Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures under Different Preloads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental System Setup
2.2. Time-Reversal Method
2.3. Symbolic Aggregate Approximation (SAX) Model
2.4. Deep-Learning Model
2.5. LSTM Model
3. Results
Emission Signal Selection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amer, M.; Kabouchi, B.; Rahouti, M.; Famiri, A.; Fidah, A.; El Alami, S. Mechanical Properties of Clonal Eucalyptus Wood. Int. J. Thermophys. 2021, 42, 1–15. [Google Scholar] [CrossRef]
- Wu, G.F.; Sun, J.C.; Huang, C.J.; Ren, H.Q.; Zhao, R.J. Research progress on mechanical properties of tenon-mortise joints in traditional Chinese wood structures. J. For. Eng. 2020, 5, 29–37. [Google Scholar]
- Murphy, C.; Pantelides, C.P.; Blomgren, H.-E.; Rammer, D. Development of Timber Buckling Restrained Brace for Mass Timber-Braced Frames. J. Struct. Eng. 2021, 147, 04021050. [Google Scholar] [CrossRef]
- Huang, Y.P.; Yang, Y.T.; Sun, Y.; Zhou, H.Y.; Chen, K.J. Identification of Apple Varieties Using a Multichannel Hyperspectral Imaging System. Sensors 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Bouhamed, N.; Souissi, S.; Marechal, P.; Ben Amar, M.; Lenoir, O.; Leger, R.; Bergeret, A. Ultrasound evaluation of the mechanical properties as an investigation tool for the wood-polymer composites including olive wood flour. Mech. Mater. 2020, 148, 11. [Google Scholar] [CrossRef]
- De Melo, R.R.; Barbosa, K.T.; Beltrame, R.; Acosta, A.P.; Pimenta, A.S.; Mascarenhas, A.R.P. Ultrasound to determine physical-mechanical properties of Eucalyptus camaldulensis wood. Wood Mater. Sci. Eng. 2020, 1–7. [Google Scholar] [CrossRef]
- Fathi, H.; Kazemirad, S.; Nasir, V. A nondestructive guided wave propagation method for the characterization of moisture-dependent viscoelastic properties of wood materials. Mater. Struct. 2020, 53, 1–14. [Google Scholar] [CrossRef]
- Wang, G.-G.; Zhang, X.; Gao, Z.-Z.; Wang, Y.-L.; Yu, C.; Wang, Z. Dynamic testing and analysis of Poisson’s ratio constants of timber. In Mechanics and Architectural Design, Proceedings of 2016 International Conference, Suzhou, China, 14–15 May 2016; pp. 9–18. Available online: https://www.worldscientific.com/doi/abs/10.1142/9789813149021_0002 (accessed on 21 May 2021).
- Fathi, H.; Kazemirad, S.; Nasir, V. Lamb wave propagation method for nondestructive characterization of the elastic properties of wood. Appl. Acoust. 2021, 171, 9. [Google Scholar] [CrossRef]
- Fathi, H.; Nasir, V.; Kazemirad, S. Prediction of the mechanical properties of wood using guided wave propagation and machine learning. Constr. Build. Mater. 2020, 262, 12. [Google Scholar] [CrossRef]
- Domingos, F.C.; Maia, J.M.; Maia, O.M.A.; Schneider, F.K. Microcontroller based Control System for Ultrasound NDT in Wood. Phys. Procedia 2015, 70, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Ornelas Cavalcanti, N.M.; Goncalves, R.; Brazolin, S.; Bertoldo, C.; Ruy, M. Ultrasound Test for Root Wood Elastomechanical Characterization. Bioresources 2018, 13, 5818–5835. [Google Scholar]
- Jia, S.F.; Liu, J.Y.; Lin, X.X.; Sun, W.H.; Duo, X.; Cao, H.M.; Wang, W.B. Sound absorption performance of bionic perforated wood structure fiberboard. J. For. Eng. 2021, 6, 38–43. [Google Scholar]
- Huo, L.S.; Wang, F.R.; Li, H.N.; Song, G.B. A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers. Smart Mater. Struct. 2017, 26, 9. [Google Scholar] [CrossRef]
- Palma, S.S.A.; Goncalves, R.; Trinca, A.J.; Costa, C.P.; Reis, M.N.; Martins, G.A. Interference from Knots, Wave Propagation Direction, and Effect of Juvenile and Reaction Wood on Velocities in Ultrasound Tomography. Bioresources 2018, 13, 2834–2845. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Barboutis, I.; Lefakis, P. Detection of various characteristics on wooden surfaces, using scanner and image processing techniques. In Proceedings of the 27th International Conference on Wood Modification and Tehnology, Zagreb, Croatia, 13–14 October 2016; pp. 7–13. [Google Scholar]
- Liu, Y.Y.; Wang, Y.X.; Zhang, Y.M.; Chen, M.H.; Nie, X.Z. Force-displacement relations of bolted timber joints with slotted-in steel plates parallel to the grain. J. Wood Sci. 2020, 66, 13. [Google Scholar] [CrossRef]
- Kovryga, A.; Sarnaghi, A.K.; van de Kuilen, J.W.G. Strength grading of hardwoods using transversal ultrasound. Eur. J. Wood Wood Prod. 2020, 78, 951–960. [Google Scholar] [CrossRef]
- Moshtaghin, A.F.; Franke, S.; Keller, T.; Vassilopoulos, A.P. Experimental investigation of mesoscale variability of clear spruce mechanical properties in the radial direction. Constr. Build. Mater. 2021, 270, 14. [Google Scholar]
- Sotomayor Castellanos, J.R.; Villasenor Aguilar, J.M. Material properties and acoustic performance indexes of twenty-two Mexican woods. Measurement by ultrasound. Madera Bosques 2018, 24, e2431132. [Google Scholar]
- Kim, K.H.; Jung, S.H. Automatic Composition using Time Series Embedding of RNN Auto-Encoder. J. Korea Multimed. Soc. 2018, 21, 849–857. [Google Scholar]
- Yu, Y.; Si, X.S.; Hu, C.H.; Zhang, J.X. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural. Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Gonzalez, J. In Fast Training of Deep LSTM Networks, Cham, 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–10. [Google Scholar]
- Dey, R.; Salem, F.M. Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems, Boston, MA, USA, 6–9 August 2017; IEEE: New York, NY, USA, 2017; pp. 1597–1600. [Google Scholar]
- Huang, L.; Li, Z.; Xie, F.; Feng, K. Novel Time Series Modeling Methods for Gyro Random Noise Used in Internet of Things. IEEE Access 2018, 6, 47911–47921. [Google Scholar] [CrossRef]
- Ye, C.W.; Yu, Z.W.; Kang, R.; Yousaf, K.; Qi, C.; Chen, K.J.; Huang, Y.P. An experimental study of stunned state detection for broiler chickens using an improved convolution neural network algorithm. Comput. Electron. Agric. 2020, 170, 9. [Google Scholar] [CrossRef]
- Ni, C.; Wang, D.Y.; Tao, Y. Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy. Spectroc. Acta Part A Molec. Biomolec. Spectr. 2019, 209, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yuan, H.; Guo, L.; Kuang, Y.; Zhang, K. Optimization Method of Residual Networks of Residual Networks for Image Classification. In International Conference on Intelligent Computing; Huang, D.S., Gromiha, M.M., Han, K., Hussain, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10956, pp. 212–222. [Google Scholar]
- Zhong, X.; Gong, O.B.; Huang, W.X.; Li, L.; Xia, H.X. Squeeze-and-Excitation Wide Residual Networks in Image Classification. In Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; IEEE: New York, NY, USA, 2019; pp. 395–399. [Google Scholar]
- Zhang, K.; Guo, Y.R.; Wang, X.S.; Yuan, J.S.; Ding, Q.L. Multiple Feature Reweight DenseNet for Image Classification. IEEE Access 2019, 7, 9872–9880. [Google Scholar] [CrossRef]
- Chen, B.L.; Zhao, T.S.; Liu, J.H.; Lin, L.Q. Multipath feature recalibration DenseNet for image classification. Int. J. Mach. Learn. Cybern. 2021, 12, 651–660. [Google Scholar] [CrossRef]
- Ouahabi, A.; Taleb-Ahmed, A. Deep learning for real-time semantic segmentation: Application in ultrasound imaging. Pattern Recognit. Lett. 2021, 144, 27–34. [Google Scholar] [CrossRef]
- Senin, P.; Malinchik, S. SAX-VSM: Interpretable Time Series Classification Using SAX and Vector Space Model. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; Xiong, H., Karypis, G., Thuraisingham, B., Cook, D., Wu, X., Eds.; pp. 1175–1180. [Google Scholar]
- Hatami, N.; Gavet, Y.; Debayle, J. Classification of Time-Series Images Using Deep Convolutional Neural Networks. In Proceedings of the Tenth International Conference on Machine Vision, Vienna, Austria, 13–15 November 2017; Verikas, A., Radeva, P., Nikolaev, D., Zhou, J., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2018; Volume 10696. [Google Scholar]
- Su, W.; Wang, Z.F. Widening residual refine edge reserved neural network for semantic segmentation. Multimed. Tools Appl. 2019, 78, 18229–18247. [Google Scholar] [CrossRef]
Preload (N × m) | Experimental Amount |
---|---|
0 | 56 |
2 | 58 |
3 | 53 |
4 | 53 |
5 | 57 |
6 | 63 |
7 | 58 |
8 | 59 |
Preload (N × m) | Experimental Amount |
---|---|
0 | 58 |
2 | 58 |
3 | 57 |
4 | 55 |
5 | 57 |
6 | 63 |
7 | 58 |
8 | 60 |
Training Set | Test Set | |
---|---|---|
Directly collected signals | 306 | 151 |
Time-reversal signals | 312 | 154 |
Classification Models | Binary Classification | Octonary Classification | ||
---|---|---|---|---|
Original Signals | Time-Reversal Signals | Original Signals | Time-Reversal Signals | |
LSTM | 92.0% | 97.0% | 78.0% | 83.0% |
WideResnet40_2 | 93.0% | 95.0% | 58.3% | 80.0% |
Densenet121 | 92.0% | 97.0% | 53.0% | 75.0% |
XGBoost | 92.7% | 93.5% | 54.9% | 77.3% |
lightGBM | 92.7% | 96.1% | 58.9% | 81.2% |
SAX-VSM | 92.7% | 88.3% | 50.0% | 71.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Z.; Yu, Y.; Liu, Y.; Chen, J.; Wang, Z. Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures under Different Preloads. Forests 2021, 12, 652. https://doi.org/10.3390/f12060652
Zhuang Z, Yu Y, Liu Y, Chen J, Wang Z. Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures under Different Preloads. Forests. 2021; 12(6):652. https://doi.org/10.3390/f12060652
Chicago/Turabian StyleZhuang, Zilong, Yabin Yu, Ying Liu, Jiawei Chen, and Zhengguang Wang. 2021. "Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures under Different Preloads" Forests 12, no. 6: 652. https://doi.org/10.3390/f12060652
APA StyleZhuang, Z., Yu, Y., Liu, Y., Chen, J., & Wang, Z. (2021). Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures under Different Preloads. Forests, 12(6), 652. https://doi.org/10.3390/f12060652