The Potential Role of Cinnamon in Human Health
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Bioactive Compounds Determined in Cinnamon
Determination Methods for Compounds Naturally Occurring in Cinnamon
3.2. Properties of Compounds Naturally Occurring in Cinnamon
3.2.1. Antioxidant Activity
3.2.2. Antidiabetic Activities
3.3. Cinnamon in the Treatment of Diseases and Disorders
3.3.1. Alzheimer’s Disease
3.3.2. Parkinson’s Disease
3.3.3. Other Applications of Cinnamon
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
BChE | butyrylcholinesterase |
DART–MS | direct analysis in real time mass spectrometry |
FTIR | Fourier-transform infrared spectroscopy |
GC | gas chromatography |
GCxGC–TOFMS | gas chromatography–time-of-flight mass spectrometry |
GC–FID | gas chromatography coupled with flame ionization detection |
GC–MS | gas chromatography–mass spectrometry |
HPLC | high-performance liquid chromatography |
IL | interleukin |
LC–MS | liquid chromatography–mass spectrometry |
LC–MS/MS | liquid chromatography–tandem mass spectrometry |
LDL-C | low-density lipoprotein cholesterol |
LPS | lipopolysaccharide |
MDA | malondialdehyde |
MFO | flavonol (-)-(2R,3R)-5,7-dimethoxy-3’,4’-methylenedioxy-flavan-3-ol |
NO | nitric oxide |
PD | Parkinson’s disease |
PRO | lignan pinoresinol |
SEM | scanning electron microscopy |
TBI | traumatic brain injury |
TNF | tumor necrosis factor |
UPLC–HRMS | ultraperformance liquid chromatography–high-resolution mass spectrometry |
UPLC–MS/MS | ultraperformance liquid chromatography–tandem mass spectrometry |
References
- Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complementary Altern. Med. 2014, 2014, 642942. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.M.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) oil as a potential alternative to antibiotics in poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Mirabzadeh, S.; Shahvalizadeh, R.; Hamishehkar, H. Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int. J. Biol. Macromol. 2020, 149, 11–20. [Google Scholar] [CrossRef]
- Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr. 2010, 50, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Wariyapperuma, W.A.N.M.; Kannangara, S.; Yasanandana, S. In vitro anti-diabetic effects and phytochemical profiling of novel varieties of Cinnamomum zeylanicum (L.) extracts. Biochem. Biophys. Mol. Biol. 2020, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hariri, M.; Ghiasvand, R. Cinnamon and chronic diseases. Drug Discov. Mother Nat. Adv. Exp. Med. Biol. 2016, 929, 1–24. [Google Scholar] [CrossRef]
- Mohammad, S.; Gharibzahedi, T. The preparation, stability, functionality and food enrichment ability of cinnamon oil-loaded nanoemulsion-based delivery systems: A review. Int. J. Nutraceuticals Funct. Foods Nov. Foods Res. Ind. Appl. 2018, 17, 97–105. [Google Scholar] [CrossRef]
- Momtaz, S.; Hassani, S.; Khan, F.; Ziaee, M.; Abdollahi, M. Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol. Res. 2018, 130, 241–258. [Google Scholar] [CrossRef]
- Dorri, M.; Hashemitabar, S.; Hosseinzadeh, H. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: A review. Drug Chem. Toxicol. 2018, 41, 338–351. [Google Scholar] [CrossRef]
- Khasanah, L.U.; Prasetyawan, P.; Utami, R.; Atmaka, W.; Manuhara, G.J.; Sanjaya, A.P. Optimization and Characterization of Cinnamon Leaves (Cinnamomum burmannii) Oleoresin. IOP Conf. Ser. Mater. Sci. Eng. 2017, 193. [Google Scholar] [CrossRef] [Green Version]
- Adarsh, A.; Chettiyar, B.; Kanthesh, B.M.; Raghu, N. Phytochemical Screening and Antimicrobial Activity of “Cinnamon zeylanicum”. Int. J. Pharm. Res. Innov. 2020, 13, 22–33. [Google Scholar]
- Cha, J.; Kim, C.T.; Kim, T.E.; Cho, Y.J. Optimization of subcritical extraction process for cinnamon (Cinnamomum Cassia Blume) using response surface methodology. Food Sci. Biotechnol. 2019, 28, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.S.; Maskat, M.Y.; Hassan, N.H. Optimization of cinnamaldehyde extraction and antioxidant activity of ceylon cinnamon extract. Sains Malays. 2020, 49, 995–1002. [Google Scholar] [CrossRef]
- Chen, G.; Sun, F.; Wang, S.; Wang, W.; Dong, J.; Gao, F. Enhanced extraction of essential oil from Cinnamomum cassia bark by ultrasound assisted hydrodistillation. Chin. J. Chem. Eng. 2020. [Google Scholar] [CrossRef]
- Li, J.; Guan, E.; Chen, L.; Zhang, X.; Yin, L.; Dong, L.; Pan, Q.; Fu, X.; Zhang, L. Optimization for extraction of an oil recipe consisting of white pepper, long pepper, cinnamon, saffron, and myrrh by supercritical carbon dioxide and the protective effects against oxygen–glucose deprivation in PC12 cells. Rev. Bras. De Farmacogn. 2018, 28, 312–319. [Google Scholar] [CrossRef]
- Tang, P.L.; Chen, Y.T.; Qin, J.; Hou, X.; Deng, J. Effect of cinnamon bark and twig extracts on the chemical, physicochemical and antioxidant properties of fermented milk. J. Food Meas. Charact. 2020, 14, 2271–2281. [Google Scholar] [CrossRef]
- Da Silva, M.L.T.; Bernardo, M.A.S.; Singh, J.; de Mesquita, M.F. Beneficial uses of cinnamon in health and diseases: An interdisciplinary approach. In The Role of Functional Food Security in Global Health; Watson, R., Singh, R., Takahashi, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 565–576. [Google Scholar]
- Silva, F.L.; Silva, R.V.S.; Branco, P.C.; Costa-Lotufo, L.V.; Murakami, C.; Young, M.C.M.; Azevedo, D.A.; Moreno, P.R.H. Chemical composition of the Brazilian native Cinnamomum stenophyllum (Meisn.) Vattimo-Gil essential oil by GC-qMS and GCxGC-TOFMS, and its cytotoxic activity. Arab. J. Chem. 2020, 13, 4926–4935. [Google Scholar] [CrossRef]
- Farias, A.P.P.; Monteiro, O.D.S.; da Silva, J.K.R.; Figueiredo, P.L.B.; Rodrigues, A.A.C.; Monteiro, I.N.; Maia, J.G.S. Chemical composition and biological activities of two chemotype-oils from Cinnamomum verum J. Presl growing in North Brazil. J. Food Sci. Technol. 2020, 57, 3176–3183. [Google Scholar] [CrossRef] [PubMed]
- Pragadheesh, V.S.; Saroj, A.; Yadav, A.; Chanotiya, C.S.; Alam, M.; Samad, A. Chemical characterization and antifungal activity of cinnamomum camphora essential oil. Ind. Crop. Prod. 2013, 49, 628–633. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Rao, L.J.M. Chemistry, Biogenesis and Biological Activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr. 2011, 51, 547–562. [Google Scholar] [CrossRef]
- Kaul, P.N.; Bhattacharya, A.K.; Rao, B.R.R.; Syamasundar, K.V.; Ramesh, S. Volatile constituents of essential oils isolated from different parts of cinnamon (Cinnamomum zeylanicum Blume). J. Sci. Food Agric. 2003, 55, 53–55. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Mariod, A.A.; Taha, M.M.E.; Zaman, F.Q.; Abdelmageed, A.H.A.; Khamis, S.; Sivasothy, Y.; Awang, K. Chemical composition and antioxidant properties of the essential oil of Cinnamomum altissimum Kosterm. (Lauraceae). Arab. J. Chem. 2017, 10, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Kallel, I.; Hadrich, B.; Gargouri, B.; Chaabane, A.; Lassoued, S.; Gdoura, R.; Bayoudh, A.; Ben Messaoud, E. Optimization of Cinnamon (Cinnamomum zeylanicum Blume) Essential Oil Extraction: Evaluation of Antioxidant and Antiproliferative Effects. Evid. Based Complementary Altern. Med. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, D.R.A.; Lemarcq, V.; Alderweireldt, E.; Vanoverberghe, P.; Praseptiangga, D.; Juvinal, J.G.; Dewettinck, K. Antioxidant activity and quality attributes of white chocolate incorporated with Cinnamomum burmannii Blume essential oil. J. Food Sci. Technol. 2020, 57, 1731–1739. [Google Scholar] [CrossRef]
- Gotmare, B.; Tambe, E. Identification of Chemical Constituents of Cinnamon Bark Oil by GCMS and Comparative Study Garnered from Five Different Countries. Glob. J. Sci. Front. Res. Biol. Sci. 2019, 19, 35–42. [Google Scholar]
- Wong, Y.C.; Ahmad-Mudzaqqir, M.Y.; Wan-Nurdiyana, W.A. Extraction of essential oil from cinnamon (Cinnamomum zeylanicum). Orient. J. Chem. 2014, 30, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Masghati, S.; Ghoreishi, S.M. Supercritical CO2 extraction of cinnamaldehyde and eugenol from cinnamon bark: Optimization of operating conditions via response surface methodology. J. Supercrit. Fluids 2018, 140, 62–71. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Sun, A.; Liu, X. Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n-butane and ethanol extraction. Food Sci. Nutr. 2019, 7, 2186–2193. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Cho, K.H. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish. Food Chem. Toxicol. 2011, 49, 1521–1529. [Google Scholar] [CrossRef]
- Modi, P.I.; Parikh, J.K.; Desai, M.A. Industrial Crops & Products Sonohydrodistillation: Innovative approach for isolation of essential oil from the bark of cinnamon. Ind. Crop. Prod. 2019, 142, 111838. [Google Scholar] [CrossRef]
- Gulcin, I.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Topal, M.; Bingol, Z.; Çakmak, K.C.; Sarikaya, S.B.O.; Alwasel, S. Anticholinergic, antidiabetic and antioxidant activities of cinnamon (cinnamomum verum) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Prop. 2019, 22, 1511–1526. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, D.R.A.; Tuenter, E.; Patria, G.D.; Foubert, K.; Pieters, L.; Dewettinck, K. Phytochemical composition and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white chocolate. Food Chem. 2021, 340, 127983. [Google Scholar] [CrossRef] [PubMed]
- Pashazadeh, B.; Elhamirad, A.H.; Hajnajari, H.; Sharayei, P.; Armin, M. Optimization of the pulsed electric field -assisted extraction of functional compounds from cinnamon. Biocatal. Agric. Biotechnol. 2020, 23, 101461. [Google Scholar] [CrossRef]
- Pavlovich, M.J.; Musselman, B.; Hall, A.B. Direct, Real-Time Mass Spectrometry Analysis of Cinnamon. American Laboratory 2016. Available online: https://www.americanlaboratory.com/914-Application-Notes/185014-Direct-Real-Time-Mass-Spectrometry-Analysis-of-Cinnamon/ (accessed on 31 March 2021).
- Ervina, M.; Nawu, Y.E.; Esar, S.Y. Comparison of in vitro antioxidant activity of infusion, extract and fractions of Indonesian Cinnamon (Cinnamomum burmannii) bark. Int. Food Res. J. 2016, 23, 1346–1350. [Google Scholar]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.Z.; Saima, H.; Yasmin, A.; Nadeem, M.T.; Imran, M.; Afzaal, M. Antioxidant capacity of cinnamon extract for palm oil stability. Lipids Health Dis. 2018, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants—An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Prabhashini, W.; Mendis, K.; Premakumara, S.; Arachchige, G.; Kanchana, W.; Mendis, S.; Ratnasooriya, W.D.; Medawattegedara, H.; Indeewari, U. Antioxidant and Glycemic Regulatory Properties Potential of Different Maturity Stages of Leaf of Ceylon Cinnamon (Cinnamomum zeylanicum Blume) In vitro. Evid. Based Complementary Altern. Med. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, A.L.; Li, G.H.; Li, Y.R.; Wu, X.Y.; Ren, D.M.; Lou, H.X.; Wang, X.N.; Shen, T. Lignan and flavonoid support the prevention of cinnamon against oxidative stress related diseases. Phytomedicine 2019, 53, 143–153. [Google Scholar] [CrossRef]
- Georgiev, L.; Chochkova, M.; Totseva, I.; Seizova, K.; Marinova, E.; Ivanova, G.; Ninova, M.; Najdenski, H.; Milkova, T. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides. Med. Chem. Res. 2013, 22, 4173–4182. [Google Scholar] [CrossRef]
- Ghosh, D. Tannins from Foods to Combat Diseases. Int. J. Pharma Res. Rev. 2015, 4, 40–44. [Google Scholar]
- Sallam, E. Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications. Microorganism 2021, 9, 965. [Google Scholar] [CrossRef]
- Al-Numair, K.S.; Ahmad, D.; Ahmed, S.B.; Al-Assaf, A.H. Nutritive value, levels of polyphenols and anti-nutritional factors in Sri Lankan cinnamon (Cinnamomum Zeyalnicum) and Chinese Cinnamon (Cinnamomum Cassia). Food Sci. Agric. Res. Center King Saud Univ. 2007, 154, 5–21. [Google Scholar]
- Shan, B.; Cai, Y.Z.; Brooks, D.J.; Corke, H. Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum burmannii): Activity against Foodborne Pathogenic Bacteria. J. Agric. Food 2007, 55, 5484–5490. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mandal, A.; Kant, R.; Jachak, S.; Jagzape, M. Is Cinnamon Efficacious for Glycaemic Control in Type-2 Diabetes Mellitus? J. Pak. Med Assoc. 2020, 70, 2065–2069. [Google Scholar]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef]
- Yulug, B.; Kilic, E.; Altunay, S.; Ersavas, C.; Orhan, C.; Dalay, A.; Tuzcu, M.; Sahin, N.; Juturu, V.; Sahin, K. Cinnamon Polyphenol Extract Exerts Neuroprotective Activity in Traumatic Brain Injury in Male Mice. CNS Neurol. Disord. Drug Targets 2018, 17, 439–447. [Google Scholar] [CrossRef]
- Ibrahim, J.E.; Anderson, L.J.; Macphail, A.; Lovell, J.J.; Davis, M.; Winbolt, M. Chronic disease self-management support for persons with dementia, in a clinical setting. J. Multidiscip. Healthc. 2017, 10, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Chao, S.; Hu, C. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Devi, L.; Alldred, M.J.; Ginsberg, S.D.; Ohno, M. Mechanisms Underlying Insulin Deficiency-Induced Acceleration of b-Amyloidosis in a Mouse Model of Alzheimer’s Disease. PLoS ONE 2012, 7, e32792. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Sangma, T.; Shukla, S.K.; Mediratta, P.K. Effect of Cinnamomum zeylanicum extract on scopolamine-induced cognitive impairment and oxidative stress in rats. Nutr. Neurosci. 2014, 18, 210–216. [Google Scholar] [CrossRef]
- Tan, E.K.; Chao, Y.X.; West, A.; Chan, L.L.; Poewe, W.; Jankovic, J. Parkinson disease and the immune system—Associations, mechanisms and therapeutics. Nat. Rev. Neurol. 2020, 16, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Dolgacheva, L.P.; Berezhnov, A.V.; Fedotova, E.I.; Zinchenko, V.P.; Abramov, A.Y. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J. Bioenerg. Biomembr. 2019, 51, 175–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelopoulou, E.; Paudel, Y.N.; Piperi, C.; Mishra, A. Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J. Biochem. Mol. Toxicol. 2021. [Google Scholar] [CrossRef]
- Mohamed, A.E.; Abdur, R.; Sadeek Alaa, M.M. Cinnamon bark as antibacterial agent: A mini-review. GSC Biol. Pharm. Sci. 2020, 10, 103–108. [Google Scholar] [CrossRef]
- Wang, J.; Su, B.; Jiang, H.; Cui, N.; Yu, Z.; Yang, Y.; Sun, Y. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. J. Pre Proof Fitoter. 2020, 104675. [Google Scholar] [CrossRef] [PubMed]
- Husain, I.; Ahmad, R.; Chandra, A.; Raza, S.T.; Shukla, Y.; Mahdi, F. Phytochemical characterization and biological activity evaluation of ethanolic extract of Cinnamomum zeylanicum. J. Ethnopharmacol. 2018, 219, 110–116. [Google Scholar] [CrossRef]
- Harini, S.; Suneetha, V. Disinfectant for Urinary Infection Caused by Escherichia coli by Using Natural Oils. J. Biosci. Med. 2020, 8, 96–103. [Google Scholar] [CrossRef]
- Chen, L.L.; Shen, Y.C.; Ke, C.C.; Imtiyaz, Z.; Chen, H.I.; Chang, C.H.; Lee, M.H. Efficacy of cinnamon patch treatment for alleviating symptoms of overactive bladder: A double-blind, randomized, placebo-controlled trial. Phytomedicine 2021, 80, 153380. [Google Scholar] [CrossRef]
- Ghaffari, S.; Roshanravan, N. The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature. Food Res. Int. 2020, 128. [Google Scholar] [CrossRef]
- Shahrestan, F.; Jafari, P.; Gharebaghi, A.; Khani Farahani, I.; Shahrestan, E. Effect of Bioflora and Cinnamon Extract Consumption on Dyslipidemia and Cardiovascular Disease in a Diabetic Rat Model. J. Arak Univ. Med Sci. 2020, 23, 198–209. [Google Scholar] [CrossRef]
- Goel, B.; Mishra, S. Medicinal and Nutritional Perspective of Cinnamon: A Mini-review. Eur. J. Med. Plants 2020, 31, 10–16. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.Y.; Jiang, X.W.; Yang, Y.; Xing, B.; Yao, D.; Wu, Q.; Xu, Z.H.; Zhao, Q.C. Cinnamomum cassia extract promotes thermogenesis during exposure to cold via activation of brown adipose tissue. J. Ethnopharmacol. 2021, 266, 113413. [Google Scholar] [CrossRef]
- Zareie, A.; Bagherniya, M.; Sharma, M.; Khorvash, F.; Hasanzadeh, A.; Askari, G. Effects of Cinnamon on Anthropometry Status and Headache Disability of Migraine Patients: A Randomized Double-blind Placebo-controlled Trial. J. Headache Pain 2020. [Google Scholar] [CrossRef]
- Mutans, S. Evaluation of the Antibacterial Effect of Cinnamon Extract on Streptococcus Mutans. Al-Azhar Dent. J. Girls 2021, 8, 123–128. [Google Scholar] [CrossRef]
- LeBel, G.; Haas, B.; Adam, A.A.; Veilleux, M.P.; Lagha, A.B.; Grenier, D. Effect of cinnamon (Cinnamomum verum) bark essential oil on the halitosis-associated bacterium Solobacterium moorei and in vitro cytotoxicity. Arch. Oral Biol. 2017, 83, 97–104. [Google Scholar] [CrossRef]
- Pahan, S.; Pahan, K. Can cinnamon spice down autoimmune diseases? J. Clin. Exp. Immunol. 2020, 5, 252–258. [Google Scholar] [CrossRef]
- Sivaranjani, R.; Zachariah, T.J.; Leela, N.K. Phytotherapeutic potential of bi-herbal extract of cinnamon and turmeric: In vivo antidiabetic studies. Clin. Phytoscience 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Ahmed, W.M.S.; Abdel-Azeem, N.M.; Ibrahim, M.A.; Helmy, N.A.; Radi, A.M. Neuromodulatory effect of cinnamon oil on behavioural disturbance, CYP1A1, iNOStranscripts and neurochemical alterations induced by deltamethrin in rat brain. Ecotoxicol. Environ. Saf. 2021, 209, 111820. [Google Scholar] [CrossRef]
- Kosari, F.; Taheri, M.; Moradi, A.; Alni, R.H.; Alikhani, M.Y. Evaluation of cinnamon extract effects on clbB gene expression and biofilm formation in Escherichia coli strains isolated from colon cancer patients. BMC Cancer 2020, 20, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumari, R.; Mishra, S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J. Pharm. Pharmacol. 2019, 17, 735–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostner, G.M.; Alsoodeeri, F.N.; Alqabbani, H.M.; Aldossari, N.M. Effects of Cinnamon (Cinnamomum cassia) Consumption on Serum Lipid Profiles in Albino Rats. J. Lipids 2020, 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Lucas, K.; Fröhlich-Nowoisky, J.; Oppitz, N.; Ackermann, M. Cinnamon and Hop Extracts as Potential Immunomodulators for Severe COVID-19 Cases. Front. Plant Sci. 2021, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.S.; Al-Shaikh, T.M.; Hamza, Z.K.; El-Nekeety, A.A.; Bawazir, S.S.; Hassan, N.S.; Abdel-Wahhab, M.A. Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidativestress, genotoxicity, and reproductive disturbances in male mice. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
Part | Separation Technique | Sample Preparation | Analysis Method | Determined Compounds * | Ref. |
---|---|---|---|---|---|
Leaf | Hydrodistillation | Using a Clevenger-type apparatus. | GCxGC–TOFMS | 4-Hydroxy-4-methyl-2-pentanone, nopinone, p-mentha-1,5-dien-8-ol, verbenone, methyl eugenol, spathulenol, mustakone | Silva et al. [18] |
Hydrodistillation | Ground cinnamon and submitted to hydrodistillation using a Clevenger-type apparatus. | GC–MS GC–FID | α-thujene, camphene, sabinene, p-cymene, trans-linalool oxide (furanoid), linalool, borneol, α-terpineol, (E)-cinnamaldehyde, eugenol, (E)-caryophyllene, (E)-cinnamyl acetate, α-humulene, ar-curcumene, γ-gurjunene, caryolan-8-ol, camphor, limonen | Farias et al. [19]; Pragadheesh et al. [20] | |
Hydrodistillation, supercritical extraction techniques | Small pieces of samples were immersed in distilled water. | GC–MS | Linalool, eugenol | Farias et al. [19]; Jayaprakasha & Jagan Mohan Rao [21] | |
Maceration extraction | Crushed cinnamon samples were placed in ethanol. | GC–MS | Eugenol, trans-caryophyllene, 1,4,8-cycloundecatriene, glycerol triacetate, 4,6-dimethyldodecane, benzyl benzoate, trans-2-tridecenal, tetradecanamide, oleic acid amide | Khasanah et al. [10] | |
Fruit | Hydrodistillation | Ground cinnamon and submitted to hydrodistillation using a Clevenger-type apparatus. | GC GC–MS | Linalool | Kaul et al. [22] |
Bark | Hydrodistillation | Small pieces of cinnamon bark were immersed in distilled water and extracted using a Clevenger-type apparatus. | GC–FID | Linalool, eugenol, α-pinene, sabinene, α-terpinene, limonene, 1,8-cineole, α-terpinene, terpinolene, terpinen-4-ol, terpineol, methyl eugenol, α-selinene | Abdelwahab et al. [23] |
Hydrodistillation | Small pieces of cinnamon bark were immersed in distilled water. | GC–MS | Cinnamaldehyde, trans-cinnamyl acetate, coumarin acid, 9-octadecenoic acid, 1,4-benzenedicarboxylic acid, α-pinene, 1,8-cineole, benzaldehyde, γ-terpinene, linalool, camphenilol, borneol, cyclohexane, α-terpinene, eugenol, hydrocinnamic acid, δ-cadinene, propenoic acid, caryophyllene oxide, naphthalenol, hexadecanoic acid, phthalic acid | Kallel et al. [24] | |
Hydrodistillation | Small pieces of samples were immersed in distilled water. | GC–MS | α-pinene, camphene, β-pinene, p-cymene, limonene, 1,8-cineole, linalool, borneol, 4-terpineol, β-terpineol, bornyl acetate, α-copaene, β-elemene, zingiberene, trans-β-caryophyllene, α-humulene, γ-muurolene, α-guaiene, α-muurolene, δ-cadinene, cadina-1,4-diene, α-calacorene, α-cubebene, δ-cadinol, benzaldehyde, benzylacetaldehyde, cinnamaldehyde, cinnamyl acetate, coumarin | Muhammad et al. [25] | |
Distillation | Dry ground samples of cinnamon were mixed with distilled water in bottom flask. | GC–MS | Eucalyptol, benzene propanol, trans-cinnamaldehyde, cinnamyl acetate, α-muurolene, coumarin (2H-1-benzopyran-2-one), linalool, eugenol, caryophyllene, eugenyl acetate, benzyl benzoate | Gotmare & Tambe [26] | |
Steam distillation method | Cinnamon sticks were mashed in smaller pieces and placed in the distillation flask. | HPLC | Cinnamaldehyde | Wong et al. [27] | |
Supercritical CO2 extraction | Crushed cinnamon was placed in an apparatus. | GC | Cinnamaldehyde, eugenol | Masghati & Ghoreishi [28] | |
Subcritical extraction | Ground samples of cinnamon were extracted in n-butanol and ethanol. | GC–MS (n-butanol extract) HPLC–MS (ethanol extract) | N-butanol extract—styrene, benzaldehyde, camphene, β-pinene, linalool, (Z)-cinnamaldehyde, (E)-cinnamaldehyde (main) α-copaene, eugenol, coumarin, methyl cinnamate ethanol extract—procyanidin trimer, catechin, coumarin, (E)-cinnamaldehyde, (Z)-cinnamaledehyde, cinnamyl alcohol | Liang et al. [29] | |
Subcritical extraction | Pulverized cinnamon was mixed with distilled water. | HPLC | Coumarin, cinnamic acid, cinnamaldehyde, cinnamyl alcohol | Cha et al. [12] | |
Soxhlet extraction | Cinnamon sticks were mashed into smaller pieces and placed inside a thimble made from thick filter paper. | HPLC | Cinnamaldehyde | Wong et al. [27] | |
Water extraction | Crushed samples of cinnamon were dissolved into distilled water after lyophilization. | GC–MS | Cinnamaldehyde, 1,8-cineol, α-terpinolene, borneol, γ-terpinene, benzaldehyde, carvacrol, δ-3-carene | Jin & Cho [30] | |
Water extraction | Cinnamon dust was immerged in distilled water and heated. | UPLC–MS/MS | Quinic acid, shikimic acid, L-tyrosine, nicotinamide, adenosine, gallic acid, methyl-4-hydroxy-3-methoxycinnamate, protocatechuic acid, protocatechualdehyde, perillene, (+)-catechin hydrate, melittoside, abscisic acid, camphor, coumarin, azelaic acid, isopropyl-4-hydroxybenzoate, 6-gingerol, citric acid, protocatechuic acid, ferulaldehyde, (+)-magnoflorine, curdione, rosavin, abscisic acid, arglabin, L(−)-carnitine | Tang et al. [16] | |
Sonohydrodistillation | Extraction of essential oil from powdered cinnamon was performed in a sonohydrodistillation unit consisting of a two-neck round-bottom flask. | GC–MS | Cinnamaldehyde | Modi et al. [31] | |
Ethanol extraction | Plant cinnamon barks were powdered and mixed with ethanol. | LC–MS/MS | Caffeic acid, ferulic acid, pyrogallol, p-hydroxybenzoic acid, vanillin, p-coumaric acid, gallic acid, ascorbic acid | Gulcin et al. [32] | |
Maceration extraction | Liquid extracts were dried and diluted in ethanol 95%. | RP–HPLC, Folin–Ciocalteu colorimetric method | Cinnamaldehyde, phenols | Othman et al. [13] | |
Solvent extraction | Cinnamon powder was subjected to different solvents (methanol, ethanol, acetone, water). | UPLC–HRMS | Protocatechuic acid, 3,4-dihydroxybenzaldehyde (protocatechualdehyde), catechin, epicatechin, procyanidin B2, cinnamic acid, quercitrin (quercetin-3-rhamnoside), coumarin, syringic acid, rutin | Muhammad et al. [33] | |
Pulsed electric field extraction | Ground samples of cinnamon were diluted in ethanol. The mixture was introduced between electrodes. | Folin–Ciocalteu method | Phenols | Pashazadeh et al. [34] | |
- | Cinnamon powder was applied to the capillary by dipping it in the powder. The capillary was then placed in the helium stream. | DART–MS | Coumarin, cinnamaldehyde, trans-cinnamaldehyde, trans-cinnamic acid, eugenol, benzaldehyde, estragole, linalool, cinnamyl alcohol | Pavlovich et al. [35] |
Potential Effect | Description | Ref. |
---|---|---|
Autoimmune disorders | Cinnamon and its metabolite sodium benzoate (NaB) upregulate anti-autoimmune Tregs and Th2, suppress autoimmune Th17 and Th1, inhibit inflammatory infiltration, and reduce the expression of proinflammatory molecules. | Pahan & Pahan [69] |
Antidiabetic | Cinnamon extract lowers blood glucose and cholesterol levels. | Sivaranjani et al. [70] |
Neuroprotective | Results of research suggest that cotreatment of rats with cinnamon oil alleviated the adverse effects of deltamethrin pesticide in rats. Increased antioxidant defense system, decreased stress levels, and regulation of gene expression may be potential mechanisms underlying the ability of cinnamon oil to prevent the neurotoxic effects of deltamethrin. | Ahmed et al. [71] |
Anticancer | Cinnamaldehyde and cinnamon essential oil exhibit antimicrobial properties and may be used in the prevention and treatment of infections caused by Escherichia coli and in patients with suspected colon cancer. | Kosari et al. [72]; Kumar et al. [73] |
Lipid lowering | Cinnamon extract exhibits hypolipidemic activity in hypercholesterolemic albino rats. Daily administration of the extract reduced serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol (LDL-C). | Kostner et al. [74] |
Antioxidant and antimicrobial | Herbs including, but not limited to, cinnamon have antibacterial, antiviral, and antioxidant properties with double the effectiveness of synthetic supplements. | Parham et al. [75] |
COVID-19 treatment | Cinnamon extract has the potential to limit overshooting immune reactions in COVID-19. | Lucas et al. [76] |
TiO2NPs protector | Cinnamon oil is a promising substance for the protection against the hazards of TiO2NPs. | Salman et al. [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, N.; Rosiak, A.; Kałużna-Czaplińska, J. The Potential Role of Cinnamon in Human Health. Forests 2021, 12, 648. https://doi.org/10.3390/f12050648
Błaszczyk N, Rosiak A, Kałużna-Czaplińska J. The Potential Role of Cinnamon in Human Health. Forests. 2021; 12(5):648. https://doi.org/10.3390/f12050648
Chicago/Turabian StyleBłaszczyk, Natalia, Angelina Rosiak, and Joanna Kałużna-Czaplińska. 2021. "The Potential Role of Cinnamon in Human Health" Forests 12, no. 5: 648. https://doi.org/10.3390/f12050648
APA StyleBłaszczyk, N., Rosiak, A., & Kałużna-Czaplińska, J. (2021). The Potential Role of Cinnamon in Human Health. Forests, 12(5), 648. https://doi.org/10.3390/f12050648