 | −0.010 | −0.316 | 0.572 | −0.024 | |
Of | RDA1 | −0.057 | 0.062 | 0.096 | −0.104 | 0.649 |
RDA2 | 0.012 | 0.114 | 0.183 | −0.202 | −0.069 | |
PC1 | 0.016 | −0.060 | −0.021 | −0.028 | 1.505 | |
PC2 | −0.091 | 0.206 | 0.406 | −0.492 | 0.006 | |
Oh | RDA1 | −0.028 | 0.313 | 0.265 | −0.117 | 0.444 |
RDA2 | 0.005 | 0.166 | 0.211 | −0.213 | −0.299 | |
PC1 | −0.028 | 0.313 | 0.265 | −0.117 | 0.444 | |
PC2 | 0.005 | 0.166 | 0.211 | −0.213 | −0.299 | |
M10 | RDA1 | −0.079 | −0.675 | −0.322 | 0.268 | −0.153 |
RDA2 | −0.081 | 0.172 | −0.073 | 0.319 | −0.007 | |
PC1 | 0.098 | 1.103 | 0.378 | 0.176 | −0.015 | |
PC2 | 0.028 | −0.013 | −0.114 | 0.228 | −0.974 |
Layer | Openness (%) | DSF (%) | ISF (%) | TSF (%) | |
---|---|---|---|---|---|
Ol | RDA1 | −0.477 | −0.477 | −0.477 | −0.477 |
PC1 | 0.879 | 0.879 | 0.879 | 0.879 | |
R2 | 0.41 | 0.57 | 0.24 | 0.55 | |
Of | RDA1 | −0.418 | −0.418 | −0.418 | −0.418 |
PC1 | 0.908 | 0.908 | 0.908 | 0.908 | |
R2 | 0.15 | 0.29 | 0.02 | 0.25 | |
Oh | RDA1 | −0.470 | −0.470 | −0.470 | −0.470 |
PC1 | −0.883 | −0.883 | −0.883 | −0.883 | |
R2 | 0.20 | 0.35 | 0.08 | 0.32 | |
M10 | RDA1 | 0.625 | 0.625 | 0.625 | 0.625 |
PC1 | 0.780 | 0.780 | 0.780 | 0.780 | |
R2 | 0.61 | 0.68 | 0.44 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hukić, E.; Čater, M.; Marinšek, A.; Ferlan, M.; Kobal, M.; Žlindra, D.; Čustović, H.; Simončič, P. Short-Term Impacts of Harvesting Intensity on the Upper Soil Layers in High Karst Dinaric Fir-Beech Forests. Forests 2021, 12, 581. https://doi.org/10.3390/f12050581
Hukić E, Čater M, Marinšek A, Ferlan M, Kobal M, Žlindra D, Čustović H, Simončič P. Short-Term Impacts of Harvesting Intensity on the Upper Soil Layers in High Karst Dinaric Fir-Beech Forests. Forests. 2021; 12(5):581. https://doi.org/10.3390/f12050581
Chicago/Turabian StyleHukić, Emira, Matjaž Čater, Aleksander Marinšek, Mitja Ferlan, Milan Kobal, Daniel Žlindra, Hamid Čustović, and Primož Simončič. 2021. "Short-Term Impacts of Harvesting Intensity on the Upper Soil Layers in High Karst Dinaric Fir-Beech Forests" Forests 12, no. 5: 581. https://doi.org/10.3390/f12050581
APA StyleHukić, E., Čater, M., Marinšek, A., Ferlan, M., Kobal, M., Žlindra, D., Čustović, H., & Simončič, P. (2021). Short-Term Impacts of Harvesting Intensity on the Upper Soil Layers in High Karst Dinaric Fir-Beech Forests. Forests, 12(5), 581. https://doi.org/10.3390/f12050581